(3.238.7.202) 您好!臺灣時間:2021/02/25 10:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:韓坤佑
研究生(外文):Kun-Yu Han
論文名稱:新式微波電漿反應器之設計及其應用於揮發有機物處理效率之研究
論文名稱(外文):Implementation of a novel microwave plasma reactor and its application on volatile organic component treatment
指導教授:劉永銓徐添財
指導教授(外文):Yung-Chuan LiuTen-Chai She
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:104
中文關鍵詞:微波電漿揮發性有機物質破壞效率
外文關鍵詞:microwave plasmavolatile organic compoundsdecomposition and removal effect
相關次數:
  • 被引用被引用:9
  • 點閱點閱:194
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要
為有效處理揮發性有機廢棄物,在本研究中開發出一套新型式的微波電漿反應器,並設計將其導波管及電漿產生區分離,以產生穩定的微波電漿源。研究中並探討此反應器對於揮發性有機物質的破壞效率,使用乙醇與丙酮當作模式氣體,空氣、水氣、氧氣當作攜流氣體,藉由操作參數(包括:電源功率大小、電源脈波頻率、模式氣體的進料流量、攜流氣體的流量與比例等)的調整,可得到最適化之處理條件。即在其電源供給功率為1.5kW、電源脈波頻率為1000Hz、水氣進料流量為0.3 ml/min、空氣進料流量為1000sccm及模式氣體進料流量在1500sccm以下時,其分解破壞效率值均可達97 ﹪以上。由於此新式微波電漿反應器之有效處理速率可高達1500sccm,故極適於工業上廢有機溶劑之處理應用。
ABSTRACT
A novel microwave plasma system was implemented and applied on the volatile organic compounds (VOCs) treatment. Ethanol and acetone were selected as the target VOCs respectively. The decomposition and removal efficiency (DRE) value was used to evaluate the performance of the microwave plasma system. Oxygen, air and H2O add to air were used as carriers to combine with the VOCs and to facilitate the VOCs treatment. Under the optimal conditions, namely, flow rate of ethanol was 1500 sccm, power input was 1.5 KW at a frequency of 1KHz, flow rate of air was 1000 sccm and the flow rate of H2O was 0.3 ml/min, an efficiency high than 97% DRE value could be obtained for both ethanol and acetone. Due to the high efficiency and high capacity, this system could be an potential alternation in industrial VOCs treatment.
目錄
摘要 1
ABSTRACT 2
致謝 3
目錄 4
表目錄 9
圖目錄 10
圖目錄 10
第一章、前言 14
第一章、前言 14
1.1、研究緣起 14
1.2、研究目的 15
第二章、文獻回顧 17
2.1、揮發性有機物之來源及危害 17
2.1.1、乙醇物化特性、來源及危害 18
2.1.2、丙酮物化特性、來源及危害 19
2.2、傳統揮發性有機物處理技術 19
2.2.1、熱灰化(Thermal Incineration) 20
2.2.2、催化劑氧化(Catalytic Oxidation) 20
2.2.3、吸附(Adsorption) 20
2.2.4、生化過濾法(Biofiltration) 21
2.2.5、薄膜分離法(Membrane Separation) 21
2.2.6、紫外線氧化法(Ultra-violet Oxidation) 21
2.3、電漿簡介 23
2.3.1、電漿生成原理 23
2.3.2、電漿的分類 24
2.3.3、電漿中帶電粒子的運動 27
2.4、電漿系統選擇、設計及操控的重要原則 33
2.5、應用於破壞氣態廢棄物之電漿技術分類 36
2.5.1、輝光放電(Glow discharge) 36
2.5.2、電暈放電(Corona discharge) 38
2.5.3、電子束法(Electron beam) 40
2.5.4、介電質放電(Dielectric barrier discharge, DBD) 41
2.5.5、高周波放電(radio frequency discharge, RF discharge) 42
2.5.6、微波放電(Microwave discharge) 43
2.6、微波基本原理 47
2.6.1、電磁場基本定理(basic theorem of electromagnetic field) 47
2.6.2、電磁波模式 49
2.6.3、磁控管的振盪原理 54
2.6.4、波導 55
2.6.5、電磁諧振腔 61
2.6.6、耦合模理論 64
第三章、研究設備與實驗方法 69
3.1、研究設計與實驗流程 69
3.2、實驗儀器與設備 75
3.2.1、反應腔體 75
3.2.2、抽氣系統 77
3.2.3、電漿產生系統 77
3.2.4、進氣系統 77
3.2.5、溫度控制系統 78
3.2.6、壓力量測系統 78
3.2.7、採樣及分析系統 79
3.3、主體實驗 79
第四章、以微波電漿分解破壞氣態乙醇 81
4.1、乙醇進料流量檢量線 81
4.2、氣相層析儀分析圖譜與DRE值之計算 82
4.3、操作參數對微波電漿分解破壞乙醇的影響 83
4.3.1、微波輸出功率對乙醇破壞分解效率的影響 83
4.3.2、電源脈波頻率對乙醇破壞分解效率的影響 85
4.3.3、氧氣含量對乙醇破壞分解效率的影響 86
4.3.3、水氣含量對乙醇破壞分解效率的影響 88
4.3.4、空氣含量對乙醇破壞分解效率的影響 89
第五章、以微波電漿分解破壞氣態丙酮 92
5.1、丙酮進料流量檢量線 92
5.2、操作參數對微波電漿分解破壞丙酮的影響 92
5.2.1、丙酮進氣流量對乙醇破壞分解效率的影響 92
5.2.2、電源脈波頻率對乙醇破壞分解效率的影響 94
5.2.3、氧氣含量對乙醇破壞分解效率的影響 94
5.2.4、水氣含量對丙酮破壞分解效率的影響 96
第六章、結論 98
第七章、參考文獻 100
第七章、參考文獻
1. Vercammen, K.L.L., Berezin, A.A., Lox, F. and Chang, J.S., Non-Thermal Plasma Techniques for the Reduction of Volatile Organic Compounds in Air Streams: A Critical Review. J. Adv. Oxid. Technol., 1997. 2: p. 312-329.
2. J.S., C., Recent development of plasmapollution control technology : a critical review. Science & Technology of Advanced Materials, 2001. 2: p. 571-576.
3. Chang, J.S., Recent development of gaseous pollution control technologies based on non-thermal plasma. Oyobutsuri, 2000. 69(Japanese): p. 268-277.
4. Yamamoto, T., Ramanathan, K., Lawless, P.A., Ensor, D.S., Newsome, J.R., Plaks, N. and Ramsey, G.H., Control of Volatile Organic Compounds by an AC Energized Ferroelectric Pellet Reactor and a Pulsed Corona Reactor. IEEE Transactions on industry applications, 1992. 28: p. 528-534.
5. Takahashi R., K.Y.a.Y.K., Dissociation of Freon by Pulse Discharge. Electrostatic Soc. Japan, 1994(Special Symposium): p. 75-78.
6. Masuda, S., Hosokawa, S., Tu, X.L., Sakakibara, K., Kitoh, S. and Sakai, S., The performance of an integrated air purifier for control of aerosol, microbial, and odor. IEEE Transactions on industry applications, 1993. 29: p. 774-780.
7. Yamamoto, T., Lawless P. A., and Sparks L. E., IEEE Transactions on Industry Applications, 1989. 25(4): p. 743-749.
8. Chang J.S., Y.T., Kohno H., Tamura M., Honda S., Shibuya A. and Berezin A.A., Removal of Xylene, Trichloroethylene and Their Mixtures from Air Stream by a Pulsed Corona Discharge Induced Plasma Reactor. J. Adv. Oxid. Technol., 1997. 2: p. 346-352.
9. Oda T., K.A., Tanaka K., Takahashi T. and Masuda S., Low temperature atmospheric pressure discharge plasma processing for volatile organic compounds. Journal of Electrostatics, 1995. 35: p. 93-101.
10. 李灝明、張木彬, 操作條件對介電質放電技術去除乙醛及對二甲苯之影響. 第十五屆空氣污染控制技術研討會論文集, 1998. p. 353-360.
11. Mohindra V., C.H., Sawin H.H. and Mocella M.T., Abatement of Perfluorocompounds (PFC''s) in a Microwave Tubular Reactor using O2 as an Additive Gas. Journal of the IEEE T. Semiconductor M., 1997. 10: p. 399-451.
12. Slater, R.a.D.-H., D., J. Appl. Phys., 1981. 52: p. 5820-5828.
13. Vartanian V., B.L., Lii T., Graves D., Tonnis E.J., Jewett R., Wofford B., Bevan J., Hartz C. and Gunn M., Plasma Abatement Reduces PFC Emission. Journal of Semiconductor International, 2000: p. 191-198.
14. USEPA, Control Techniques for Volatile Organic Emissions from Stationary Source. U.S. EPA, 1978. EPA-450/2-78-022.
15. Kittel, C., Introduction to Solid State Physics. 1996. Ch. 10, 7th ed(New York, Wiley).
16. F., C.a.F., Introduction to Plasma Physics. 1974(New York, Plenum Press).
17. Larkin, D.W., Caldwll. T. A., Lobban, L. L. and Thanyachotpaiboon, R. G., Oxygen Pathway and Carbon Dioxide Utilization in Methane Partial Oxidation in Ambient Temperature Electric Discharge. Energy Fuels, 1998: p. 12-740.
18. T., B.A., Abstract : Fundamental of Plasma Chemistry. J. Vac. Sci. Technol, 1979. 16(2): p. 418.
19. Chang J.S., L.P.C., Nagai K., Yoshioka T., Aoki S. and Maezawa A.,, Preliminary Pilot Plant Tests of a Corona Discharge-Electron Beam Hybrid Combustion Flue Gas Cleaning System. IEEE Trans. Ind. Applicant, 1996. 32(1): p. 131-136.
20. U., E.B.a.K., Modeling and Applications of Silent Discharge Plasma. IEEE Trans. Plasma Sci., 1991. 19: p. 309.
21. Eliasson B. and Kogelschatz U., Nonequilibrium Volume Plasma Chemical Processing. IEEE Transactions on industry applications, 1991. 19(6): p. 1063-1077.
22. F., C.M.B.a.C.C., LowTemperature SNCR Process for NOx Control. Sci. Total. Environ., 1997. 198: p. 73.
23. Penetrante B. M., H.M.C., Merritt B.T., Vogtlin G.E. and Wallman P.H., Comparison of Electrical Discharge Techniques for Nonthermal Plasma Processing of NO in N2. IEEE Trans. Plasma Sci., 1995. 23: p. 679.
24. Veldhuizen E. M., Z.L.M.a.R.W.R., Combined Effects of Pulsed Discharge Removal of NO, SO2 and NH3 from Flue Gas. Plasma Chem. Plasma Process., 1998. 18: p. 91.
25. Nunez C., R.F.H., Ponder W. H. and Abbott J. H., Corona Destruction : An Innovative Control Technology for VOCs and Air Toxics. Air and Waste, 1993. 43: p. 242.
26. Teply J., D.M., Janca J. and Tesar C., Destruction of Organic Compounds in a High-Frequency Discharge Plasma at Reduced Pressure. Plasma Chem. Plasma Process., 1995. 18: p. 465.
27. Krause T.R., H.J.E., 1,1,1-Trichloroethane in a Microwave Discharge Plasma Reactor at Atmospheric Pressure. Journal of World Congress Ⅲ on Engineering and Environment, 1993.
28. 大森俊一、橫島一郎、中根央,共著,賴耿陽編譯, 高周波、微波測定技術. 1995(台灣復文興業股份有限公司): p. 37-73.
29. 黃進芳, 1994.
30. lin, W., Microwave Filters Employing a Single Cavity Excited in More than One Mode. Journal of Applied Physics, 1951: p. 989-1001.
31. 林為干, 微波網路. 國防工業出版社, 1978(北京).
32. E., C.R., Foundations for Microwave Engineering. McGraw-Hill Co., 1966(New York).
33. H., L.W., Coupled Mode and Parametric Electronic. John Wiely & Sons Inc., 1960(New York).
34. 黃宏嘉, 微波原理. 科學出版社, 1963. 卷1ž.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔