1. 中華水土保持學會 (1990),「石門水庫集水區第二階段治理規劃」,台灣省石門水庫管理局委託辦理。
2. 王如意、易任 (1979),「應用水文學」上冊,國立編譯館出版。
3. 台灣電力公司電源勘測隊 (1988),「德基水庫泥砂淤積量調查報告」。
4. 行政院農業委員會 (2000),「水土保持技術規範」。
5. 行政院農業委員會水土保持局第四工程所 (2000),「二仁溪上游集水區泥岩整治規劃期末報告」。
6. 阮香蘭 (1992),「石門水庫集水區之河相與輸砂特性研究」,中興大學水土保持研究所碩士論文。7. 呂建華、吳銘哲 (1993),「利用計量地形方法推估集水區降雨之集流時間」,第十二屆測量學術及應用研討會論文集,pp.513-527。
8. 呂建華、陳文福、蔡光榮、游繁結 (1997),「台灣地區河川集水區之劃定」,85年度水土保持及集水區經營研究計畫成果彙編,pp.411-424。
9. 呂建華、陳重宏、陳通發、鄧偉傑 (1996),「利用數值地形資料建立集水區地文參數之查詢系統」,第十五屆測量學術及應用研討會論文集,pp.187-196。
10. 李光敦、江申 (1997),「面積門檻值對集水區地文參數與水文模擬之影響」,中華水土保持學報,28(1):21-32。11. 李良輝 (1980),「數值地形之內插推值與作業系統分析」,成大航測研究所碩士論文。12. 吳宗寶 (1994),「德基水庫集水區之河相與輸砂特性研究」,中興大學水土保持研究所碩士論文。13. 吳嘉俊 (1994),「臺灣水土保持因子之初步訂定」,中華水土保持學報,25(4):209-218。14. 吳嘉俊、盧光輝、林俐玲 (1996),「土壤流失估算手冊」,國立屏東技術學院。
15. 周天穎 (2001),「地理資訊系統理論與實務」,儒林圖書公司。
16. 周天穎、洪瑞仁、田嘉茵 (1995),「專家系統應用於坡地土壤沖蝕影響之研究」,行政院農業委員會八十四年度農業綜合調整方案非試驗研究,pp.1-9。
17. 周天穎、葉美玲 (1997),「集水區基本資料庫建立與集水區劃定」,85年度水土保持及集水區經營研究計畫成果彙編,pp.459-470。
18. 周天穎、葉美玲 (1999),「空間資訊及土壤沖蝕模式之整合應用」,水土保持學報,31(1):19-27。
19. 林金炳 (1997),「石門水庫集水區輸砂與水文河相特性關係之研究」,中興大學水土保持研究所博士論文。20. 林俐玲 (1995),「覆蓋管理因子(C值)之評定」,中美陡坡地土壤流失量推估技術研究論文集。
21. 林俐玲、廖秀華 (1990),「應用地理資訊系統推估土壤沖蝕潛能」,水土保持學報,24(1):13-17。22. 林昭遠 (1997),「集水區植生緩衝帶配置之研究」,跨世紀水土保持技術之走向研討會論文集,中華水土保持學會,pp.55-65。
23. 林昭遠 (1998),「濱水區植生緩衝帶之研究」,中華水土保持學報,29(3):261-272。24. 林昭遠、林文賜 (1999),「集水區坡長因子自動萃取之研究」,中華水土保持學報,30(4):299-311。25. 林昭遠、林文賜 (2000),「集水區地文水文因子自動萃取之研究」,中華水土保持學報,31(3):247-256。26. 林昭遠、林文賜、林信輝 (2000),「集集震災崩塌地植生復育監測與評估」,水土保持植生工程研討會論文集。
27. 林達雄 (1978),「研習數值地形應用及自動繪製等高線技術報告」,林務局。
28. 施保旭 (1997),「地理資訊系統」,儒林出版社。
29. 洪祈存 (1980),「應用地理資訊系統推估河道輸砂之初步研究」,中興大學水土保持研究所碩士論文。30. 徐世大、朱紹鎔、雷萬清 (1969),「實用水文學」,東華書局。
31. 莫懿美 (1990),「專家系統與動態調配在水庫蓄水操作之應用」,成功大學水利及海洋工程研究所碩士論文。32. 陳文欽 (2000),「二仁溪流域坡面土壤流失量推估之研究」,中興大學水土保持研究所碩士論文。33. 陳文福、洪文傑 (1996),「以DTM自動劃定集水區結果之評估」,水土保持學報,28(4):1-14。34. 陳文福、洪文傑 (1997),「集水區邊界自動劃定之研究」,水土保持學報,29(1):27-39。35. 陳中憲 (1988),「濁水溪及曾文溪上游河道輸砂量及泥砂來源之關係探討」,中興大學水土保持研究所碩士論文。36. 陳良健、李良輝 (1989),「數值地型資料於水系特徵萃取之應用」,七十八年電子計算機於土木水利工程應用研討會論文集。
37. 陳朝圳 (1999),「南仁山森林生態系植生綠度之季節性變化」,中華林學季刊,32(1):53-66。38. 陳朝圳、馬仕穆 (2001),「以SPOT衛星影像推測南仁山森林生態系葉面積指數」,中華林學季刊,34(1):63-72。39. 陳萓蓉、夏禹九 (2000),「農業非點源污染模式應用於河川保護帶配置之探討」,中華水土保持學報,30(1):1-12。
40. 陳樹群、劉治中、陳聯光 (1994),「數值地形模型推算河系網之碎形維度」,中華水土保持學報,25(4):199-207。41. 畢嵐杰 (1995),「專家系統應用於集水區之水文模擬」,中興大學土木工程研究所碩士論文。42. 黃俊德 (1979),「台灣降雨沖蝕指數之研究」,中華水土保持學報,10(1):127-144。
43. 黃國楨、王韻皓、焦國模 (1996),「植生指標於SPOT衛星影像之研究」,台灣林業,22(1):45-52。
44. 經濟部水利處南區水資源局 (2000),「曾文水庫集水區第一期治理調查規畫報告」。
45. 經濟部水資源局 (1998),「中華民國八十七年台灣水文年報」。
46. 經濟部水資源局 (1998),「土地利用對水庫淤砂之影響(三)」。
47. 經濟部水資源局 (2000),「台灣水文年報電子書」。
48. 經濟部德基水庫集水區管理委員會 (1995),「德基水庫集水區第四期整治治理規劃報告」。
49. 萬鑫森、黃俊義 (1981),「台灣西北部土壤沖蝕及流失量之估算」,中華水土保持學報,12(1):57-67。
50. 萬鑫森、黃俊義 (1989),「台灣坡地土壤沖蝕」,中華水土保持學報,20(1):17-45。51. 楊廷皓、譚義績、彭宗仁、童慶斌、蔡存孝 (1996),「應用專家系統於沖積扇地區之水文地質分析」,農業工程學報,42(4):13-27。52. 葉怡成、郭耀煌 (1992),「專家系統應用與實作」,全欣圖書資訊出版社。
53. 劉正川、陳錦嫣 (1993),「台南縣泥岩地區大面積開發之土壤沖蝕量研究」,第三屆ARC/INFO User Conference地理資訊系統應用研討會論文集,pp.143-159。
54. 劉永得 (1989),「石門水庫上游集水區泥砂來源與運移特性之分析研究」,中興大學水土保持研究所碩士論文。55. 劉治中 (1993),「使用數值地形資料(DTM)量測流域地文因子」,第十二屆測量學術及應用研討會論文集,pp.627-638。
56. 劉政雄、賴逸少、吳瑞賢 (1993),「自動化河川網路萃取系統之建立」,第十二屆測量學術及應用研討會論文集,pp.627-638。
57. 劉致亨 (1997),「高爾夫球場開發對土壤沖蝕影響之研究」,逢甲大學土地管理研究所碩士論文。58. 鄭祈全 (1993),「數值地形資料應用於集水區劃分和河川網路分析之研究」,林業試驗所研究報告季刊,8(4):331-343。
59. 鄭皆達 (1997),「台灣河川溪流上游集水區生態及水文特性之分析與應用」,85年度水土保持及集水區經營研究計畫成果彙編,pp.143-156。
60. 賴如慧 (1998),「水庫集水區優先治理區域之評選-整合多評準決策與地理資訊系統」,逢甲大學土地管理研究所碩士論文。61. 賴進貴 (1993),「稜線及谷系自動萃取的準確性評估」,第十三屆測量學術及應用研討會論文集,pp.663-672。
62. 盧光輝、姜善鑫、蔡博文 (1994),「山坡地土壤流失量之推估」,80年度水土保持及集水區經營研究計畫成果彙編,林業特刊,40:1-22。
63. 盧惠生、林壯沛、陸象豫、黃良鑫 (1990),「上游小集水區逕流係數之研究」,水土保持學報,21(1):1-11。
64. 盧惠生 (1995),「代表性集水區尺度之探討」,台灣林業,21(8):12-15。
65. 錢寧、張仁、周志德 (1987),「河床演變學」,科學出版社。
66. 魏新洵、鄭皆達 (1991),「應用數值地形模型建立集水區地文查詢系統」,1991遙測技術應用研討會,pp.341-351。
67. Anderson, M.G. and T.P. Burt (1985), “Hydrological Forecasting”, John Wiley & Sons, p.312.
68. A.S.C.E. (1975), “Sedimentation Engineering”, American Society of Civil Engineering, New York, Manuals and Reports on Engineering Practice, No.54.
69. Band, L.E. (1986), “Topographic Partition of Watersheds with Digital Ele-vation Models”, Water Resource Research, 22(1): 15-24.
70. Band, L.E. (1989), “A Terrain-based Watershed Information System”, Hy-drological Processes, 3: 151-162.
71. Beven, K.J. and M.J. Kirby (1979), “A Physically Based Variable Con-tributing Area Model of Basin Hydrology”, Hydrological Sciences Bulle-tin, 24: 43-69.
72. Boyce, R.C. (1975), “Sediment Routing with Sediment Delivery Ratios”, In Present and Prospective Technology for Predicting Sediment Yields and Sources, US Dept. Agric, Publ. ARS-S-40, pp.61-65.
73. Brans, J.P., B. Mareschal and P. Vincke (1984), “PROMETHEE. A New Family of Outranking Methods in MCDM”, IFORS 84, North Holland, pp.477-490.
74. Brown, C.B. (1950), “Sediment Transportation in Engineering Hydrau-lics”, H. Rouse, Ed., John Wiley and Sons, Inc., New York, p.771.
75. Burgan, R.E. and R.A. Hartford (1993), “Monitoring Vegetation Green-ness with Satellite Data”, USDA For. Serv. Gen. Tech. Rep. INT297, p.13.
76. Burns, R.G. (1979), “An Improved Sediment Delivery Model for Pied-mont Forests”, Georgia Inst. Technol., Atlanta, Ca.
77. Burrough, P.A. (1986), “Principles of Geographical Information Systems for Land Resources Assessment”, Oxford University Press, New York, p. 50.
78. Burrough, P.A. (1987), “The Use of Geographical Information Systems for Cartographic Modeling in Landscape Ecology”, Proceedings of the First International Seminar on Methodology, Roskilde University Center, Den-mark Geographer, 8: 34-38.
79. Chorowicz, J., C. Ichoku, S. Raizanoff, Y. Kim and B. Cervelle (1992), “A Combined Algorithm for Automated Drainage Network Extraction”, Water Resources Research, 28(5): 1293-1302.
80. Chow, V.T. (1964), “Handbook of Applied Hydrology”, McGraw-Hill, New York.
81. Chow, V.T., D.R. Maidment and L.W. Mays (1988), “Applied Hydrology”, McGraw-Hill, New York, p.7.
82. Collins, S.H. and G.C. Moon (1981), “Algorithms for Dense Digital Ter-rain Models”, Photogrammetric Engineering and Remote Sensing, 47(1): 71-76.
83. Costa-Cabral, M.C. and S.J. Burges (1994), “Digital Elevation Model Networks (DEMON): A Model of Flow over Hillslopes for Computation of Contributing and Dispersal Areas”, Water Resources Research, 30(6): 1681-1692.
84. Deimel L.E., R.J. Fornaro and D.F. McAllister (1982), “Techniques for Computerized Lake and River Fills in Digital Terrain Models”, Photo-grammetric Engineering and Remote Sensing, 48(9): 1431-1436.
85. Doyle, F.J. (1978), “Digital Terrain Models: An Overview”, Photogram-metric Engineering and Remote Sensing, 44(12): 1481-1485.
86. Durako, K. (1990), “Technical Start-up Problems in GIS Project Manage-ment”, GIS/LIS 90 Proceedings, 2: 798.
87. Fairfield, J and P. Leymarie (1991), “Drainage Networks from Grid Ele-vation Models”, Water Resources Research, 27(5): 709-717.
88. Feigenbaum (1982), “Knowledge Engineering in the 1980’s”, Dept. of Computer Science, Stanford University, Stanford CA.
89. Fern, A., M.T. Musavi and J. Miranda (1998), “Automatic Extraction of Drainage Network from Digital Terrain Elevation Data: A Local Network Approach”, IEEE Transactions on Geoscience and Remote Sensing, 36(3): 1007-1011.
90. Gandolfi, C. and G.B. Bischetti (1997), “Influence of the Drainage Net-work Identification Method on Geomorphological Properties and Hy-drological Response”, Hydrological Processes, 11: 353-375.
91. Garbercht, J. and R.W. Martz (1997), “Assignment of Drainage Direction over Flat Surfaces in Raster Digital Elevation Models”, Journal of Hy-drology, 193: 204-213.
92. Gardiner, V. (1978), “Drainage Basin Morphometry”, in Geomorphologi-cal Techniques, Ed. Andrew Goudie, Unwin Hyman.
93. Glymph, L.M. (1954), “Studies of Sediment Yields from Watersheds”, In-ternational Association of Hydrology Science, Publication. 36, pp.173-191.
94. Goicoechea, A., L. Duckstein and M.M. Fogel (1976), “Multi-Objective Programming in Watershed Management: A Case Study of the Charleston Watershed”, Water Resources Research, 12(6): 1085-1092.
95. Hack, J.T. (1957), “Studies of Longitudinal Stream Profiles in Virginia and Maryland”, U.S. Geological Survey, Prof. Paper, No.294-B.
96. Hadley, R.F. and L.M. Shown (1976), “Relation of Erosion to Sediment Yield”, In Proceedings of the Third Federal Inter-Agency Sedimentation Conference. U.S. Water Resource Council, Washington, D.C. pp.1-132~1-139.
97. Happ, S.C., G. Rittenhouse and G.C. Dobson (1940), “Some Principles of Accelerated Stream and Valley Sedimentation”, Technical Bulletin 695, United States Department of Agriculture.
98. Haralick, R.M. (1983), “Ridge and Valley on Digital Images”, Computer Graphics and Image Processing, 22(3): 169-178.
99. Hutchinson, M.F. (1989), “A New Procedure for Gridding Elevation and Stream Line Data with Automatic Removal of Spurious Pits”, Journal of Hydrology, 106: 211-232.
100. Imeson, A.C. (1974), “The Origin of Sediment in a Moorland Catchment with Particular Reference to the Role of Vegetation”, In Gregory, K.J. and Walling, P.E., (eds), Fluvial Processes in Instrumented Watersheds. Insti-tute British Geography, Spec. Publ. 6, pp.59-72.
101. Jenson, S.K. (1985), “Automatic Derivation of Hydrologic Basin Charac-teristics from Digital Elevation Model Data”, Auto-Carto 7 Proceeding, pp.301-310.
102. Jenson, S.K. (1987), “Methods and Application in Surface Depression Analysis”, Proceedings of Auto-Carto 8.
103. Jenson, S.K. and J.O. Domingue (1988), “Extracting Topographic Struc-ture from Digital Elevation Data for Geographic Information System Analysis”, Photogrammetric Engineering & Remote Sensing, 54(11): 1593-1600.
104. Keller, R. (1987), “Expert System Technology, Development and Applica-tion”, Yourdon Press.
105. Kindler, J. (1992), “Rationalizing Water Requirement with Aids of Fuzzy Allocation Model”, Journal of Water Research Bulletin, 28(1).
106. Kling, G.F. (1974), “A Computer Model of Diffuse Source of Sediment and Phosphorous Moving into a Lake”, Ph.D. Thesis, Cornell University, Ithaca, New York.
107. Lee, J. (1991), “Comparison of Existing Methods for Building Triangulat-ed Irregular Network Models of Terrain from Grid Digital Elevation Model”, International Journal Geographical Information Systems, 5(3): 267-285.
108. Li, R.M. (1979), “Water and Sediment Routing from Watersheds”, In Shen, H.W. (ed.), Modeling of Rivers. New York: Wiley, pp.9-1~9-88.
109. Lo, K.F.A. (1995), “Erosion Assessment of Large Watersheds in Taiwan”, Journal of Soil and Water Conservation, 50(2): 180-183.
110. Loveland, T.R. and D.O. Ohlen (1993), “Experimental AVHRR Land Data Sets for Environmental Monitoring and Modeling”, Environmental Modeling with GIS, Oxford University Press, New York, pp.379-385.
111. Luger, G. F. and W. A. Stubblefield (1993), “Artificial Intelligence”, Ben-jamin/Cummings Publishing.
112. Maguire, D.J., M.F. Goodchild and D.W. Rhind (1991), “Geographical Information Systems”, Longman Scientific & Technical.
113. Maner, S.B. (1958), “Factors Influencing Sediment Delivery Rates in the Red Hills Physiographic Area”, Transaction America Geophysics Union, 39: 669-675.
114. Mark, D.M. (1984), “Automated Detection of Drainage Networks from Digital Elevation Models”, Cartographica (Auto-Carto Six Selected Pa-pers), 21(2-3): 168-178.
115. Mark, D.M. (1988), “Network Models in Geomorphology”, in Modelling Geomorphological Systems, ed. M.G. Anderson, John Wiley.
116. Martz, L.W. and J. Garbrecht (1992), “Numerical Definition of Drainage Network and Subcatchment Areas from Digital Elevation Models”, Com-puter & Geosciences, 18: 747-761.
117. Martz, L.W. and J. Garbrecht (1998), “The Treatment of Flat Areas and Depressions in Automated Drainage Analysis of Raster Digital Elevation Models”, Hydrological Processes, 12: 843-855.
118. Martz, L.W. and J. Garbrecht (1999), “An Outlet Breaching Algorithm for the Treatment of Closed Depressions in a Raster DEM”, Computer & Geosciences, 25: 835-844.
119. Melton, M.A. (1957), “An Analysis of the Relations Among Elements of Climate”, Surface Properties and Geomorphology, Tech. Rep. 11, Dept. Geology, Columbia University.
120. Menduni, G. and V. Riboni (2000), “A Physically Based Catchment Parti-tioning Method for Hydrological Analysis”, Hydrological Processes, 14: 1943-1962.
121. Miller, C.L. (1957), “The Spatial Model Concept of Photogrammetry”, Photogrammetric Engineering, 13(1): 31-40.
122. Miller, C.L. and R.A. Laflamme (1958), “The Digital Terrain Model-Theory and Application”, Photogrammetric Engineering, 14(3): 433-442.
123. Moore, I.D., R.B. Grayson and A.R. Ladson (1991), “Digital Terrain Modeling: A Review of Hydrological, Geomorphological and Hydrologi-cal Process”, Biological Applications, 5: 3-20.
124. Moore, D. and J.P. Wilson (1992), “Length-slope Factors for the Revised Universal Soil Loss Equation: Simplified Method of Estimation”, Journal of Soil and Water Conservation, 47(5): 423-428.
125. Naden, P.S. and D.M. Cooper (1999), “Development of a Sediment Deliv-ery Model for Application in Large River Basins”, Hydrological Processes, 13: 1011-1034.
126. Namec, J. (1964), “Engineering Hydrology”, McGraw-Hill London, p.16.
127. Nash, J.E. and J.V. Sutcliffe (1970), “River Flow Forecasting Through Conceptual Models: Part I - A Discussion of Principles”, Journal of Hy-drology, 10: 282-290.
128. O’Callaghan, J.F. and D.M. Mark (1984), “The Extraction of Drainage Networks from Digital Elevation Data”, Computer Graphics and Image Processing, 28: 323-344.
129. Palacios-Velez, O.L. and B. Cuevas-Renaud (1986), “Automated River-Course, Ridge and Basin Delineation from Digital Elevation Data”, Jour-nal of Hydrology, 86: 299-314.
130. Palmer, B. (1984), “Symbolic Feature Analysis and Expert System”, Pro-ceeding of the International Symposium on Spatial Data Handling, pp.467-478.
131. Panuska, J.C., I.D. Moore and L.A. Kramer (1991), “Terrain Analysis: In-tegration into the Agricultural Nonpoint Source (AGNPS) Pollution Model”, Journal of Soil and Water Conservation, 46(1): 59-64.
132. Parsons, A.J. and A.D. Abrahams (1992), “Overland Flow: Hydraulics and Erosion Mechanisms”, UCL Press, London.
133. Perrone, J. and C.A. Madramootoo (1999), “Sediment Yield Prediction Using AGNPS”, Journal of Soil and Water Conservation, 54(1): 415-419.
134. Peucker, T.K. and D. Douglas (1975), “Detection of Surface-specific Points by Parallel Processing of Discrete Terrain Elevation Data”, Com-puter Graphics and Image Processing, 4(4): 375-387.
135. Peucker, T.K., R.J. Fowler, J.J. Little and D.M. Mark, (1978), “The Trian-gulated Irregular Network”, Proceedings of Digital Terrain Models (DTM) Symposium, pp.516-540.
136. Phillips, J.D. (1991), “Fluvial Sediment Delivery to a Coastal Plain Estu-ary in the Atlantic Drainage of the United States”, Marine Geology, 98: 121-134.
137. Piest, R.F., L.A. Kramer and H.G. Heinemann (1975), “Sediment Move-ment from Loessial Watersheds”, In Present and Prospective Technology for Predicting Sediment Yields and Sources. United States Department of Agriculture, Publication ARS-S-40, pp.130-141.
138. Qian, F., R.W. Enrich and J.B. Campbell (1990), “DNESYS-An Expert System for Automatic Extraction of Drainage Networks from Digital Ele-vation Data”, IEEE Transactions on Geoscience and Remote Sensing, 28(1): 29-45.
139. Renfro, G.W. (1975), “Use of Erosion Equations and Sediment Delivery Ratios for Predicting Sediment Yield”, In Present and Prospective Tech-nology for Predicting Sediment Yields and Sources. U.S. Department of Agriculture, Publication ARS-S-40, pp.33-45.
140. Riazanoff, S.B. and J. Chorowicz (1988), “Ridge and Valley Line Extrac-tion from Digital Terrain Models”, International Journal of Remote Sens-ing, 9(6): 1175-1183.
141. Rieger, W. (1998), “A Phenomenon-based Approach to Upslope Con-tributing Area and Depressions in DEMs”, Hydrological Processes, 12: 857-872.
142. Roehl, J.E. (1962), “Sediment Source Areas, Delivery Ratios and Influ-encing Morphological Factors”, International Association of Hydrology Science, Publication, 59: 202-213.
143. Smith, D.D. (1941), “Interpretation of Soil Conservation Data for Field Use”, Agricultural Engineering, 22: 173-175.
144. Smith, T.R., C. Zhan and P. Gao (1990), “A Knowledge-based, Two-step Procedure for Extracting Channel Networks from Noisy DEM Data”, Computers & Geoscience, 16(6): 777-786.
145. Tarboton, D.G., R.F. Bras and I. Rodriguez-Iturbe (1989), “The Analysis of River Basins and Channel Networks Using Digital Terrain Data”, Ralph M.P. Laboratory Report No.326, Massachusetts Institute of Technology, Gambridge, Massachusetts, p.251.
146. Tarboton, D.G., R.F. Bras and I. Rodriguez-Iturbe (1991), “On the Extrac-tion of Channel Networks from Digital Elevation Data”, Hydrological Processes, 5: 81-100.
147. Tecle, A., M.M. Fogel and L. Duckstein (1988), “Multi Criterion Analysis of Forest Watershed Management Alternative”, Water Resource Bulletin, 24(6): 1169-1178.
148. Tempfli, K. (1982), “Lecture Notes on DTM”, ITC Lecture Notes.
149. Thornthwaite, C.W. and J.R. Mather (1955), “The Water Balance”, Publi-cations in Climatology. Drexel Institute of Technology Laboratory of Cli-matology, 8(1): 1-76.
150. Toriwaki, J. and T. Fukumura (1978), “Extraction of Structural Informa-tion from Grey Pictures”, Computer Graphics and Image Processing, 7: 30-51.
151. Trimble, S.W. (1975), “A Volumetric Estimate of Man-Induced Soil Ero-sion on the Southern Piedomnt Plateau”, In Present and Prospective Tech-nology for Predicting Sediment Yields and Sources, U.S. Department of Agriculture, ARS-s-40, pp.142-154.
152. U.S. EPA. (1992), “EPA Compendium of Watershed-scale Models for TMDL Development”, EPA 841-R-92-002.
153. USGS. (1983), “USGS Digital Cartographic Data Standards Digital Ele-vation Models”, Geological Survey Circular 895-B.
154. Vanoni, V.A. (1977), “Sediment Engineering”, ASCE Manuals & Reports on Engineering Practice No. 54, New York, USA, pp.458-461.
155. Walling, D.E. (1983), “The Sediment Delivery Problem”, Journal Hydrol-ogy, 65: 209-237.
156. Ward, A.D and W.J. Elliot (1995), “Environmental Hydrology”, Boca Raton, Fla., Lewis Publishers
157. Way, D.S. (1973), “Terrain Analysis”, Dowden, Hurchinson and Ross. Inc., p.392.
158. Weibel, R. and M. Heller (1991), “Digital Terrain Modeling”, in Maguire, D.J., M.F. Goodchild and D.W. Rhind (Eds) Geographical Information Systems, Vol. 1 Harlow: Longmans, pp.269-297.
159. Williams, J.R. (1977), “Sediment Delivery Ratios Determined with Sedi-ment and Runoff Models”, In Erosion and Solid Matter Transport in In-land Waters, IAHS Publication No. 122, pp.168-179.
160. Wilson, J.P. (1986), “Estimating the Topographic Factor in the Universal Soil Loss Equation for Watersheds”, Journal of Soil and Water Conserva-tion, 41(3): 179-184.
161. Wischmeier, W.H. (1976), “Use and Misuse of the Universal Soil Loss Equation”, Journal of Soil and Water Conservation, 31(1): 5-9.
162. Wischmeier, W.H. and D.D. Smith (1958), “Rainfall Energy and Its Rela-tionship to Soil Loss”, Transaction America Geophysics Union, 39: 258-291.
163. Wischmeier, W.H. and D.D. Smith (1965), “Predicting Rainfall-erosion Losses from Cropland East of the Rocky Mountains”, Agricultural Hand-book 282, Agricultural Research Service, United States Department of Ag-riculture.
164. Wischmeier, W.H. and D.D. Smith (1978), “Predicting Rainfall Erosion Losses”, Agricultural Handbook 537, Agricultural Research Service, Unit-ed States Department of Agriculture.
165. Young, R.A., C.A. Onstad, D.D. Bosch and W.P. Anderson (1987), “Agri-cultural Nonpoint Source Pollution Model: A Large Watershed Analysis Tool”, Conservation Research Report 35, Agricultural Research Service., USDA: Washington, DC.
166. Young, R.A., C.A. Onstad, D.D. Bosch and W.P. Anderson (1989), “Agri-cultural Nonpoint Source Pollution Model for Evaluating Agricultural Watersheds”, Journal of Soil and Water Conservation, 44(2): 168-173.
167. Young, R.A., C.A. Onstad, D.D. Bosch and W.P. Anderson (1994), “Agri-cultural Non-Point Source Pollution Model, Version 4.03, AGNPS USER''S GUIDE”.