跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 04:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭霽慶
研究生(外文):Chi-Ching Kuo
論文名稱:超音波刺激與動態培養對組織工程支架體外再生組織形成之影響
論文名稱(外文):The effect of ultrasound and dynamic conditions on the neocartilage formation in tissue-engineering scaffolds
指導教授:徐善慧徐善慧引用關係
指導教授(外文):Shan-hui Hsu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:103
中文關鍵詞:軟骨修復關節軟骨組織工程第二型膠原蛋白RGD透明質酸鈉生物反應器超音波
外文關鍵詞:cartilage repairarticular cartilage tissue engineeringtype II collagenRGDsodium hyaluronatebioreactorultrasound
相關次數:
  • 被引用被引用:6
  • 點閱點閱:380
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:1
本研究是以組織工程技術來發展軟骨修復的方法。在實驗設計中,分為新材料與新改質物應用在軟骨組織工程支架的研究,以及將成人或小豬關節軟骨細胞植入聚酯類高分子支架中,以靜置培養、超音波刺激與動態生物反應器培養後進行再生組織的比較。
在新材料(聚丁烯丁二酯)的評估中,此材料的HC細胞相容性與PLLA相近,加上支架製備簡易與成本低廉,未來可以應用於需要較慢降解速率的硬骨修復上。
在新改質物方面,以透明質酸鈉加入已經用第II型膠原蛋白與CBD-RGD改質的支架,發現能夠促進HC生長與分泌基質。
在HC 3D支架體外培養實驗中,發現超音波刺激系統與旋轉式(Rotator)生物反應器皆能夠促進細胞生長與分泌基質,尤其是旋轉式生物反應器。
在PC 3D支架體外培養實驗中,發現旋轉式(Rotator)生物反應器能夠使得細胞於支架中分布均勻,且促進細胞生長與分泌基質,維持細胞形態,幫助基質排列規則而增強機械性質,達到功能接近真實組織的再生軟骨組織。迴轉振盪式(Shaker)生物反應器則因提供一不當的紊流(turbulent flow)使得細胞產生大量的NO.自由基,造成細胞生長抑制與減少基質合成。靜置培養的控制組細胞則只長於支架外圍,使得質傳效果不佳而促使支架中央pH值過低加速支架材料降解,最後導致再生組織的機械性質不佳。
綜合上述,旋轉式(Rotator)生物反應器對於AP6+CII支架,能夠成功培育出具功能性的再生組織,是一個最佳的體外培養模式。
Tissue engineering technique has been broadly explored in recent years to repair the damaged cartilage. In this study, new materials and modification of the scaffolds were tested; more importantly, the effect of ultrasound and dynamic culture conditions (bioreactors) on the neocartilage formation in tissue engineering scaffolds were examined.
Polybutylene succinate was found to possess some excellent characters, including similar biocompatibility to poly(L-lactide), easy process for scaffold fabrication as well as low cost. Although its degradation time was longer, the previous characters could still make it a good candidate for bone tissue engineering.
Regarding surface modification, sodium hyaluronate, type II collagen and CBD-RGD (a recombinant RGD-containg protein), when used together, can promote the growth of human articular chondrocytes, and increase the production of extracellular matrix (ECM).
Chondrogenesis in 3D scaffolds were studied under controlled in vitro conditions. The chondrocytes harvested from adult human knee articular cartilage were seeded onto our biodegradable composite scaffolds and cultivated in vitro. After being incubated for several weeks, the chondrocytes grew well and produced more ECM in those constructs either stimulated with ultrasound or cultured in the rotating-type bioreactor, especially for the latter.
The chondrocytes harvested from baby porcine knee articular cartilage were seeded into scaffolds and cultivated in static condition, the shaking-type bioreactor or the rotating-type bioreactor. It was demonstrated that the rotating-type bioreactor could promote the growth of chondrocytes, help to maintain their phenotype and increase the production of extracellular matrix (ECM). In addition, the constructs grown in such condition had several interesting features. The chondrocytes were enclosed in lacunae-like structure and distributed uniformly in the scaffolds. The constructs contained largest amount of ECM compared to the others and had a dynamic compression modulus similar to that of the real porcine cartilage. On the other hand, in the shaking-type bioreactor, chondrocytes produced high amount of NO. which inhibited their growth. In the static condition, chondrocytes grew toward the outer layer of the cell-polymer constructs. That may cause a low pH value in the middle of the constructs which led further to high degradation rate of the scaffold as well as the weaker neocartilage.
In conclusion, the functional neocartilage could be successly regenerated by culturing human and porcine chondrocytes in the scaffolds using the rotating-type bioreactor. Ultrasound also showed a positive effect.
目 錄
符號縮寫 ………………………………………………………… I
中文摘要 ………………………………………………………… III
目錄 ………………………………………………………… IV
圖附錄 ………………………………………………………… X
表附錄 ………………………………………………………… XII
研究目的 ………………………………………………………… XIII
實驗架構 ………………………………………………………… XIV
參考文獻
1.M. H. Ross, L. J. Romrell, Histology: a text and atlas, 呂嘉陞等編譯,合記圖書出版社, pp. 140-157, 民 85
2.S. L. Turek, 傅宇輝等編譯. 骨科學原理及應用.大中國圖書公司, pp. 13-281 民 76
3.R. G. LeBaron, K. A. Athanasiou, Ex vivo synthesis of articular cartilage, Biomaterials, 21, 2575-87, 2000
4.D. W. Hutmacher, Scaffolds in tissue engineering bone and cartilage, Biomaterials, 21, 2529-2543, 2000
5.章世豪. 膠原蛋白改質聚α羥酸支架應用於軟骨修復的研究. 中興大學碩士論文 民90
6.R. P. Lanza, R. Langer, J. Vacanti, Principles of tissue engineering 2nd, pp. 671-682 Academic Press, Tokyo, samDiego, 1999
7.徐善慧, 湯正明. 生醫材料於組織修復之應用. 2002年化工技術第10卷第3期 民91
8.徐善慧, 陳俊宇. 巧奪天工的人工智慧─組織工程. 科學發展專刊. 行政院國家科學發展委員會. 民91
9.高偉良. 動物細胞培養. 金名圖書有限公司, pp. 1-7 民83
10.謝淑枝. Chitosan-Alginate-Hyaluronate 複合物經RGD改質後的組織工程支架應用於軟骨再生的評估. 中興大學碩士論文 民89
11.L. E. Freed, R. Langer, I. Martin, N. R. Pellis, G. Vunjak-Novakovic, Tissue engineering of cartilage in space, proc Natl Acad Sci, 94, 13885-13890, 1997
12.P. Brun, G. Abatangelo, M. Radice, V. Zacchi, D. Guidolin, D. D. Gordini, R. Cortivo, Chondrocyte aggregation and reorganization into three-dimensional scaffolds, J Biomed Mater Res, 46, 337-346, 1999
13.R. P. Silverman, L. Bonasser, D. Passaretti, M. A. Randolph, M. J. Yaremchuk, Adhesion of Tissue-Engineered Cartilage to Native Cartilage, Plast Reconstr Surg, 105, 1393, 2000
14.C. R. Chu, R. D. Coutts, M. Yoshiokz, F. L. Harwood, A. Z. Monosov, D. Amiel, Articular cartilage repair using allogeneic perichondrocyte seeded biodegradable porous poly lactic acid (PLA): A tissue engineering study, J Biomed Mater Res, 29, 1147-1154, 1995
15.L. E. Freed, J. C. Marquis, A. Nohria, J. Emmanual, A. G. mikos, R. Langer, Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymer, J Biomed Mater Res, 27, 11-23, 1993
16.黃偉春,張鷰,楊洪義,劉玲蓉,張其清,軟骨組織工程進展, 國外醫學生物醫學工程分冊第22卷第5期, 1999
17.J. S. Johnna, A. G. Mikos, Review: tissue engineering for regeneration of articular cartilage, Biomaterials, 21, 431-440, 2000
18.T. Kimura, N. Yasai, S. Chsawa, Chondrocytes mebedded in collagen gels maintain cartilage phenotype during long term cultures, Clim Orthop Rel Res, 186-231, 1984
19.S. Nehrer, H. A. Breinan, A. Ramappa, G. Young, S. Shortkroff, L. K. Louie, Matrix collagen type and pore size influence behaviour of seeded canine chondrycytes, Biomaterials, 18, 769-776, 1997
20.Job LC, Buma P, Gerjo JVM, Versleyen D, Peter M, Wim B, Homminga GN. Culture of chondrocytes in alginate and collagen carrier gels. Acta Orthop Scand , 66(6), 549-556, 1995
21.Lu JX, Prudhommeaux F, Meunier A, Sedel L, Guillemin G. Effect of chitosan on rat knee cartilages. Biomaterials, 20, 1275-1285, 1999
22.Bakos D, Soldan M, Hernandez-Fuentes I. Hydroxyapatite-collagen-hyaluronic acid composite. Biomaterials, 20, 191-195, 1999
23.M. Shakibael, P. De SOUZA. H. J. Merker, Integrin expression and collagen type II implicated in maintenance of chondrocyte shape in monolayer culture: An immunomorphological study, Cell Biology International, 21(2), 115-125, 1997
24.B. K. Mann, A. T. Tsai, T. Scott-Bruden, J. L. West, Modification of surfaces with cell adhesion peptides alters ectracellualr matrix deposition, Biomaterials, 20, 2281-2286, 1999
25.洪瑞千. 以體外培養模式探討低強度超音波刺激對於蝕骨細胞之影響. 中原大學碩士論文 民89
26.Goldberg Barry 撰, 黃俊喨, 王欽程, 蕭瑞和譯, 超音波診斷學, 合記圖書出版社發行, pp1-30, 民79
27.P. Reher, E. I. Eibeshir, W. Harvey, The stimulation of bone formation in vitro by therapeutic ultrasound, Ultrasound in Med. & Biol, Vol. 23, No.8, pp1251-1258, 1997
28.J. S. Sun, W. H. Chang, Bone defect healing enchanced by ultrasound stimulation : an in vitro tissue culture model, J. Biomed Mater Res, 46, 253-261, 1999
29.A. J. Mortimer, M. Dyson, The effect of therapeutic ultrasound on calcium uptake in fibroblasts, Ultrasound in Med. & Biol., 14, 499-506, 1988
30.P. G. De Deyne, M. K. Volders, Invitro effects of therapeutic ultrasound and Nucleus of human fibroblasts, Physical Therapy, 75, 629-634, 1995
31.F. Lejbkowicz, M. Zwiran, S. Salzberg, The response of normal and malignant cells to ultrasound in vitro, Ultrasound in Med & Biol, 19, 75-82, 1993
32.F. Lejbkowicz, S. Salzberg, Distinct sensitivity of normal and malignant cells to ultrasound in vitro, Environmental Health Perspectives, 105, 1575-1578, 1997
33.Wu C.C., J. F. Grennleaf, Exposure to low intensity ultrasound stimulates aggrecan gene expression by cultured chondrocytes, Orthopaedic research society, February, 19-22, 1996
34.J. Parvizi, C. C. Wu, Low intensity ultrasound stimulayes proteoglycan sythesis in rat chondrocytes by increasing aggrecan gene expression, J. Orthopaedic research, 17, 488-494, 1999
35.R. P. Lanza, R. Langer, J. Vacanti, Principles of tissue engineering 2nd, pp. 143-156, 1999
36.Vunjak-Novakovic G, Langer R, Freed LE, Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage, J Orthop Res, 17(1), 130-8, 1999
37.Pazzano D, Bonassar LJ, Comparison of chondrogensis in static and perfused bioreactor culture, Biotechnol Prog, 16(5), 893-6, 2000
38.Sodian R, Hetzer R, New plusatile bioreactor for fabrication of tissue-engineered, J Biomed Mater Res , 58 (4), 401-5, 2001
39.Mauck RL, Ateshian GA, Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels, J Biomech Eng , 122(3), 252-60, 2000
40.Freed LE, Vunjak-Novakovic G, IGF-I and mechanical environment interact to modulate engineered cartilage development, Biochem Biophys Res Commun, 286 (5), 909-15, 2001
41.Freed LE, Vunjak-Novakovic G, Langer R, Chondrogenesis in a cell-polymer-bioreactor system, Exp Cell Res, 240(1), 58-65, 1998
42.Martin I, Langer R, Freed LE, Vunjak-Novakovic G, Modulation of the mechanical properties of tissue engineered cartilage, Biorheology, 37(1-2), 141-7, 2000
43. 林文澧等著, 醫用超音波原理及技術, 教育部, 民89
44.Jui-Sheng Sun, Rue-Chain Hong, In vitro effects of low-intensity ultrasound stimulation on the bone cells, Journal of Biomedical material Research 57, 449-456, 2001
45.Ross Tubo and Francois Binettem, Culture and Identification of Autologous Human Articular Chondrocytes for Implantation, Methods in Molecular Medicine, Tissue Engineering Methods and Protocols, 18, 205-215, 1999
46.Sonya Shortkroff and Myron Spector, Isolation and In Vitro Proliferation of Chondrocytes, Tenocytes, and Ligament Cells, Methods in Molecular Medicine, Tissue Engineering Methods and Protocols, 18, 195-203, 1999
47.R. L. Trelstad, V. M. Catanese, D. F. Rubis, Collagen fractionation: separation of native Type I, II, III by differential precipitation analytical, Biochemstry, 11, 114-118, 1976
48.K. Madsen, K. von der Mark, M. Van Menxel, U. Friberg, Analysis of collagen types synthesized by rabbit ear cartilage chondrocytes in vivo and in vitro, Biochem J, 221, 189-196, 1984
49.T. Kimura, Y. Natsuo, O. Suguru, O. Keiro, Chondrocytes Embedded in collagen gels Maintain Cartilage Phenotype During long term cultures, Chlinical Orthopaedics and Related Research, 186, 231-239, 1984
50.E. H. Miller, R. K. Rhodes, Preparation and characterization of the different types of collagen, Method in Enzymology, 82, 33-64, 1982
51.Y. J. Kim, R. L. Sah, J. Y. Doong, A. J. Grodzinsky, Fluorometric assay of DNA in cartilage explants using Hoechst 33258, Anal Biochem, 174, 168-176, 1988
52.B. O. Enobakhare, D. L. Bader, D. A. Lee, Quantification of sulfated glycosaminoglycans in chondrocyte/alginate culture by use of 1,9-dimethylmethylene blue, Anal Biochem, 243, 189-191, 1996
53.J. Uitto, H. P. Hoffmann, D. J. Prockop, Purification and Partial Characterization of the Type II Procollagen Synthesized by Embryonic Cartilage Cell, Archives of biochemistry and biophysics, 179, 654-662, 1977
54.K. P. Regina, S. Rositza, B. Blagovest, Modification of Lowry’s method for collagen concentration measurement, J Biochem Biophys Methods, 32, 33-43, 1996
55.M. Bergman, R. Loxley, Two improved and simplified methods for the spectrophotometric determination of hydroxyproline, Anal Biochem, 25(12), 1961-1965, 1961
56.Ichiro Sekiya, David C., BMP-6 Enhances Chondrogenesis in a Subpopulation of Human Marrow Stromal Stromal Cells, Biochemical and Biophysical Communication 284, 411-418, 2001
57.Green, L. C., S. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok, and S. R. Tannrnbaum:Analysis of nitrate , nitrate and [15N] nitrate in biological fluids. Anal. Biochem, 126-131, 1982
58.Freeman B, Crapo JD: Free radical and tissue injury. Lab Invest, 39, 399-405, 1982
59.Burkhardt H, Schwingel M, Meninger H, Oxygen radicals as effects of cartilage destruction. Direct degradative effect on matrix components and indirect action via activation of latent collagenase from polymorphonuclear leukocytes. Arth Rheum, 29(3), 379-387, 1986
60.R. Lane Smith, Effect of shear stress on nitric oxide and matrix protein gene expression in human osteoarthritic chondrocytes in vitro, Journal of Orthopaedic Research, 20, 556-561, 2002
61.Glowacki J., In vitro engineering of cartilage, J Rehabil Res Dev, 37(2), 171-7, 2000
62. K. Von der Mark, V. Gauss, H. von der Mark, P. Muller, Relationship between cell shape and type of collagen synthesized as chondrocytes lose their cartilage phenotype in culture, Nature, 267, 531-532, 1977
63.J. K. Francis Suh, H. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review, Biomaterials, 21, 2589-2598, 2000
64.S. L.Ishaug-Riley, Human artilage chondrocyte adhesion and proliferation on synthetic biodegradable polymer films, Biomaterial, 20, 2245-2256, 1999
65.Sittinger M, Artificial tissue in perfusion culture, Int J Artif Organs, 20(1), 57-62, 1997
66.Bujia J, Cultivation of human cartilage tissue in a 3-dimensional perfusion culture chamber:characterization of collagen sythesis, Laryngorhinootologie, 74(9), 559-63, 1995
67.D.J.Chung, Human chondrocyte culture on the various polymer scaffold, 3rd Asian International Symposium on Biomaterial and Drug Delivery System Proceeding, Taipei, Taiwan, 2002
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top