跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/15 08:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柯寶燦
研究生(外文):Bao-Tsan Ko
論文名稱:含雙氧配位基EDBP之鋁或鋰化合物之合成、鑑定以及其催化研究
論文名稱(外文):Synthesis, Characterization and Catalysis of Aluminum or Lithium Complexes Incorporating the EDBP Chelating Ligand
指導教授:林助傑
指導教授(外文):Chu-Chieh Lin
學位類別:博士
校院名稱:國立中興大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:327
中文關鍵詞:鋁烷氧化合物鋰化合物催化開環聚合反應共聚合物聚己內酯聚乳酸交酯聚乙烯
外文關鍵詞:aluminum alkoxide complexlithium aggregatecatalysisring-opening polymerizationcoploymerpolycaprolactonepolylactidepolystyrene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
[(-EDBP)AlMe]2 (1) (EDBP-H2 = 2, 2’-ethylidene bis(4, 6-di-tert- butylphenol))和2當量的異丙醇或苯甲醇的反應產生四配位化合物[(EDBP)Al(-OR)]2 (OR = OiPr (2) and OBn (3))。化合物2已顯示在醛類的氫轉移反應(Meerwein-Ponndorf-Verley (MPV) reactions)有優良的催化活性。化合物2與2當量的苯甲醛、4-氯苯甲醛或4-甲氧基苯甲醛的反應可得五配位雙體化合物[(EDBP)Al(-OCH2- C6H4-p-X)(p-X-C6H4CHO)]2 (4, X = H; 5, X = Cl; 6, X = OMe)。然而,不像其他醛類,與2當量的4-硝基苯甲醛的反應只能獲得四配位雙體化合物[(EDBP)Al(-OCH2C6H4-p-NO2)]2 (7)。化合物2繼續再和2當量的OPPh3或HMPA反應可得到四配位單體化合物[(EDBP)Al(OiPr)- (L)] (8, L = OPPh3; 9, L = HMPA)。化合物2, 4和6的X光單晶結構可讓我們去形容MPV反應的可能的中間物。
新穎的鋁烷氧化合物3已證實有效的催化環酯類的開環聚合反應,而且同時具有“living” 和 “immortal”的性質。
有“n-butyllithium trap“的不尋常鋰化合物[(3, 3-EDBP)Li2]2[(3- nBu)Li(0.5Et2O)]2 (13)可由EDBP-H2和3.6當量的正丁烷鋰反應而獲得。化合物13與2當量的苯甲醇或正丁醇的反應可得[(3, 3-EDBP)- Li2]2[(3-OR)Li]2 (14, OR = OBn; 15, OR = OnBu)。相同地,與2當量雙芽配位基,2-乙氧基乙醇反應產生[(3, 3-EDBP)Li2]2[(3-OCH2CH2- OEt)Li]2 (16)。化合物14或15繼續再和過量的四氫夫喃反應可得到五個鋰的化合物[(2, 3-EDBP)2Li4(THF)3][(4-OR)Li] (OR = OBn (17) 和 OnBu (18))。另外,化合物14與6當量的HMPA在甲苯下反應可得三個鋰的化合物[(2, 2-EDBP)Li2(HMPA)2][(3-OBn)Li(HMPA)] (19)。相較於含單芽烷氧配位基的14和15,含雙芽烷氧配位基的16和四氫夫喃或HMPA反應所得的產物有很大的不同。化合物16與過量的四氫夫喃在室溫下反應可得到化合物[(2, 3-EDBP)2Li4- (THF)][(4-OCH2CH2OEt)Li]2 (20)和[(2, 3-EDBP)2Li4(THF)3][(4- OCH2CH2OEt)Li] (21)的混合物。然而,化合物21與5當量的HMPA反應可得離子化合物[(2, 2-EDBP)2Li4(4-OCH2CH2OEt)(HMPA)]- [Li(HMPA)4]+ (22)。所有的鋰化合物(13-22)都已經由X光單晶繞射儀鑑定其結構。
值得注意的是由實驗結果顯示14和16可以很有效的催化L-lactide的開環聚合反應在不同的單體對催化劑的比率下,並且所得的生物可分解性高分子PLA的分子量分布度屬於在很窄的範圍。
更重要地,結合自由基的聚合反應和鋰烷氧巨大起始劑的開環聚合反應可讓我們很成功的合成PS-b-PLLA的共聚合物。PS-b-PLLA共聚合物可用於奈米級的模板材料。
The reaction of [(-EDBP)AlMe]2 (1) (EDBP-H2 = 2, 2’-ethylidene bis(4, 6-di-tert-butylphenol)) with 2 molar equiv of 2-propanol (HOiPr) or benzyl alcohol (HOBn) yields the tetra-coordinated complex [(EDBP)Al(-OR)]2 (OR = OiPr (2) and OBn (3)). Complex 2 has shown excellent catalytic activities toward hydrogen transfer reactions (Meerwein-Ponndorf-Verley (MPV) reactions) between aldehydes and 2-propanol. The reaction of 4 molar equiv of benzaldehyde, 4-chlorobenzaldehyde or 4-methoxybenzaldehyde with [(EDBP)Al(-OiPr)]2 (2) gives the penta-coordinated dimeric complex [(EDBP)Al(-OCH2C6H4-p-X)(p-X-C6H4CHO)]2 (4, X = H; 5, X = Cl; 6, X = OMe). However, unlike other benzaldehydes, in the reaction of 2 with 4 equiv of 4-nitrobenzaldehyde, only the four-coordinated complex [(EDBP)Al(-OCH2C6H4-p-NO2)]2 (7) was obtained. Complex 2 further reacts with 2 equiv of OPPh3 or hexamethylphosphoramide (HMPA), yielding the four-coordinated monomeric complex [(EDBP)Al(OiPr)(L)] (8, L = OPPh3; 9, L = HMPA). X-ray crystal structure determinations of compounds 2, 4, 6, and 8-9 have led us to describe the intermediate of the MPV reactions.
The novel aluminum alkoxide, complex 3 has demonstrated efficient catalytic activities in both “living” and “immortal” ROP of lactones.
An unusual “n-butyllithium trap“ mixed-ligand lithium aggregate, [(3, 3-EDBP)Li2]2[(3-nBu)Li(0.5Et2O)]2 (13) is obtained from the reaction of EDBP-H2 with 3.6 molar equiv of nBuLi in high yield. The reaction of 13 with 2 molar equiv of benzyl alcohol (BnOH) or n-Butanol (nBuOH) gives [(3, 3-EDBP)Li2]2[(3-OR)Li]2 (14, OR = OBn; 15, OR = OnBu). Also, compound 13 reacts with 2 molar equiv of bidentate ligand, 2-ethoxyethanol to yield [(3, 3-EDBP)Li2]2[(3-OCH2CH2- OEt)Li]2 (16). Further treatment of 14 or 15 with excess THF gives penta-nuclear species [(2, 3-EDBP)2Li4(THF)3][(4-OR)Li] (OR = OBn (17) and OnBu (18)). In addition, 14 reacts with 6 molar equiv of HMPA in toluene to furnish a tri-lithium aggregate [(2, 2-EDBP)Li2(HMPA)2]- [(3-OBn)Li(HMPA)] (19). In contrast to monodentate alkoxide supporting complexes, the products of bidentate alkoxide containing complex 16 in the presence of THF or HMPA are much different. The reaction of 16 with excess THF (> 50 equiv) at room temperature gives a mixture of [(2, 3-EDBP)2Li4(THF)][(4-OCH2CH2OEt)Li]2 (20) and [(2, 3-EDBP)2Li4(THF)3][(4-OCH2CH2OEt)Li] (21). However, 21 reacts with 5 molar equiv of HMPA in toluene to afford the ionic complex [(2, 2-EDBP)2Li4(4-OCH2CH2OEt)(HMPA)]-[Li(HMPA)4]+ (22). 22 can also be synthesized by the reaction of 16 with 6 molar equiv of HMPA in toluene.
In particular, experimental results show that 14 and 16 efficiently initiate the ring-opening polymerization (ROP) of L-lactide in a “controlled” fashion yielding polymers with very narrow polydispersity indexes (PDIs) in a wide range of monomer to initiator ratios.
More importantly, a combination of free radical polymerization and ROP of lithium alkoxide macroinitiator enables us to synthesize PS-b-PLLA copolymers in which are useful templates to nanoscale materials.
Abstract i
Chapter 1. Introduction 1-1
Metal Complexes with Sterically Bulky Phenoxide 1-1
Biodegradable Polymers 1-7
References 1-10
Chapter 2. Preparation, Characterization, and Catalytic Reactions of EDBP Chelating Ligand Supported Aluminum Complexes, Novel Catalysts for MPV Hydrogen Transfer Reactions and Ring-Opening Polymerization of Lactones
Introduction 2-1
Results and Discussion 2-4
Synthesis and Spectroscopic Studies 2-4
Molecular Structure Studies of 2-4, 6, and 8-11 2-9
Catalytic MPV Reaction Employing Compound 2 2-21
Ring-Opening Polymerization of Lactones Using Complex 3 and 4 as Initiators 2-25
Summary 2-36
Experimental Section 2-37
References 2-51
Chapter 3. Synthesis, Characterization and Catalysis of Mixed-Ligand Lithium Aggregates; Excellent Initiators for the Ring-Opening Polymerization of L-Lactide and Its Application toward the Synthesis of Polystyrene-b-Poly(L-lactide) (PS-b-PLLA) Diblock Copolymer
Introduction 3-1
Results and Discussion 3-4
Synthesis of Mixed-Ligand Lithium Aggregates 3-4
Molecular structure studies of 13-22 3-10
Ring-Opening Polymerization of L-Lactide Using Complex 14 and 16 as Initiators 3-27
Application for the Synthesis of Polystyrene-block-Poly(L-lactide) (PS-b-PLLA) Copolymer Employing Lithium Alkoxide Macroinitiator 3-33
Preparation of 4-Hydroxy-TEMPO-terminated Polystyrene 3-35
Synthesis of Polystyrene-Poly(L-lactide) Diblock Copolymer 3-40
Summary 3-46
Experimental Section 3-47
References 3-59
Chapter 4. Conclusions 4-1
Aluminum Complexes 4-1
Lithium aggregates 4-4
Appendixes
A. Crystallographic Data A-1
B. GPC Spectra B-1
C. Publication List C-1
1.Bradly, D. C.; Mehrotra, R. C. and Gaur, D. P. Metal Alkoxides. Academic Press, New York, San Francisco, 1978.
2.(a) Vion, J. -M.; Jerome, Teyssie, R.; P.; Aubin, M.; Prudhomme, R. E. Macromolecules 1986, 19, 1828. (b) Kricheldorf, H. R.; Berl, M.; Scharnagl, M. Macromolecules 1988, 21, 286. (c) Ropson, N.; Dubois, Ph.; Jerome, R.; Teyssie, P. Macromolecules 1993, 26, 6378. (d) Löfgren, A.; Albertsson, A. -C.; Dubois, Ph.; Jerome, R.; Teyssie, P. Macromolecules 1994, 27, 5556. (e) Duda, A.; Penczek, S. Macromolecules 1995, 28, 5981, and references therein.
3.Turova, N. Ya.; Kozunov, V. A.; Yanovskii, A. I.; Bokii, N. G.; Struchkov, Yu. T.; Tarnopolskii, B. L. J. Inorg. Nucl. Chem. 1979, 41, 5.
4.(a) Shiner, V. J.; Whitteraker, D. J.; Fernandez, V. P. J. Am. Chem. Soc. 1963, 85, 2318. (b) Shiner, V. J.; Whitteraker, D. J. J. Am. Chem. Soc. 1969, 91, 394. (c) Oliver, J. G.; Phillips, P. K.; Worrall, I. J. J. Inorg. Nucl. Chem. 1969, 31, 1609.
5.(a) Healy, M. D.; Wierda, D. A.; Barron, A. R. Organometallics 1988, 7, 2543. (b) Power, M. B.; Bott, S. G.; Clark, D. L.; Atwood, J. L.; Barron, A. R. Organometallics 1990, 9, 3086.
6.Petrie, A.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 1991, 113, 8704.
7.(a) Iguchi, S; Nakai, H; Hayashi, M.; Yamamoto, H. J.Org.Chem.1979, 44, 1363. (b) Itoh, A; Oshima, K.; Yamamoto, H.; Nakai, H Bull. Chem. Soc. Jpn. 1980, 53, 2050 (c) Iguchi, S; Nakai, H; Hayashi, M.; Yamamoto, H.; Maruoka, K. Bull. Chem. Soc. Jpn. 1981, 54, 3033 (d) Sakane, S; Fukiwara, J.; Maruoka, K. Yamamoto, H. J. Am. Chem. Soc. 1983, 105, 6154. (e) Maruoka, K.; Itoh, T.; Yamamoto, H. J. Am. Chem. Soc. 1985, 107, 4573.
8.(a) Riley, P. N.; Fanwick, P. E.; Rothwell, I. P. Chem. Commun. 1997, 1109. (b) Johnson, E. S.; Balaich, G. J.; Rothwell, I. P. J. Am. Chem. Soc. 1997, 119, 7685. (c) Thorn, M. G.; Hill, J. E.; Waratuke, S. A.; Johnson, E. S.; Fanwick, P. E.; Rothwell, I. P. J. Am. Chem. Soc. 1997, 119, 8630. (d) Johnson, E. S.; Balaich, G. J.; Fanwick, P. E.; Rothwell, I. P. J. Am. Chem. Soc. 1997, 119, 11086. (e) Vilardo, J. S.; Thorn, M. G.; Fanwick, P. E.; Rothwell, I. P. Chem. Commun. 1998, 2425. (f) Thorn, M. G.; Vilardo, J. S.; Fanwick, P. E.; Rothwell, I. P. Chem. Commun. 1998, 2427. (g) Bei, X.; Swenson, D. C.; Jordan, R. F. Organometallics 1997, 16, 3282. (h) Tsukahara, T.; Swenson, D. C.; Jordan, R. F. Organometallics 1997, 16, 3303. (i) Nomura, K.; Naga, N.; Miki, M.; Yanagi, K.; Imai, A. Organometallics 1998, 17, 2152. (j) Fokken, S.; Spaniol, T. P.; Kang, H.-C.; Massa, W.; Okuda, J.Organometallics 1996, 15, 5069. (k) Fokken, S.; Spaniol, T. P.; Okuda, J.; Sernetz, F. G.; Mulhaupt, R. Organometallics 1997, 16, 4240.
9.Basolo, F. and Pearson, R. G., Inorganic Reaction Mechanisms, A Study of Metal Complexes in Solution, Wiley, New York, 2nd edn., 1968.
10.KirK-Othmer Engl. Chem. Technol Vol. 3, Wiley, New York, 1968-1984, p. 130.
11.Floriani, C.; Corazza, F.; Lesueur, A. C.; Gauastini, C. Angew. Chem. Int. Ed. Engl. 1989, 28, 66.
12.Corazza, F.; Floriani, C.; Chiesi-Villa, A.; Gauastini, C. Inorg. Chem. 1991, 30, 145.
13.Mazzanti, M.; Floriani, C. J. Chem. Soc. Dalton Trans. 1989, 1793.
14.Tascanco, P. J.; Schermerhorn, E. J.; Dettelbacher, C.; Macherone, D.; Zubieta, J. J. Chem. Soc. Chem. Commun. 1991, 933.
15.Pastor, S. D.; Spivack, J. D. J. Heterocyclic Chem. 1991, 28,1561.
16.Chisholm, M. H.; Parkin, I. P.; Folting, K.; Lubkovsky, E. B.; Streib, W. E. J. Chem. Soc. Chem. Commun. 1991, 1673.
17.Chisholm, M. H.; Huang, J. H.; Huffman, J. C.; Parkin, I. P. Inorg. Chem. 1997, 36, 1642.
18.Chisholm, M. H.; Folting, K.; Streib, W. E.; Wu, D. D. Inorg. Chem. 1998, 37, 50.
19.Chisholm, M. H.; Huang, J. H.; Huffman, J. C.; Streib, W. E.; Tiedtke, D. Polyhedron 1997, 16, 2941.
20.Mulford, D. R.; Fanwick, P. E.; Rothwell, I. P. Polyhedron 2000, 19, 35.
21.Takeuchi, D.; Nakamura, T.; Aida, T. Macromolecules 2000, 33, 725.
22.Linden, A.; Schaverien, C. J.; Meijboom, N.; Ganter, C.; Orpen, A. G. J. Am. Chem. Soc. 1995, 117, 3008.
23.(a) Swift, G. Acc. Chem. Res. 1993, 26, 105. (b) Fujisato, T.; Ikada, Y. Macromol. Symp. 1996, 103, 73. (c) Hutchinson, F. G.; Furr, B. J. A. In High Value Polymers; Fawcett, A. H. Ed.; The Royal Society of Chemistry: Science Park, Cambridge.
24.(a) Endo, M.; Aida, T.; Inoue, S. Macromolecules 1987, 20, 2982. (b) Dudat, A.; Florjanczyk, Z.; Hofman, A.; Slomkowski, S.; Penczek, S. Macromolecules 1990, 23, 1640. (c) Kowalski, A.; Duda, A.; Penczek, S.; Macromol. Rapid. Commun. 1998, 19, 567. (d) Gan, Z.; Jim, T. F.; Jim, M.; Yuer, Z.; Wang, S.; Wu, C. Macromolecules 1999, 32, 1218.
25.Chamberlain, B. M.; Sun, Y.; Hagadorn, J. R.; Hemmesch, E. W.; Young, Jr., V. G.; Pink, M.; Hillmyer, M. A.; Tolman, W. B. Macromolecules 1999, 32, 2400.
26.(a) Hovestadt, W.; Muller, J. A.; Hocker, H. Macromol. Chem. Rapid Commun. 1990, 11, 271. (b) Hovestadt, W.; Keul, H.; Hocker, H. Polymer 1992, 33, 1941.
27.(a) Ni, Q.; Yu, L J. Am. Chem. Soc. 1998, 120, 1645. (b) Jeong, B.; Bae, Y. H.; Lee, D. S.; Kim, S. W. Nature 1997, 388, 860. (c) Gref, R.; Minamitake, Y.; Peracchia, M. T.; Trubetskov, V.; Torchilin, V.; Langer, R. Science 1994, 263, 1600.
28.(a) Fujisato, T.; Ikada, Y. Macromol. Symp. 1996, 103, 73.
29.Wehrenberg, R. H., II Mat. Eng. 1981, 94, 63-66.
30.The PDI is the weight average molecular weight divided by the number average molecular weight (Mw/Mn) and is often determined by gel permeation chromatography (GPC). For reference, the standard deviation () of a molecular weight distribution is given by:  = Mn (PDI-1)1/2.
31.(a) Sawhney, A.; Pathak, C. P.; Hubbell, J. A. Macromolecules 1993, 26, 581. (b) Zhang, X.; MacDonald, D. A.; Goosen, M. F. A.; McAuley, K. B. J. Polym. Sci., Part A: Polym. Chem. 1994, 32, 2965. (c) Han, D. K.; Hubbell, J. A. Macromolecules 1996, 29, 5233.
32.(a) Jedlinski, Z.; Walach, W. Makromol. Chem. 1991, 192, 2051. (b) Chamberlain, B. M.; Sun, Y.; Hagadorn, J. R.; Hemmesch, E. W.; Young, V. G., Jr.; Pink, M.; Hillmyer, M. A.; Tolman, W. B. Macromolecules 1999, 32, 2400. (c) Simic, V.; Spassky, N.; Hubert-Pfalzgraf, I. G. Macromolecules 1997, 30, 7338. (d) Deng, X.; Yuan, M.; Xiong, C.; Li, X. J. Appl. Polym. Sci. 1999, 73, 1401.
33.(a) Chisholm, M. H.; Eilerts, N. W.; Huffman, J. C.; Iyer, S. S.; Pacold, M.; Phomphrai, K. J. Am. Chem. Soc. 2000, 122, 11845. (b) Chamberlain, B. M.; Cheng, M.; Moore, D. R.; Ovitt, T. M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 3229. (c) Chisholm, M. H.; Huffman, J. C.; Phomphrai, K. J. Chem. Soc., Dalton Trans. 2001, 222.
34.Cheng, M.; Attygalle, A. B.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 1999, 121, 11583.
35.(a) Webster, O. W. Science 1991, 251, 887. (b) Aida, T.; Inoue, S. Acc. Chem. Res. 1996, 29, 39. (c) Aida, T. Prog. Polym. Sci. 1994, 19, 469.
1.(a) Pindur, U.; Lutz G.; and Otto, C. Chem. Rev. 1993, 93, 741; (b) Renaud, P.; Bourquard, T.; Gerster M.; Moufid, N. Angew. Chem. Int. Ed. Engl. 1994, 33, 1601; (c) Hashimoto, S.; Komeshima, N.; Koga, K. J. Chem. Soc. Chem. Comm. 1979, 437. (d) Bartley D. W.; Kodadek, T. J. Tetrahedron Letters 1990, 31, 6303. (e) Danishefsky, S.; DeNinno, M. P. Angew. Chem. Int. Ed. Engl. 1987, 26, 15. (f) Corey, E. J.; Sarshar, S.; Lee, D.-H. J. Am. Chem. Soc. 1994, 116, 12089. (g) Corey, E. J.; Letavic, M. A. ibid 1995, 117, 9616. (h) Noyori, R.; Tomino, I.; Tanimoto, Y.; Nishizawa, M. ibid 1984, 106, 6709.
2.O’Keefe, B. J.; Hillmyer, M. A.; Tolman, W. B. J. Chem. Soc., Dalton Trans. 2001, 2215-2224.
3.Lin, C. H.; Ko, B. T.; Wang, F. C.; Sun, Y. L.; Lin, C. C.; Kuo, C. Y. J. Organomet. Chem. 1999, 575, 67.
4.Ko, B. T.; Chao, Y. C.; Lin, C. C. Inorg. Chem. 2000, 39, 1463.
5.Lin, C. H.; Yan, L. F.; Wang, F. C.; Sun, Y. L.; Lin, C. C. J. Organomet. Chem. 1999, 587, 151.
6.(a) Brown, W. G. Organic Reactions: Roger, A. Ed., John Wiley & Sons, Inc.: New York 1951, 6, 469. (b) Hajos, A. Complex Hydrides & Related Reducing Agents in Organic Synthesis; Elsevier: New York, 1979. (c) Subha, Rao Y. V.; Choudary, B. M. Synth. Commun. 1992, 22, 2711. (d) Hudlicky, M. Reductions in Organic Synthesis, Ellis Horwood Ltd.: Chinchester, 1984. (e) Hutchins, R. O.; Kandasamy, D. J. Am. Chem. Soc. 1973, 95, 6131.
7.(a) Ooi, T.; Takahashi, M.; Maruoka, K. J. Am. Chem. Soc. 1996, 118, 11307. (b) Akamanchi, K. G.; Noorani, V. R. Tetrahedron Lett. 1995, 36, 5085. (c) Konishi, K.; Makita, K.; Aida, T.; Inoue, S. J. Chem. Soc. Chem. Commun. 1988, 643. (d) Namy, J. L.; Scouppe, J.; Collin, J.; Kagon, H. B. J. Org. Chem. 1984, 49, 2045.
8.(a) Evans, D. A.; Nelson, S. G.; Gagñe, M. R.; Muci, A. R. J. Am. Chem. Soc. 1993, 115, 9800. (b) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97. (c) Chowdhury, R. L.; Backvall, J-E. J. Chem. Soc. Chem Commun. 1991, 1063. (d) Krasik, P.; Alper, H. Tetrahedron 1994, 50, 4347.
9.(a) Moulton, W. N.; Atta, R. E. van; Ruch, R. R. J. Org. Chem., 1960, 26, 290. (b) Ashby, E. C. Acc. Chem. Res. 1988, 21, 414.
10.(a) Vandenberg, E. J. J. Polym. Sci., Part A-1 1969, 7, 525. (b) Sugimoto, H.; Kawamura C.; Kuroki, M.; Aida, T.; Inoue, S. Macromolecules 1994, 27, 2013.
11.(a) Castellino, S.; Dwight, W. J. J. Am. Chem. Soc. 1993, 115, 2986. (b) Yamamoto, H. In Organometallics in Synthesis; M. Schlosser, Ed.; John Wiley& Sons Ltd.: West Sussex, England, 1994, Chapter 7.
12.(a) Emig, N.; Nguyen, H.; Krautscheid, H.; Reau, R.; Cazaux, J.; Bertrand, G. Organometallics 1998, 17, 3599. (b) Coles, M. P.; Jordan, R. F. J. Am. Chem. Soc. 1997, 119, 8125. (c) Emig, N.; Reau, R.; Krautscheid, H.; Fenske, D.; Bertrand, G. J. Am. Chem. Soc. 1996, 118, 5822. (d) Uhl, W.; Wagner, J.; Fenske, D.; Baum, G. Z. Anorg. Allg. Chem. 1992, 612, 25. (e) Engelhardt, L. M.; Kynast, U.; Raston, C. L.; White, A. H. Angew. Chem., Int. Ed. Engl. 1987, 26, 681. (f) Cosledan, F.; Hitchcock, P. B.; Lappert, M. F. Chem. Commun. 1999, 705-706.
13.Pickkart, D. E.; Hancock, C. K. J. Am. Chem. Soc. 1955, 77, 4642.
14.Akamanchi, K. G.; Varalakshmy, N. R.; Chaudhari, B. A. Synlett 1997, 371.
15.de Graauw, C. F.; Peters, J. A.; van Bekkum, H.; Huskens, J. Synthesis 1994, 1007.
16.(a) Adams, H.; Bailey, N. A.; Gauntlett, J. T.; Winter, M. J. J. Chem. Soc., Chem. Commun. 1984, 1360. (b) Rao, C. P.; Rao, A. M.; Rao, C. N. R. Inorg. Chem. 1984, 23, 2080. (c) Bachand, B. Wuest, J. D. Organometallics 1991, 10, 2015. (d) Palm, J. H.; Macgillavry, C. H. Acta Crystallogr. 1963, 16, 963.
17.Isoda, M.; Sugimoto, H.; Aida, T.; Inoue, S. Macromolecules 1997, 30, 57. (b) Akatsuka, M.; Aida, T.; Inoue, S. Macromolecules 1995, 28, 1320.
18.Baran, J.; Duda, A.; Kowalski, A.; Szymanski, R.; Penczek, S. Macromol. Rapid Commun. 1997, 18, 325.
1.(a) Beak, P.; Brown, R. A. J. Org. Chem. 1979, 44, 4463. (b) Evans, D. A.; Nelson, J. V.; Taber, T. R. Topics in stereochemistry; John Wiley and Sons: New York, 1983; Vol. 13. (c) House, H. O. Modern Synthetic Reactions, 2nd ed.; W. A. Benjamin: Menlo Park, CA, 1972. (d) Arnett, E. M.; Moe, K. D. J. Am. Chem. Soc. 1991, 113, 7068. (e) Morton, M.; Wu, M. in “Ring-Opening Polymerization: Kinetics, Mechanisms, and Synthesis” Ed by McGrath, J. E. Am. Chem. Soc., Washington, D.C. 1985. (f) Ooi, T.; Kondo, Y.; Maruoka, K. Angew. Chem. Int. Ed. Engl. 1997, 36, 1183. (g) Boileau, S. in “Anionic Polymerization: Kinetics, Mechanisms, and Synthesis”; McGrath, J. E. Ed.; ACS Symposium Series No. 166, 1981; pp 283.
2.Pauer, F.; Power, P. P. In Lithium Chemistry. A Theoretical and Experimental OVerView; Sapse, A.-M., Schleyer, P. v. R., Eds.; John Wiley & Sons: New York, 1995; pp 295-392.
3.Sapse, A. -M.; Jain, D. C.; Rahgavachari, K. In Lithium Chemistry. A Theoretical and Experimental OVerView; Sapse, A.-M., Schleyer, P. v. R., Eds.; John Wiley & Sons: New York, 1995; pp 45-66.
4.Lochmann, L.; Pospisil, J.; Lim, D. Tetrahedron Lett. 1966, 257. (b) Schlosser, M. J. Organomet. Chem. 1967, 8. 9.
5.(a) Lochmann, L.; Trekoval, J. J. Organomet. Chem. 1987, 326, 1. (b) Schlosser, M.; Strunk, S. Tetrahedron Lett. 1984, 25, 741.
6.Marsch, M.; Harms, K.; Lochmann, L.; Boche, G. Angew. Chem. Int. Ed. Engl. 1990, 29, 308.
7.Examples for RLi.LiOR: (a) Goldfuss, B.; Khan, S. I.; Houk, K. N. Organometallics 1999, 16, 2927. (b) Goldfuss, B.; Steigelmann, M.; Rominger, F. Angew. Chem. Int. Ed. Engl. 2000, 39, 4136. (c) Goldfuss, B.; Steigelmann, M.; Rominger, F.; Urtel, H. Chem. Eur. J. 2001, 7, 4456. (d) Andrews, F.; P. C.; Fallon, G. D.; Maguire, M.; Peatt, A. C. Angew. Chem., Int. Ed. 2000, 39, 4516. (e) Kennedy, A. R.; MacLellan, J. G.; Mulvey, R. E. J. Chem. Soc., Dalton Trans. 2000, 22, 4112. Some examples for [Li(OR)]n aggregates see: (a) Williard, P. G.; MacEwan, G. J. J. Am. Chem. Soc. 1989, 111, 7671. (b) Beck, G.; Hitchcock, P. B.; Lappert, M. F.; Mackinnon, I. A. J. Chem. Soc. Chem. Commun. 1989, 1312. (c) Boyle, T. J.; Pedrotty, D. M.; Alam, T. M.; Vick, S. C.; Rodriguez, M. A. Inorg. Chem. 2000, 39, 5133. (d) Boyle, T. J.; Alam, T. M.; Peters, K. P.; Rodriguez, M. A. Inorg. Chem. 2001, 40, 6281
8.Carothers, W. H.; Dorough, G. L.; Van Natta, F. J. J. Am. Chem. Soc. 1932, 54, 761 and references therein.
9.Drumright, R. E.; Gruber, P. R.; Henton D. E. Adv. Mater., 2000, 12, 1841.
10.(a) Endo, M.; Aida, T.; Inoue, S. Macromolecules 1987, 20, 2982. (b) Duda, A.; Florjanczyk, Z.; Hofman, A.; Slomkowski, S.; Penczek, S. Macromolecules 1990, 23, 1640. (c) Aida, T.; Inoue, S. Acc. Chem. Res. 1996, 29, 39. (d) Kowalski, A.; Duda, A.; Penczek, S. Macromol. Rapid. Commun. 1998, 19, 567. (e) Ko, B. T.; Lin, C. C. Macromolecules 1999, 32, 8296.
11.(a) Dittrich, W.; Schulz, R. C. Angew. Makromol. Chem. 1971, 15, 109. (b) Aida, T. Prog. Polym. Sci. 1994, 19, 469. (c) Cheng, M.; Attygalle, A. B.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 1999, 121, 11583. (d) Chamberlain, B. M.; Cheng, M.; Moore, D. R.; Ovitt, T. M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 3229.
12.(a) Kim, S. H.; Han, Y. K.; Kim, Y. H.; Hong, S. I. Makromol. Chem. 1992, 193, 1623. (b) Sawhney, A.; Pathak, C. P.; Hubbell, J. A. Macromolecules 1993, 26, 581. (c) Zhang, X.; MacDonald, D. A.; Goosen, M. F. A.; McAuley, K. B. J. Polym. Sci. Part A: Polym. Chem. 1994, 32, 2965. (d) Han, D. K.; Hubbell, J. A. Macromolecules 1996, 29, 5233. (e) Kricheldorf, H. R.; Kreiser-Saunders I.; Stricker, A. Macromolecules 2000, 33, 702.
13.(a) McLain, S. J.; Ford, T. M.; Drysdale, N. E. Polym. Prepr. (Am. Chem. Soc. DiV. Polym. Chem.) 1992, 33, 463. (b) Leborgne, A.; Pluta, C.; Spassky, N. Macromol. Rapid Commun. 1994, 15, 955. (c) Stevels, W. M.; Ankone, M. T.; Dijkstra, P. J.; Feijen, J. Macromolecules 1996, 29, 3332. (d) Li, S. M.; Rashkov, I.; Espartero, L.; Manolova, N.; Vert, M. Macromolecules 1996, 29, 57.
14.(a) Jedlinski, Z.; Walach, W. Makromol. Chem. 1991, 192, 2051. (b) Chamberlain, B. M.; Sun, Y.; Hagadorn, J. R.; Hemmesch, E. W.; Young, V. G., Jr.; Pink, M.; Hillmyer, M. A.; Tolman, W. B. Macromolecules 1999, 32, 2400. (c) Simic, V.; Spassky, N.; Hubert-Pfalzgraf, I. G. Macromolecules 1997, 30, 7338. (d) Deng, X.; Yuan, M.; Xiong, C.; Li, X. J. Appl. Polym. Sci. 1999, 73, 1401.
15.(a) Chisholm, M. H.; Eilerts, N. W.; Huffman, J. C.; Iyer, S. S.; Pacold, M.; Phomphrai, K. J. Am. Chem. Soc. 2000, 122, 11845. (b) Chisholm, M. H.; Huffman, J. C.; Phomphrai, K. J. Chem. Soc., Dalton Trans. 2001, 222.
16.(a) Cetinkaya, B.; Gumrukcu, I.; Lappert, M. F.; Atwood, J. L.; Shakir, R. J. Am. Chem. Soc. 1980, 102, 2086. (b) Brooker, S.; Edelmann, F. T.; Kottke, T.; Roesky, H. W.; Sheldrick, G. M.; Stalke, D.; Whitmire, K. H. J. Chem. Soc., Chem. Commun. 1991, 144. (c) van der Schaaf, P. A.; Hogerheide, M. P.; Grove, D. M.; Spek, A. L.; Koten, G. J. Chem. Soc., Chem. Commun. 1992, 1703.
17.(a) Kasperczyk, J. Macromolecules 1995, 28, 3937. (b) Xie, W.; Chen, D.; Fan, X.; Li, J.; Wang, P.; Cheng, H. N.; Nickol, R. G. J. Polym. Sci.: Part A, Polym. Chem. 1999, 37, 3486.
18.Jerome, R.; Teyssie, P.; Vuillemin, B.; Zundel, T.; Zune, C. J. Polym. Sci.: Part A, Polym. Chem. 1999, 37,1-10 and references therein.
19.Lofgren, A.; Albertsson, A. C.; Dubois, P.; Jerome, R. J. Macromol. Sci. Rev. Macromol. Chem. Phys. 1995, C35, 379-418 and references therein.
20.The homonuclear decoupled 1H NMR spectrum reveals only one resonance at  5.16 ppm in the methine region.
21.The Mn(GPC) is multiplied by a factor of 0.58, giving the actual Mn of polylactide. Baran, J.; Duda, A.; Kowalski, A.; Szymanski, R.; Penczek, S. Macromol. Rapid Commun. 1997, 18, 325.
22.Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Nature 1988, 334, 598.
23.Khandpur, A. K.; Forster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W. Macromolecules 1995, 28, 8796.
24.Adedeli, A.; Ho, R. M.; Giles, D. W.; Hajduk, D. A.; Macosko, C. W.; Bates, F. S. J. Polym. Sci. Polym Phys. Ed. 1997, 35, 2857.
25.Forster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J. Macromolecules 1994, 27, 6922.
26.Ryan, A. J. and Hamley, I. W. Morphology of block copolymers. In The physics of glassy polymers, (ed. R. N. Haward and R. J. Young). Chapman and Hall, London. 1997.
27.Pochan, D. J.; Gido, S. P.; Pispas, S.; Mays, J. W.; Ryan, A. J.; Fairclough, J. P. A. Macromolecules 1996, 29, 5091.
28.Zalusky, A. S.; Olayo-Valles, R.; Taylor, C. J.; Hillmyer, M. A. J. Am. Chem. Soc. 2001, 123, 1519.
29.(a) Schmidt, S. C.; Hillmyer, M. A. Macromolecules 1999, 32, 4794. (b) Wang, Y.; Hillmyer, M. A. Macromolecules 2000, 33, 7395.
30.(a) Colombani, D. Prog. Polym. Sci. 1997, 22, 1649 (and included references). (b) Controlled Radical Polymerization; Matyjaszewski, K., Ed.; ACS Symp. Ser. No. 685; American Chemical Society: Washington, DC, 1998 (and included references).
31.(a) Solomon, D. H.; Rizzardo, E.; Cacioli, P. U.S. Patent 4, 581, 429, March 27, 1985. (b) Rizzardo, E. Chem. Aust. 1987, 54, 32. (c) Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K. Macromolecules 1993, 26, 2987. (d) Veregin, R. P. N.; Georges, M. K.; Kazmaier, P. M.; Hamer, G. K. Macromolecules 1993, 26, 5316. (e) Hawker, C. J. J. Am. Chem. Soc. 1994, 116, 11185. (f) Moad, G.; Rizzardo, E. Macromolecules 1995, 28, 8722. (g) Kazmaier, P. M.; Moffat, K. A.; Georges, M. K.; Veregin, R. P. N.; Hamer, G. K. Macromolecules 1995, 28, 1841. (h) Puts, R. D.; Sogah, D. Y. Macromolecules 1996, 29, 3323.
32.(a) Hawker, C. J.; Elce, E.; Dao, J.; Volksen, W.; Russell, T. P.; Barclay, G. G. Macromolecules 1996, 29, 2686. (b) Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K. Macromolecules 1993, 26, 2987. (c) Zou, Y.; Lin J.; Zhuang, R., Ye J.; Dai L.; Zheng L. Macromolecules 2000, 33, 4745.
33.Yoshida, E. and Osagawa, Y. Macromolecules 1998, 31, 1446.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top