跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/18 11:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃晁熙
研究生(外文):Chao-Hsi Huang
論文名稱:不同過渡金屬添加於矽酸鹽觸媒之結構與氧化反應研究
論文名稱(外文):The addition transition metals with MCM-41 for structure and oxidation reaction
指導教授:鄭紀民
指導教授(外文):Jih-Mirn Jehng
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:183
中文關鍵詞:中孔洞觸媒矽酸鹽丙烷氧化脫氫反應
外文關鍵詞:MesoporousMCM-41propane oxidation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:1
MCM-41為新型態之中孔洞矽酸鹽觸媒之代表,由於孔洞為規則排列的六角型態且具有極高的表面積和高孔洞體積,即受到研究人員廣泛的注意與應用。由文獻中得知加入少量的金屬可改變MCM-41之不同的催化能力,且前人研究得知,Ti-MCM-41、V-MCM-41應用烷烴、烯烴、和醇類氧化還原反應上有極佳的效果。因此本實驗加入不同價數之過渡金屬(鎢、鉬、鉭、鈷、鎳、鉻)等金屬及不同金屬濃度對金屬矽酸鹽觸媒結構特性之影響,經由X光繞射儀、BET表面積及TEM之測試結果,確定其屬於中孔洞型態之金屬矽酸鹽觸媒,且金屬之添加會使其孔洞加大。添加不同金屬於矽酸鹽,隨添加金屬之濃度增加,光譜之變化愈大,金屬可能與矽氧形成鍵結於主結構中或形成表面金屬型態。
綜合以上特性分析結果針對金屬矽酸鹽觸媒進行評估,並進行丙烷氧化反應,且以不同丙烷與氧之進料比( 1:1、3:1、6:1)於450℃、500℃、550℃下反應,利用氣相層析儀分析產物濃度。反應結果主產物為丙烯,副產物為一氧化碳、二氧化碳、甲烷、乙烯、乙烷等。歸納反應結果,隨溫度之增加,觸媒轉化率愈高,而高氧氣進料比時丙烷轉化率也會比低氧氣進料比時高。而丙烯選擇率則隨著溫度的上升有下降的趨勢;於低氧氣進料比,丙烯選擇率則會比高氧氣進料比高。隨著氧進料比越大丙烷容易過度氧化而副產物一氧化碳、二氧化碳則增多。此外在每一系列之金屬矽酸鹽觸媒中,丙烯產率有隨著添加之金屬濃度增加而上升至一極大值,可見添加金屬濃度和催化能力有密切的關係。
MCM-41 is the designation of a new of mesoporous structure. The first synthesized mesoporous solid was showed a regularly ordered pore arrangement and a very narrow pore-size distribution. The research interest focused on the characterization and the technical applications. The structure of metallosilicate catalysts was studied as a function of various transition metals and metal concentrations. The uniform mesoporous structure in metallosilicate ([M]-MCM-41, [M]= W, Mo, Ta, Co, Ni and Cr) catalysts was confirmed by X-ray diffraction, BET surface area and TEM technique. The different metal additive would result in larger pore size. The higher the concentration was, the larger the pore size will be. Incorporation of transition metals into the wall structure is necessary in the preparation of mesoporous redox-catalysts. Due to the success of Ti-MCM-41 and V-MCM-41.We appraise the metallosilicate and selecting suitable catalysts to experiment on propane oxidation reaction.
The propane oxidation will be optimized by the C3H8/O2 feed ratio equal to 1、3、6 with 450℃、500℃ and 550℃ reaction temperature. The reaction product concentration was detected by GC analysis and confirmed the products are propene and other by-products, CO2, CH4, C2H4, C2H6 etc. In the results of analytic data, by increasing temperature, catalysts got higher conversion and selectivity became lower. When increase the oxygen feed ratio, the by-products CO and CO2 is increasing. Besides, the propene yields are getting more with the increasing of metal concentrations in silicalite at first. Then it would get a maximum yield in every series of metallosilicate catalysts and drop off afterward. So catalyst’s ability indeed related to the concentrations of metal additive.
目   錄
第一章 緒論 1
1.1 前言 2
1.2 研究動機及目的 3
1.3 文獻回顧 3
第二章 實驗設備與方法 10
2.1 實驗藥品 10
2.2 觸媒之製備 10
2.3 實驗設備 12
2.4 觸媒特性與反應分析儀器 12
2.5 觸媒特性與反應分析儀器簡介 13
2.6 觸媒於丙烷氧化脫氫計算方法 23
2.7 觸媒測試(丙烷氧化反應) 25
第三章 實驗結果與討論 28
3.1 特性分析 28
3.2 觸媒丙烷氧化反應測試 54
第四章 結論 110
第五章 參考文獻 112
第六章 附錄 115
1. Firouzi, A. Kumar, D.; Bull, L. M.; Besier, T.; Sieger, P.; Huo, Q.; Walker, S. A.; Zasadzinski, J. A.; Glinka, C.; Sicol, J.; Margolese, D.; Stucky, G. D.; Chmelka, B. F. Science, 1995, 267, 1138.
2. P.H. Emmett, S. Brunauer, J. Am. Chem. Soc. 59 (1993) 1553.
3. Kresge, C. T.; Leonowicz, M. E.; Roth W. J.; Vartuli, J. C.; Beck, J. S. Nature, 1992, 359, 710.
4. L. M. Welch, L. J. Croce, H. F. Christmann, Hydrocarb. Process, 1978, 57 (11), 131.
5. F. Cafani and F. Trifiro, Appl. Catal. A, 1992, 88, 115.
6. E. A. Mamedov and V. Cortes Corberan, Appl. Catal. A., 1995, 1, 127
7. V. D. Skolovskii, Catal. Rev. Sci. Eng., 1990, 1, 32
8. N. D. Chyvylkin, G. M. Zhidomirov, V. B. Kazznskii, Kinet. Catal., 1977, 1, 18.
9. Yu-Wen Chen, Tsao-Nan Huang, 觸媒與製程, 1996 Vol. 5, No 2, 15-29.
10. Zhang, L.; Ying, J. Y. “Synthesis and Characterization of Mesoporous Niobium-Doped Silica Molecular Sieves,” AIChE J., 1997, 43 (11A), 2793-2801.
11. A. Baiker, International Chem. Eng., 1985, 17, 25.
12. S. Brunauer, L. S. Deming, W. S. Deming and E. Teller, J. Amer. Chem. Soc., 1940, 62, 1723.
13. .Dabadie, T.; Ayral, A.; Guizard, C.; Cot, L.; Lacan, P. J. Mater. Chem. 1996, 6, 1789.
14. Snowane, C. G.; Bhatia, S. K.; Calos, N. Ind. Eng. Chem. Res. 1998, 37, 2271.
15. Kruk, M.; Jaroniec, M. Chem. Mater, 1999, 11, 492-500.
16. Kruk, M.; Jaroniec, M.; Sayari, A. J. Phys. Chem., B 1997, 101, 583.
17. Kruk, M.; Jaroniec, M.; Ryoo, R.; Kim, J. M. Microporous Mater., 1997, 12, 93.
18. Kruk, M.; Jaroniec, M.; Sayari, A. Langmuir, 1997, 13, 6267.
19. C. Daniel Harris, “Quantitative Chemical Analysis” (3rd Edition), 1991.
20. M. L. Hair, “Infrared Spectroscopy in Surface Chemistry”, 1976.
21. V. A. Kiselev, “Infrared Spectra of Surface Compounds”, 1975.
22. H. L. Little, “Infrared Spectra of Adsorbed Species”, 1996.
23. J. W. Olesik, Anal. Chem.,68,469A, 1996.
24. 林智仁;等 工業材料雜誌 Vol. 181, 1992.
25. P. J. Branton, P. G. Hall, K. S. Sing, H. Reichert, F. Schüth, K. K. Nnger, J. Chem. Soc. Faraday Trans., 1994, 90 2965.
26. Thomas E.W. NieBen, John P.M. Niederer, Torbjørn Gjeervan, Wolfgang F. Hölderich, Microporous and Mesoporous Materials, 1998, 21, 67-74.
27. Shon, J. R.; Decanio, S. J.; Lunsford, J. H. Zeolites, 1986, 6,225.
28. Maria D. Alba, Zhaohua Luan, and Jacek Klinowski, J. Phys. Chem., 1996, 100, 2178-2182.
29. Hari Prasad Rao, P. R.; Kumar, R.; Ramaswamy, A. V.; Ratnasamy, P. Zeolites, 1993, 13, 663.
30. Chang, T. —H,; Leu, F. —C. Zeolites, 1995, 15, 496.
31. Thangaraj, A.; Kumer, R.; Ratnasamy, P. Appl. Catal., 1990, 57, L1.
32. Zhaohua Luan, Jie Xu, Heyong He, Jacek Klinowski, and Larry Kevan, J. Phys. Chem., 1996 100, 19595-19602.
33. Decottiguies, M.; Phalippou, J.; Zarzycki, J. J. Mater. Sci. 1978, 13, 2605.
34. M. Chatterjee, T. Iwasaki, H. Hayashi, Y. Onodera, T. Ebina, T. Nagase, Chem. Mater, 1999, 11, 1368-1375.
35. Jih-Mirn Jehng and Israel Wachs, Chem. Master., 1991, 3, 100.
36. Xiu S. Zhao, G. Q. (MAx) Lu, and Graeme J. Millar, Ind. Eng. Chem. Res., 1996, 35, 2075-2090.
37. Yah-Ru Cheng, Chung-Yuan Mou, Hong-Ping Lin, CHEMISTRY, 1998, Vol. 56, No.3, 197-207.
38. Chi-Feng Cheng, Zhaohua Luan, and Jacek Klinowski, Langmuir, 1995, Vol. 11, 2815-2819.
39. Hong Ping Lin, Soofin Cheng and Chung-Yuan Mou, J. Chin. Chem. Soc., Vol. 1996, 43, 375-378.
40. Chang Houn Rhee, Jae Sung Lee, Catalysis Today, 1997, 38, 213-219.
41. Peter Behrens and Galen D. Stucky, Angew. Chem. Int. Ed. Engl., 1993, 32, 696-698.
42. Hong-Ping Lin, Ben-Zu Wan and Ch-Yuan Mou, J. Chin. Chem. Soc., 1999, 46, 495-507.
43. J. Rathousky and A. Zukal, J. Chem. Soc. FARADAY TRANS., 1994, 90, 821-826.
44. Izabela Nowak and Maria Ziolek, Chem. Rev. 1999, 99, 3603-3624
45. Di Wei, Hui Wang, Xiaobing Feng, Wei—Te Chueh, Petr Racikovitch, Maxim Lyubovsky, Can Li, Tatsuya Takeguchi, and Gary L. Haller, J. Phys. Chem. B, 1999, 103, 2113-2121.
46. Yu-Wen Chen, Keng-Khian Koh and Yu-May Wang, J. Chin. Inst. Chem. Engrs., 2000, Vol. 31, 123-134
47. Andreas Hinz, Arne Andersson, Chem. Eng. Science, 1999, 54, 4407-4424
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊