跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/17 10:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅煌木
研究生(外文):Huang-Mu Lo
論文名稱:焚化爐底灰物化特性及掩埋場植生復育研究
論文名稱(外文):The Physico-chemical Properties of Incinerator Bottom Ash and the Revegetation at Landfill Site
指導教授:顏正平顏正平引用關係
指導教授(外文):Cheng-Ping Yen
學位類別:博士
校院名稱:國立中興大學
系所名稱:水土保持學系
學門:農業科學學門
學類:水土保持學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:257
中文關鍵詞:焚化爐底灰掩埋場植生復育
相關次數:
  • 被引用被引用:15
  • 點閱點閱:280
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
本研究主要探討台中市焚化爐底灰物化特性及其溶出物質對覆土利用如掩埋場覆土生物分解穩定,植生覆土復育之潛在影響。實驗包括灰燼特性分析、灰燼溶出試驗、重金屬對厭氧污泥之結合與抑制作用、底灰對滲出液中總有機物之吸附與反應行為、底灰作為覆土與垃圾共同掩埋之覆土利用評估及底灰作為探討覆土植生復育之潛在影響、及鎘與滲出液對掩埋場植栽之影響研究。研究結果顯示:(1)底灰乾重部份總碳(TC)與總氮(TN)之平均含量分別為7379與174μgg-1且隨著不同顆粒粒徑減小而增加。Cu、Cd、Pb、Zn、Ni、及Cr之重金屬平均含量分別為7786、29、994、4006、224、及226μgg-1。(2)使用搖動或滾動兩種批次實驗方法將10克底灰置於500ml之蒸餾水中所獲得之溶出結果其滲出濃度值介於0-11μgg-1間。(3)灰燼在較低pH與較高溫度之環境參數條件時有較高之溶出濃度尤其是Zn、Pb、及Cu。(4)Zn、Cu、及Ni厭氧污泥50%程度抑制作用之濃度分別為650mg Znl-1與47.5mg Zng-1 乾污泥、360 mg Cul-1與40 mg Cug-1乾污泥、及380 mg Nil-1與39 mg Nig-1乾污泥。(5)底灰顯示有吸附有機物之潛力且受底灰濃度、pH、溫度、及顆粒大小等因素影響。吸附容量隨底灰濃度、pH、溫度、及粒徑之減少而增加。(6)底灰與垃圾共同厭氧消化顯示其添加有正面之效益。此項研究結果係於實驗室級厭氧消化槽進行而得,其反應槽溫度為35℃,固體停留時間為20天。所使用反應槽共有四個,其中兩個為對照組,另兩個為底灰添加組其添加比例分別為25/100與50/100。底灰添加處理組與對照組相較,其pH、鹼度、氣體產量較高而揮發酸之破壞較大且其滲出液中有機物較低。50/100底灰與垃圾添加比例反應槽較25/100底灰與垃圾添加比例反應槽有更顯著之促進生物分解有利結果,此結果可提供台灣以及其它世界各國以底灰當作掩埋覆土之操作基線實務依據。(7)底灰之鹼性金屬含量有緩衝厭氧消化程序所產生之揮發酸與調和土壤酸性之作用,其微量元素則可提供生物反應與植物生長之營養鹽而有促進其生長與除污之潛勢。(8)植栽復育研究中植栽之滲出水與鎘污染耐受實驗解釋掩埋場現場之種植比室內盆栽之種植其光合作用效率(Fv/Fm)較差,顯示其所受之環境壓力較大。
The thesis investigates the effects of environmental stress on the vegetation at landfill and the physico-chemical properties of bottom ash generated from Taichung City incinerator. Experiments undertaken include ash characterisation, ash leaching tests, binding and inhibition of heavy metals by means of anaerobic sludge, adsorption and interaction of organic pollutant in the leachate by bottom ash, biological assessment of co-disposal of refuse and bottom ash in an anaerobic bioreactor, and the effects of leachate and Cd on the vegetation at landfill site.
The results of ash characterisation showed that total carbon (TC) and total nitrogen (TN) in different sieved particle sizes decreased as the particle size increased and the average total content was 7379 and 174μgg-1 respectively. The average total content of the six heavy metals Cu, Cd, Pb, Zn, Ni and Cr was 7786, 29, 994, 4006, 224 and 226 mgg-1 respectively but did not show the linear relationship between ash particle size and the content except Cr and Cd. The leaching results of 10 g bottom ash mixed with 500 ml deionized water using tumbling and reciprocating shaking showed that the leaching concentration was in the range of 0~11 mgg-1. Leaching from the ash was greater at the extreme pH and temperature having the greatest effect on leachate concentrations of Zn, Pb, and Cu. An inhibitory effect of heavy metals was shown at a 50% levels for Zn, Cu and Ni of 650mg Znl-1 and 47.5mg Zng-1 dry solid sludge, 360 mg Cul-1 and 40 mg Cug-1 dry solid sludge and 380 mg Nil-1 and 39 mg Nig-1 dry solid sludge respectively. Bottom ash showed potential adsorption capacity for organic matter which was influenced by ash concentration, pH, temperature and particle size. The adsorption capacity increased as the ash concentration, pH, temperature, and particle size decreased. The anaerobic co-digestion of bottom ash and simulated refuse showed the beneficial effect of bottom ash addition. These studies were conducted in laboratory scale anaerobic digesters with a retention time of 20 days and a temperature of 35℃. Four reactors were used, two of these (controls) had no ash addition whilst the other two had ash added with the batch fed refuse simulant in a ratio of 25/100 and 50/100 respectively. The beneficial effect of bottom ash addition was observed through the increase in pH, alkalinity, gas production, and the volatile solids destruction and the decrease of total organic carbon concentration of leachate compared with the control reactors. The more significant beneficial results were observed when a bottom ash/refuse ratio of 50/100 was used than that of 25/100. The physico-chemical properties of bottom ash showed that it had the potential to provide the buffer alkalinity to the biological treatment system and the soil vegetation. The trace elements in the bottom ash had the potential to provide the needs of biological treatment and vegetation. The values of Fv/Fm showed that the vegetation tolerance of leachate and Cd at landfill site was lower than that at indoor experiments which received lesser environmental stress than the field test.
目 錄
中文摘要 i
英文摘要 ii
目 錄 iii
表 目 錄 viii
圖 目 錄 x
第壹章 前言 1
1.1緒言 1
1.2 研究動機與目的 3
第貳章 前人研究 5
2.1 文獻回顧 5
2.2 灰燼特性 5
2.3 溶出測試及結果 13
2.4 灰燼溶出模式 18
2.5 金屬對滲出液處理系統之影響 19
2.6 底灰與垃圾共同厭氧消化之可行性研究 22
2.6.1 處理可行性評估 22
2.6.2廢棄物厭氧消化之分解度 23
2.6.3 生物處理程序之抑制或促進潛勢 25
2.6.4 厭氧消化影響因子 27
2.6.5 吸附 32
2.6.5.1 焚化爐底灰之物質吸附 32
2.6.5.2 吸附模式 33
2.6.6 灰燼覆土與植生 35
2.6.7 文獻總結 41
2.6.7.1 灰燼含量與特性分析 41
2.6.7.2 底灰溶出方法 43
2.6.7.3 厭氧消化重金屬抑制作用 43
2.6.7.4 焚化爐底灰吸附TOC之能力 44
2.6.7.5 垃圾與底灰共同厭氧掩埋 44
2.6.7.6 植栽覆土 45
第參章 材料與方法 63
3.1 焚化爐灰燼來源 63
3.2 分析方法 67
3.2.1 底灰粒徑分佈 67
3.2.2 金屬分析 67
3.2.3 碳與氮分析 68
3.2.4 灰燼溶出試驗 68
3.2.5 厭氧毒性與吸附測試 72
3.2.6 焚化爐底灰有機碳吸附 77
3.2.7 底灰與垃圾共同厭氧掩埋消化 80
3.2.8 滲出水與鎘對植物之影響 90
第肆章 結果與討論 93
4.1 底灰特性分析 93
4.1.1 篩分析 93
4.1.2 灰燼之碳氮組成 93
4.1.3 重金屬含量 94
4.1.4 灼燒減量 94
4.2 灰燼特性分析討論 106
4.3 底灰溶出試驗 108
4.3.1 鹼度對溶出之影響 108
4.3.2 去離子水重金屬之釋出 114
4.3.3 pH對重金屬溶出之影響 117
4.3.4 溫度對重金屬釋出之影響 117
4.3.5 硫酸鹽與氯化物 121
4.4 金屬溶出試驗討論 122
4.5 厭氧消化程序毒性測試 124
4.5.1氧氣之影響 125
4.5.2重金屬對厭氧污泥之影響 128
4.6 厭氧污泥吸附實驗與毒性測試討論 143
4.7焚化爐底灰之有機物吸附 144
4.7.1總有機碳(TOC as glycine)吸附 144
4.7.2滲出液總有機碳吸附(TOC as leachate) 153
4.8焚化爐底灰有機碳吸附討論 160
4.9底灰與合成垃圾共同厭氧消化 163
4.9.1 pH 163
4.9.2鹼度和揮發酸 164
4.9.3總固體物(TS)與總揮發固體物(TVS) 165
4.9.4氣體產量與甲烷含量 165
4.9.5總有機碳(TOC)與總有機氮(TN) 166
4.9.6重金屬 167
4.9.7酸中和容量(Acids neutralizing capacity,ANC) 169
4.10底灰與垃圾厭氧消化討論 191
4.10.1厭氧消化影響因子 191
4.10.2厭氧消化程序之計量計算 191
4.10.3 pH之影響 192
4.10.4鹼度和揮發酸之影響 192
4.10.5總固體物與總揮發固體物 194
4.10.6氣體產量與甲烷含量趨勢 195
4.10.7總有機碳(TOC)與總氮(TN)之滲出液濃度 196
4.10.8重金屬之影響 198
4.10.9氣體產量、pH、鹼度、揮發酸、TVS、甲烷含量、及TOC之相關性 199
4.11 植栽試驗 207
4.11.1植物篩選 207
4.11.2 植物吸附 207
4.11.3盆栽及掩埋場現場植栽實驗 217
第五章 結論 226
參考文獻 237
表目錄
表2.1 都市焚化爐底灰之重金屬含量,資料由文獻整理而來 42
表2.2 植栽與灰燼及污泥之相關研究一覽表 46
表3.1 台中市焚化廠之燃燒條件狀況 64
表3.2 台中市都市固體廢棄物之物理組成 65
表3.3 台中市都市固體廢棄物化學組成 66
表3.4 重金屬批次消化槽抑制實驗之營養鹽溶液(Battersby, 1987) 75
表3.5 微量元素溶液(Pfennig et al., 1981) 76
表3.6 底灰和垃圾共同厭氧消化之參數分析頻率 85
表3.7 收集桶之家庭垃圾典型物理組成(G. Kiely, 1996) 86
表3.8 不同國家典型之家庭垃圾物理組成(G. Kiely, 1996) 87
表4.1 不同粒徑之重量百分比分佈曲線 95
表4.2 不同底灰粒徑之物化特性 97
表4.3 底灰第一次萃取之金屬濃度(unit:mgg-1) 100
表4.4 底灰第二次萃取之金屬濃度 101
表4.5 底灰第三次萃取之金屬濃度 102
表4.6 垃圾、甲烷菌與底灰含量及底灰溶出量 104
表4.7 底灰與飛灰之特性 105
表4.6 底灰10克於500ml蒸餾水中以180rpm滾動溶出試驗溶出結果 115
表4.7 底灰10克於500ml蒸餾水中以180cycles min-1前後搖動溶出試驗溶出結果 116
表4.8 底灰10g置於pH1-11之500ml 的去離子水瓶中,並以180cyclesmin-1前後搖動測試平衡後1小時之滲出結果 118
表4.9底灰10g於500ml pH 1-11之去離子水中,於pH初始值與最終值保持相同
情況下所獲得之重金屬、硫酸鹽、及氯化合物滲出濃度(mgg-1) 119
表4.10底灰10g置於溫度0-75℃之500ml 的去離子水瓶中,並以180cyclesmin-1前後搖動測試平衡後1小時之重金屬滲出結果 120
表4.11 Zn逐步添加至100ml污泥(TS3%)之抑制作用,使用之有機負荷率為1.5g
CODl-1d-1 129
表4.12 Cu逐步添加至100ml污泥(TS3%)之抑制作用,使用之有機負荷率為1.5g
CODl-1d-1 130
表4.13 Ni逐步添加至100ml污泥(TS3%)之抑制作用,使用之有機負荷率為1.5g
CODl-1d-1 131
表4.14不同底灰濃度、底灰粒徑、pHs、及溫度時,TOC(as glycine)之Freundlich
等溫吸附模式常數KF與1/n 151
表4.15底灰四參數:底灰濃度(gl-1)、粒徑大小(mm)、pH、及溫度(0C)對有機碳
(TOC as glycine)吸附平衡濃度實驗原始資料表 152
表4.16不同底灰濃度、底灰粒徑、pHs、及溫度時,滲出液TOC之Freundlich 等
溫吸附模式常數KF與1/n 159
表4.17 底灰四參數:底灰濃度(gl-1)、粒徑大小(mm)、pH、及溫度(0C)對有機碳(TOC as leachate)吸附平衡濃度實驗原始資料表 159
表4.18 適合台灣地區掩埋場植生綠美化之植物(黃正義,謝錦松; 1988) 208
表4.19 利用hybrid poplar trees 去除有機物之文獻一覽表(Aitchison et al., 2000) 211
表4.20 處理與未處理土壤之化學特性(Walter et al., 2000) 224
表4.21 污泥添加土壤之微量金屬特性(Steenhuis et al., 1999) 225
圖目錄
圖 1.1 典型都市焚化爐灰燼之處理與管理流程圖(Lin et al., 1996) 2
圖 1.2有機基質之厭氧生化流程示意圖(Dichtl, 1997; House et al., 1997; Bhatti et al., 1996) 4
圖3.1 台中市混燒式垃圾焚化廠之處理流程 63
圖3.2 重金屬抑制分析500 ml厭氧消化槽示意圖 74
圖3.3 基質之物理組成、準備及進料與出料分析示意圖 88
圖3.4 容量四公升固體停留時間20天之批次厭氧消化槽示意圖 89
圖3.5 植物葉片螢光發散變化圖 91
圖3.6 植栽澆灌實驗示意圖 92
圖4.1 底灰粒徑分佈曲線圖 96
圖4.2 七種顆粒粒徑分佈中之總碳濃度 98
圖4.3 七種顆粒粒徑分佈中之總氮濃度 99
圖4.4 底灰不同粒徑中六種重金屬之總含量 103
圖4.5 於鹼度2000 mgl-1 溫度 25 0 C時,不同pH值中二氧化碳與三種鹼度型式之關係平衡圖 109
圖4.6 焚化爐底灰酸度添加造成Cl-1,PO4-3,SO4-2溶出之趨勢圖 110
圖4.7 焚化爐底灰之滴定曲線圖與添加之Na、K、Mg、及Ca之溶出趨勢圖(200C/2-0.6mm/100ml suspension/2.5g) 111
圖4.8 焚化爐底灰之酸滴定曲線圖與Cd, Cr, Cu, Pb, Ni, 及Zn之溶出趨勢
(200C/2-0.6mm/100ml suspension/2.5g) 112
圖4.9焚化爐底灰之酸滴定曲線圖與酸中和能力趨勢圖 (200C/2-0.6mm/100ml suspension/2.5g) 113
圖4.10底灰10g於500ml pH 1-11之去離子水中,於pH初始值與最終值保持相同情況下所獲得之硫酸鹽、及氯化合物滲出濃度(mgg-1)圖 121
圖4.11於24 小時內未含O2蒸餾水之單位污泥所產生之氣體量 126
圖4.12於19及22小時內含O2蒸餾水之單位污泥所產生之氣體量 127
圖4.13逐步加入15mg之Zn於100ml之厭氧污泥(3% TS)反應槽中之抑制作用,反應槽之有機負荷率為1.5 g CODl-1d-1 132
圖4.14逐步加入15mg之Cu於100ml之厭氧污泥(3% TS)反應槽中之抑制作用,反應槽之有機負荷率為1.5 g CODl-1d-1 133
圖4.15逐步加入15mg之Ni於100ml之厭氧污泥(3% TS)反應槽中之抑制作用,反應槽之有機負荷率為1.5 g CODl-1d-1 134
圖4.16逐步加入15mg之Zn於100ml之厭氧污泥(3% TS)反應槽中污泥吸附Zn含量所呈現之抑制作用,反應槽之有機負荷率為1.5 g CODl-1d-1 135
圖4.17逐步加入15mg之Zn於100ml之厭氧污泥(3% TS)反應槽中Zn平衡度所呈現之抑制作用,反應槽之有機負荷率為1.5 g CODl-1d-1 136
圖4.18逐步加入15mg之Cu於100ml之厭氧污泥(3% TS)反應槽中污泥吸附Cu含量所呈現之抑制作用,反應槽之有機負荷率為1.5 g CODl-1d-1 137
圖4.19逐步加入15mg之Cu於100ml之厭氧污泥(3% TS)反應槽中Cu平衡濃度所呈現之抑制作用,反應槽之有機負荷率為1.5 g CODl-1d-1 138
圖4.20逐步加入15mg之Ni於100ml之厭氧污泥(3% TS)反應槽中污泥吸附Ni含量所呈現之抑制作用,反應槽之有機負荷率為1.5 g CODl-1d-1 139
圖4.21逐步加入15mg之Ni於100ml之厭氧污泥(3% TS)反應槽中Ni平衡濃度所呈現之抑制作用,反應槽之有機負荷率為1.5 g CODl-1d-1 140
圖4.22逐步加入15mg之C與Pb於200ml之厭氧污泥(3% TS)反應槽中之抑制作用,反應槽之有機負荷率為1 g CODl-1d-1 141
圖4.23逐步加入30mg之Cu與Pb於200ml之厭氧污泥(3% TS)反應槽中之抑制作用,反應槽之有機負荷率為1 g CODl-1d-1 142
圖4.24由5g乾燥底灰曝露於100ml之1000mgl-1TOC(as glycine)溶液中所決定之平衡時間 146
圖4.25不同底灰濃度之Freundlich 吸附容量(pH7/200C /1hr/180rpm/0.6-0.3mm) 147
圖4.26不同底灰粒徑之Freundlich 吸附容量(pH7/200C/1hr/180rpm) 148
圖4.27底灰於不同pHs時之Frenudlich 吸附容量(5gl-1/0.6-0.3mm/50-3200mgl-1/200C/1hr/180rpm) 149
圖4.28底灰於不同溫度時之Frenudlich 吸附容量(5gl-1/0.6-1.18mm/50-3200mgl-1150/200C/1hr/180rpm) 150
圖4.29乾燥底灰曝露於七個滲出液TOC濃度為318.2 mgl-1錐形瓶中所決定之平衡時間(1.5g/100ml/2-1.18mm/pH7/200C) 154
圖4.30三種底灰不同濃度對滲出液TOC之吸附情形(pH7/200C/1hr/180rpm/mixed ash) 155
圖4.31三種不同底灰粒徑之Freundlich 等溫吸附情形 156
圖4.32三種不同溫度之底灰吸附情形(2g/5-2mm/100ml/30-350mg/l/pH7/1hr) 157
圖4.33三種不同底灰pHs之吸附情形(1.5g/5-2mm/100ml/30-350mg/l TOC/200C/1hr/180rpm) 158
圖4.34底灰與垃圾基質共同厭氧消化之pH趨勢,操作停留時間為20天(底灰1:每天加入3克底灰與12克垃圾基質,底灰2: 每天加入6克底灰與12克垃圾基質,控制組1和2:每天只加入12克垃圾基質) 170
圖4.35底灰與垃圾基質共同厭氧消化之鹼度趨勢,操作停留時間為20天 171
圖4.36底灰與垃圾基質共同厭氧消化之揮發酸趨勢,操作停留時間為20天 172
圖4.37底灰與垃圾基質共同厭氧消化之總固體物趨勢及所計算之底灰累積量,操作停留時間為20天 173
圖4.38底灰與垃圾基質共同厭氧消化之總揮發固體物趨勢及所計算之底灰累積量,操作停留時間為20天 174
圖4.39底灰與垃圾基質共同厭氧消化之氣體產量趨勢,操作停留時間為20天 175
圖4.40底灰與垃圾基質共同厭氧消化之甲烷含量趨勢,操作停留時間為20天 176
圖4.41底灰與垃圾基質共同厭氧消化之總有機碳濃度趨勢,操作停留時間為20天 177
圖4.42底灰與垃圾基質共同厭氧消化之總氮濃度趨勢,操作停留時間為20天 178
圖4.43底灰與垃圾基質共同厭氧消化之可溶性Cd濃度及所計算之Cd總含量趨勢,操作停留時間為20天 179
圖4.44底灰與垃圾基質共同厭氧消化量測總固體物中單位乾基基質Cd濃度及所計算與累積量測之總Cd濃度趨勢,操作停留時間為20天 180
圖4.45底灰與垃圾基質共同厭氧消化其可溶性Cr濃度及所計算累積之總Cr濃度趨勢,操作停留時間為20天 181
圖4.46底灰與垃圾基質共同厭氧消化量測總固體物中單位乾基基質Cr濃度及所計算與累積量測之總Cr濃度趨勢,操作停留時間為20天 182
圖4.47底灰與垃圾基質共同厭氧消化其可溶性Cu濃度及所計算累積之總Cu濃度趨勢,操作停留時間為20天 183
圖4.48底灰與垃圾基質共同厭氧消化量測總固體物中單位乾基基質Cu濃度及所計算與累積量測之總Cu濃度趨勢,操作停留時間為20天 184
圖4.49底灰與垃圾基質共同厭氧消化其可溶性Ni濃度及所計算累積之總Ni濃度趨勢,操作停留時間為20天 185
圖4.50底灰與垃圾基質共同厭氧消化量測總固體物中單位乾基基質Ni濃度及所計算與累積量測之總Ni濃度趨勢,操作停留時間為20天 186
圖4.51底灰與垃圾基質共同厭氧消化其可溶性Pb濃度及所計算累積之總Pb濃度趨勢,操作停留時間為20天 187
圖4.52底灰與垃圾基質共同厭氧消化量測總固體物中單位乾基基質Pb濃度及所計算與累積量測之總Pb濃度趨勢,操作停留時間為20天 188
圖4.53底灰與垃圾基質共同厭氧消化其可溶性Zn濃度及所計算累積之總Zn濃度趨勢,操作停留時間為20天 189
圖4.54底灰與垃圾基質共同厭氧消化量測總固體物中單位乾基基質Zn濃度及所計算與累積量測之總Zn濃度趨勢,操作停留時間為20天 190
圖4.55操作固體停留時間20天之pH與氣體產量相關性 201
圖4.56操作固體停留時間20天之鹼度與氣體產量相關性 202
圖4.57操作固體停留時間20天之TOC與氣體產量相關性 203
圖4.58操作固體停留時間20天之揮發酸與氣體產量相關性 204
圖4.59操作固體停留時間20天之鹼度與pH相關性 205
圖4.60操作固體停留時間20天之TOC與揮發酸相關性 206
圖4.61 衛生掩埋場之橫面與立面剖面圖(黃正義,謝錦松; 1988) 209
圖4.62 掩埋場最終飽和之植生綠美化景觀工程示意圖(黃正義,謝錦松; 1988) 210
圖4.63 植栽吸附土壤或鹽類污染物之反應槽示意圖(Aitchison et al., 2000) 212
圖4.64 14C-dioxane 之放射線營養鹽液植物吸收反應槽示意圖(Aitchison et al., 2000) 213
圖4.65初始濃度為4.5mg(23mgL-1)之dioxane 植物去除效率(Aitchison et al., 2000) 214
圖4.66 有機物Log Kow 特性與植物吸收有機物之關係圖(Aitchison et al., 2000) 215
圖4.67 14C-dioxane 之放射線土壤污染植物吸收反應槽示意圖(Aitchison et al., 2000) 216
圖4.68 植栽所可能承受之各種不同環境壓力 218
圖4.69 植栽滲出水與鎘耐受實驗光合作用效用Fv/Fm值 219
圖4.70 植栽滲出水與鎘耐受實驗光合作用效用Fv/Fm值(續) 220
圖4.71 植栽滲出水與鎘耐受實驗光合作用效用Fv/Fm值(續) 221
圖4.72 植栽滲出水與鎘耐受實驗光合作用效用Fv/Fm值(續) 222
圖4.73 植栽滲出水與鎘耐受實驗光合作用效用Fv/Fm值(續) 223
林昭遠; 張為傑 (1998): 保育植物對銅污染土壤復育之研究,水土保持學報 30(2),129-142。
林昭遠; 劉思謙; 林文賜 (1998): 強酸性煤渣捨石邊坡植生之復育,水土保持學報 30(1),31-39。
林信輝 (2002): 水土保持植生工程,高立圖書出版社。
謝錦松; 黃正義 (1988): 固體廢棄物處理,淑馨出版社。
顏正平 (1974): 水土保持木本植物根系分佈類型研究,國立中興大學水土保持學系印行。
三菱重工業株式會社,昭和58年,神戶市第七次工場築爐及其付帶設備工事机上教育資料。
Aitchison, E.W.; Kelley, S. L.; Alvarez, P. J. J. and J.L. Schnoor (2000): Phytoremediation of 1,4-dioxane by hybrid poplar trees. Water Environment Research 72, 313-321.
Alkan, U.; Anderson, G.K. and O. Ince, (1996): Toxicity of trivalent chromium in the anaerobic digestion process. Wat. Res. 30(3), 731-741.
American Public Health Association; American Water Works Association and Water Environment Federation (1995): Standard methods for the examination of water and wastewater, 19th edition.
Ansede, J. H.; Pellechia, P. J. and D. C. Yoch (1999): Selenium biotransformation by the salt marsh cordgrass Spartina alterniflora: evidence for dimethylselenoniopropionate formation. Environ. Sci. Technol. 33(12), 2064-2069.
Artola, A.; Balaguer, M. D. and M. Rigola (1997): Heavy metal binding to anaerobic sludge. Wat. Res. 31(5), 997-1004.
Avezzu, F.; Bissolotti, G.; Collivignarelli, C. and A. V. Ghirardini A. V. (1995): Behaviour of heavy metals in activated sludge biological treatment of landfill leachate. Waste Management and Research 13, 103-121.
Banerjee, K.; Cheremisinoff, P. N. and S. L. Cheng (1997): Adsorption kinetics of o-xylene by fly ash. Wat. Res. 31(2), 249-261.
Banuelos, G. S.; Cardon, G.; Mackey, B.; Ben-Asher, J.; Wu, L.; Beuselinck, P.; Akohoue, S. and S. Zambrzuski (1993): Boron and selenium removal in boron-laden soils by four sprinkler irrigated plant species. J. Environ. Qual. 22, 786-792.
Barlaz, M. A.; Ham, R. K. and D. M. Schaefer (1989): Mass-balance analysis of anaerobically decomposed refuse. Journal of Environmental Engineering 115(6), 1088-1102.
Barlaz, M. A.; Ham, R. K. and D. M. Schaefer (1990): Methane production from municipal refuse: a review of enhancement techniques and microbial dynamics. CRC CRITICAL REV. IN ENVI. CONTROL VOL. 19(6), 552-584.
Battersby, N. S. (1987): A simple method for determining anaerobic biodegradation potential. WRc Environment Report No. PRD 1535-M/1, WRc Environment, Medmenham, Bucks.
Becker, U. and S. Peiffer (1997): Heavy-metal ion complexation by particulate matter in the leachate of solid waste: a multi-method approach. Journal of Contaminant Hydrology 24, 313-344.
Belevi, H. and P. Baccini (1989): Long-term behaviour of municipal solid waste landfills. Waste Management and Research 7, 43-56.
Belevi, H.; Stämpfli, D. M. and P. Baccini (1992): Chemical behaviour of municipal solid waste incinerator bottom ash in monofills. Waste Management and Research 10, 153-167.
Bhadra, R.; Spanggord, R. J.; Wayment, D. G.; Hughes, J. B. and J. V. Shanks (1999): Characterization of oxidation products of TNT metabolism in aquatic phytoremediation systems of Myriophyllum aquaticum. Environ. Sci. Technol. 33(19), 3354-3361.
Bhatti, Z. I.; Furukwa, K. and Fujita, M. (1996): Feasibility of methanolic waste treatment in UASB reactors. Wat. Res. 30(11), 2559-2568.
Bierman, P. M. and C. J. Rosen (1994): Phosphate and trace metal availability from sewage-sludge incinerator ash. J. Environ. Qual. 23, 822-830.
Blum, D. J. W. and R. E. Speece (1991): A database of chemical toxicity to environmental bacteria and its use in interspecies comparison and correlations. Res. J. WPCF 63, 198-207.
Boersma, L.; McFarlane, C. and F. T. Lindstrom (1991): Mathematical model of plant uptake and translocations of organic chemicals:application to experiments. J. Environ. Qual. 20, 137-146.
Bole, J. B. and R. G. Bell (1978): Land application of municipal sewage waste water: yield and chemicalcomposition of forage crops. J. Environ. Qual. 7(2), 222-226.
Boone, D. R.; Chynoweth, D. P. and R. A. Mah (1993): Ecology and microbiology of biogasification. Biomass and Bioenergy 5(3-4), 191-202.
Britz, T. J.; Spangenberg, G. and C. A. Venter (1994): Acidogenic microbial species diversity in anaerobic digesters treating different substrates. Water Science and Technology 30(12), 55-61.
Brunner, P. H. and H. Monch (1986): The flux of metals through municipal solid waste incinerators. Waste Management and Research 4, 105-119.
Burken, J. G. and J. L. Schnoor (1998): Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ. Sci. Technol. 32(21), 3379-3385.
Cahill, C. A. and L. W. Newland (1982): Comparative efficiencies of trace metal extraction from municipal incinerator ashes. Intern. J. Environ. Anal. Chem. 11, 227-239
Carlson, C. L. and D. C. Adriano (1991): Growth and elemental content of two tree species growing on abandoned coal fly ash basins. J. Environ. Qual. 20, 581-587.
Cernik, M.; Federer, P.; Borkovec, M. and H. Sticher (1994): Modeling of heavy metal transport in a contaminated soil. J. Environ. Qual. 23, 1239-1248.
Cernuschi, S.; Giugliano, M. and I. de Paoli (1990): Leaching of residues from MSW incineration. Waste Management and Research 8, 419-427.
Chanakya, H. N.; Borgaonkar, S.; Rajan, M. G. C. and M. Wahi (1993): Two phase fermentation of whole leaf biomass to biogas. Biomass and Bioenergy 5(5), 359-367.
Chang, A. C.; Lund, L. J.; Page, A. L. and J. E. Warneke (1977): Physical properties of fly ash-amended soils. J. Environ. Qual. 6(3), 267-270.
Chichester, D. L. and S. Landsberger (1996): Determination of the leaching dynamics of metals from municipal solid waste incinerator fly ash using a column test. Journal of the Air and Waste Management Association 46, 643-649.
Cho, J. K. and S. C. Park (1995): Biochemical methane potential and solid state anaerobic digestion of Korean food wastes. Bioresource Technology 52, 245-253.
Chynoweth, D. P.; Turick, C. E.; Owens, J. M.; and D. E. Jerger (1993): Biochemical methane potential of biomass and waste feedstocks. Biomass and Bioenergy 5(1), 95-111.
Clapp, T. L.; Magee, J. F.; Ahlert, R. C. and D. S. Kosson (1988): Municipal solid waste composition and the behaviour of metals in incinerator ashes. Environmental Progress 7(1), 22-30.
Corseuil, H. X. and F. N. Moreno (2001): Phytoremediation potential of willow trees for aquifers contaminated with ethanol-blended gasoline. Wat. Res. 35(12), 3013-3017.
Daifullah, A. E. H.; El-Reefy, S. and H. Gad (1997): Adsorption of p-Nitrophenol on Inshas incinerator ash and on the pyrolysis residue of animal bones. Adsorption Science & Technology. 15(7), 485-496.
Das, H. A.; van Der Sloot, H. A. and J. Wijkstra (1989): Measurement of the leaching of granular solid waste. Toxicological and Environmental Chemistry 19, 109-118.
Davison, R. L.; Natusch, D. F. S. and J. R. Wallace (1974): Trace elements in fly ash dependence of concentration on particle size. Environmental Science and Technology 8(13), 1107-1113.
Dichtl, I. N. (1997): Thermophilic and mesophilic (two- stage) anaerobic digestion. J. CIWEM 11, 98-104.
Dowdy, R. H.; Larson, W. E; Titrud, J. M. and J. J. Latterell (1978): Growth and metal uptake of snap beans grown on sewage sludge-amended soil: a four-year field study. J. Environ. Qual. 7(2), 252-257.
Dudas, M. J. and C. J. Warren (1987): Submicroscopic model of fly ash particles. Geoderma 40, 101-114.
Eighmy, T. T.; Domingo, D.; Krzanowski, J. R.; Stämpfli, D. and D. Eusden (1994): The speciation of elements in incineration residues. Proc Municipal Waste Combustion Conf Williamsburg, VA, 457-478.
Eleazer, W. E.; Odle, W. S.; Wang, Y. S. and M. A. Barlaz (1997): Biodegradability of municipal solid waste components in laboratory-scale landfills. Environmental Science and Technology 31(3), 911-917.
El-Reefy, S; Daifullah, A. E. H. and H. Gad (1998): Adsorption of typical organic pollutants from wastewater using Inshas incinerator ash. Adsorption Science & Technology. 16(2), 87-99.
Fallon, R. D.; Cooper, D. A.; Speece, R. E. and M. Henson (1991): Anaerobic biodegradation of cyanide under methanogenic conditions. App. Environ. Microbiol. 57, 1656-1662.
Farrell, J.; Kason, M.; Melitas, N. and T. Li (2000): Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene. Environ. Sci. Technol. 34(3), 514-521.
Fernandez, M. A.; Martlnez, L.; Segarra, M.; Garcla, J. C. and F. Espiell (1992): Behavior of heavy metals in the combustion gases of urban waste incinerators. Environmental Science and Technology 26(5), 1041-1047.
Fish, C (1999): Enhance of the anaerobic digestion of municipal solid waste through nutrient supplementation. PhD thesis, University of Southampton.
Francis, C. W. and G. H. White (1987): Leaching of toxic metals from incinerator ashes. Journal WPCF 59, 979-986.
Frimmel, F. H. and M. Weis (1990): Ageing effects of high molecular weight organic acids which can be isolated from landfill leachates. Water Science and Technology 23(1-3), 419-426.
Fruchter, J. S.; Rai, D. and J. M. Zachara (1990): Identification of solubility-controlling solid phases in a large fly ash field lysimeter. Environmental Science and Technology 24(8), 1173-1179.
Furr, A. K.; Kelly, W. C.; Bache, C. A.; Gutenmann, W. H. and D. J. Lisk (1976): Multielement uptake by vegetables and millet grown in pots on fly ash amended soil. J. Agric. Food Chem. 24(4), 885-888.
Furr, A. K.; Parkinson, T. F.; Gutenmann, W. H.; Pakkala, I. S. and D. J. Lisk (1978): Elemental content of vegetables, grains, and forages field-grown on fly ash amended soil. J. Agric. Food Chem. 26(2), 357-359.
Furr, A. K.; Parkinson, T. F.; Wachs, T.; Bache, C. A.; Gutenmann, W. H.; Wszolek, P. C.; Pakkala, I. S. and D. J. Lisk (1979): Multielement analysis of municipal sewage sludge ashes. Absorption of elements by cabbage grown in sludge ash-soil mixture. Environ. Sci. Technol. 13(12), 1503-1506.
Furuya, K.; Miyajima, Y.; Chiba, T. and T. Kikuchi (1987): Elemental characterization of particle size-density separated coal fly ash by spectrophotometry, inductively coupled plasma emission spectrometry, and scanning electron microscopy-energy dispersive x-ray analysis. Environmental Science and Technology 21(9), 898-903.
Germani, M. S. and W. H. Zoller (1994): Solubilities of elements on in-stack suspended particles from a municipal incinerator. Atmospheric Environment 28(8), 1393-1400.
Ginter, M. O. and A. M. Grobicki (1995): Analysis of anaerobic sludge containing heavy metals: a novel technique. Wat. Res. 29(12), 2780-2784.
Gonullu, M. T. (1994): Analytical modelling of inorganic contaminants in leachate. Waste Management and Research 12, 339-350.
Greenberg, R. R.; Zoller, W. H. and G. E. Gordon (1978): Composition and size distributions of particles released in refuse incineration. Environmental Science and Technology 12(5), 566-573.
Grenier,Y and D. Couillard (1990): Control of arborescent veetation below power lines with wastewater sludge. J. Environ. Qual. 19, 141-146.
Groffman, P. M.; Axelrod, E. A.; Lemunyon, J. L. and W. M. Sullivan (1991): Denitrification in grass and forest vegetated filter strips. J. Environ. Qual. 20, 671-674.
Gutenmann, W. H.; Pakkala, I. S.; Churey, D. J.; Kelly, W. C. and D. J. Lisk (1979): Arsenic, boron, molybdenum, and selenium in successive cuttings of forage crops field grown on fly ash amended soil. J. Agric. Food Chem. 27(6), 1393-1395.
Harper, S. C.; Manoharan, R.; Mavinic, D. S. and C. W. Randall (1996): Chromium and nickel toxicity during the biotreatment of high ammonia landfill leachate. Water Environment Research 68(1), 19-24.
Her Majesty’s stationary Office (1977): Amenability of Sewage Sludge to Anaerobic Digestion. Methods for the Examination of Waste and Associated Materials, 1-10.
Her Majesty’s stationary office (1982): Methods for assessing the treatability of chemicals and industrial waste waters and their toxicity to sewage treatment processes. Methods for the examination of Waters and Associated Materials, 1-90.
Hodgson, L.; Dyer, D. and D. A. Brown (1982): Neutralisation and dissolution of high-calcium fly ash. Journal of Environmental Quality 11(1), 93-98.
Hofstetter, T. B.; Heijman, C. G.; Haderlein, S. B.; Holliger, C and R. P. Schwarzenbach (1999): Complete reduction of TNT and other (poly)nitroaromatic compounds under iron-reducing subsurfaces conditions. Environ. Sci. Technol. 33(9), 1479-1487.
Hohla, G. N.; Jones, R. L. and T. D. Hinesly (1978): The effect of anaerobically digested sewage sludge on oganic fractions of Blount silt loam. J. Environ. Qual. 7(4), 559-563.
Hong, M. S.; Farmayan, W. F.; Dortch, I. J.; Chiang, C. Y.; McMillan, S. K. and J. L. Schnoor (2001): Phytoremediation of MTBE from a groundwater plume. Environ. Sci. Technol. 35(6), 1231-1239.
House, S. J. and L. M. Evison (1997): Hazards of industrial anaerobic digester effluent discharges to sewer. J. CIWEM 11, 282-288.
Hughes, R. N. and R. M. Cox (1993): In vitro pollen responses of two birch species to acidity and temperature. J. Environ. Qual. 22, 799-804.
Humphreys, P. N.; Banks, C. J. and R. Borja (1993): Influence of plastics on the anaerobic digestion of high cellulosic content waste materials. Environmental Technology 14, 665-671.
Hutchinson, D. H. and C. W. Robinson (1990a): A microbial regeneration process for granular activated carbon-I. Process modelling. Wat. Res. 24(10), 1209-1215.
Hutchinson, D. H. and C. W. Robinson (1990b): A microbial regeneration process for granular activated carbon-II. Regeneration studies. Wat. Res. 24(10), 1217-1223.
Jackson, D. R.; Garrett, B. C. and T. A. Bishop (1984): Comparison of batch and column methods for assessing leachability of hazardous waste. Environmental Science and Technology 18(9), 668-673.
James, A. G. and I. A. Watson-Craik (1996): Use of a three-stage laboratory model to determine the effects of temperature on individual trophic groups of methanogenic associations isolated from anoxic landfill. J. Chem. Tech. Biotechnol. 67, 333-338.
Jewell, W. J.; Cummings, R. J. and B. K. Richards (1993): Methane fermentation of energy crops: maximum conversion kinetics and in situ biogas purification. Biomass and Bioenergy 5(3-4), 261-278.
Jing, J. and T. J. Logan (1992): Effects of sewage sludge cadmium concentration on chemical extractability and plant uptake. J. Environ. Qual. 21, 73-81.
Johnson, C. A.; Brandenberger, S. and P. Baccini (1995): Acid neutralising capacity of municipal waste incinerator bottom ash. Environmental Science and Technology 29(1), 142-147.
Johnson, C. A.; Kersten, M.; Ziegler, F. and H. C. Moor (1996): Leaching behaviour and solubility- controlling solid phases of heavy metals in municipal solid waste incinerator ash. Waste Management 16(1-3), 129-134.
Jokela, E. J.; Smith, W. H. and S. R. Colbert (1990): Growth and elemental content of slash pine 16 years after treatment with garbage composted with sewage sludge. J. Environ. Qual. 19, 146-150.
Karimi-Jashni, A. and R. M. Narbaitz (1997): Impact of pH on the adsorption and desorption kinetics of 2-nitrophnel on activated carbons. Wat. Res. 31(12), 3039-3044.
Kayhanian M. and S. Hardy (1994): The impact of four design parameters on the performance of a high-solids anaerobic digestion of municipal solid waste for fuel gas production. Environmental Technology 15, 557-567.
Kayser, A.; Wenger, K.; Keller, A.; Attinger, W.; Felix, H. R.; Gupta, S. K. and R. Schulin (2000): Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. Environ. Sci. Technol. 34(9), 1778-1783.
Kelley, C.; Mielke, R. E.; Dimaquibo, D; Curtis, A. J. and J. G. Dewitt (1999): Adsorption of Eu(III) onto roots of water hyacinth. Environ. Sci. Technol. 33(9), 1439-1443.
Kelly, J. M.; Schaedle, M.; Thornton, F. C. and J. D. Joslin (1990): Sensitivity of tree seedlings to aluminum:II.red oak, sugar maple, and european beech. J. Environ. Qual. 19, 172-179.
Keyser, T. R.; Natusch, D. F. S.; Evans, C. A. and J. R. W. Linton (1978): A most important generalisation from such studies is that most trace elements are all concentrated on the surface of particles. Environmental Science and Technology 12(7), 768-773.
Khan, M. R.; Khan, M. W. and K. Singh (1997): Management of root-knot disease of tomato by the application of fly ash in soil. Plant Pathology 46, 33-43.
Khattak, R. A.; Page, A. L.; Parker, D. R. and D. Bakhtar (1991): Accumulation and interactions of arsenic, selenium, molybdenum and phosphorus in alfalfa. J. Environ. Qual. 20, 165-168.
Kiely, G (1996): Environmental Engineering. International editions 1998, Irwin/McGraw-Hill Inc.
Kirby, C. S. and J. D. Rimstidt (1993): Mineralogy and surface properties of municipal solid waste ash. Environmental Science and Technology 27(4), 652-660.
Kratochvil, D.; Pimentel, P. and B. Volesky (1998): Removal of trivalent and hexavalent chromium by seaweed biosorbent. Environ. Sci. Technol. 32(18), 2693-2698.
Kukier, U. and M. Sumner (1996): Boron availability to plants from coal combustion by-products. Water, Air, and Soil Pollution 87, 93-110.
Lai, K. M.; Ye, D. Y. and J. W. C. Wong (1999): Enzyme activities in a sandy soil amended with sewage sludge and coal fly ash. Water, Air, and Soil Pollution 113(1), 261-272.
Lamy, I.; Bourgeois, S. and A. Bermond (1993): Soil cadmium mobility as a consequence of sewage sludge disposal. J. Environ. Qual. 22, 731-737.
Laperche, V.; Logan, T. J.; Gaddam, P. and S. J. Traina (1997): Effect of apatite amendments on plant uptake of lead from contaminated soil. Environ. Sci. Technol. 31(10), 2745-2753.
Leighton, I. R. and C. F. Forster (1997): The adsorption of heavy metals in an acidogenic thermophilic anaerobic reactor. Wat. Res. 31(12), 2969-2972.
Lin, C. Y. (1993): Effect of heavy metals on acidogenesis in anaerobic digestion. Wat. Res. 27(1), 147-152.
Lin, H. C.; Kiang D. F. and M. C. Liao (1996): The investigation of treatment, disposal and reutilization technology of refuse incinerator ash. The conference of practical utilization technology of refuse incinerator ash. 31/1/96, Taipei. 69-90.
Lindstrom, F. T.; Boersma, L. and C. McFarlane (1991): Mathematical model of plant uptake and translocation of organic chemicals:development of the model. J. Environ. Qual. 20, 129-136.
Liu, B. Y.; Pfeffer, J. T. and M. T. Suidan (1995): Equilibrium model of anaerobic reactors. Journal of Environmental Engineering 121(1), 58-65.
Huang-Mu, Lo(1999): The impact of increasing the incinerator ash content on landfill site biostabilization. PhD thesis, University of Southampton.
Lu, C. (1996): A model of leaching behaviour from MSW incinerator residue landfills. Waste Management and Research 14, 51-70.
Lu, C. and H. Bai (1991a): Leaching from solid waste landfills part I: modelling. Environmental Technology 12, 545-558.
Lu, C. and H. Bai (1991b): Leaching from solid waste landfills part II: sensitivity analysis. Environmental Technology 12, 559-568.
Mahler, R. J.; Bingham, F. T. and Page, A. L. (1978): Cadmium-enriched sewage sludge application to acid and calcareous soils: Effect on yield and cadmium uptake by lettuce and chard. J. Environ. Qual. 7(2), 274-281.
McLaughlin, M. J.; Palmer, L. T.; Tiller, K. G.; Beech, T. A. and M. K. Smart (1994): Increased soil salinity causes elevated cadmium concenrations in field-grown potato tubers. J. Environ. Qual. 23, 1013-1018.
Medina, V. F.; Larson, S. L.; Bergstedt, A. E.; S. C. McCutcheon (2000): Phyto-removal of trinitrotoluene from water with batch kinetic studies. Wat. Res. 34(10), 2713-2722.
Mitchell, G. A.; Bingham, F. T. and A. L. Page (1978): Yield and metal composition of lettuce and wheat grown on soils amended with sewage sludge enriched with cadmium, copper, nickel, and Zinc. J. Environ. Qual. 7(2), 165-171.
Mitchell, M. J.; Hartenstein, R.; Swift, B. L.; Neuhauser, E. F.; Abrams, B. I.; Mulligan, R. M.; Brown, B. A.; Craig, D. and D. Kaplan (1978): Effects of different sewage sludges on some chemical and biological characteristics of soil. J. Environ. Qual. 7(4), 551-559.
Modi, M. and D. W. Kirk (1994): The effects of co-disposal of alkaline hazardous waste with municipal solid waste on leachate contamination. Hazardous Waste and Hazardous Materials 11(2), 319-332.
Mosey, F. E.; Swanwick, J. D. and D. A. Hughes (1971): Factors affecting the availability of heavy metals to inhibit anaerobic digestion. Wat. Pollut. Control, 668-680.
Mosey, F. E. (1971): The toxicity of cadmium to anaerobic digestion: its modification by inorganic anions. Wat. Pollut. Control, 584-598.
Mosey, F. E. (1976): Assessment of the maximum concentration of heavy metals in crude sewage which will not inhibit the anaerobic digestion of sludge. Wat. Pollut. Control, 10-20.
Mosey, F. E. and D. A. Hughes (1975): The toxicity of heavy metal ions to anaerobic digestion. Wat. Pollut. Control, 18-39.
Murphy, C. E. and T. L. Johnson (1993): Vegetation uptake of technetium-99 from buried, solidified, low-level radioactive waste. J. Environ. Qual. 22, 793-799.
Nakhla, G. F. and M. T. Suidan (1995): Evaluation of competitive adsorption in anaerobic GAC reactors. 121(10), 712-719.
Nannipieri, P and J. M. Bollag (1991): Use of enzymes to detoxify pesticide-contaminated soils and waters. J. Environ. Qual. 20, 510-517.
Newcombe, D. A. and D. E. Crowley (1999): Bioremediation of atrazine-contaminated soil by repeated applications of atrazine-degrading bacteria. Appl. Microbiol. Biotechnol. 51, 877-882.
Nietch, C. T.; Morris, J. T. and D. A. Vroblesky (1999): Biophysical mechanisms of trichloroethene uptake and loss in baldcypress growing in shallow contaminated groundwater. Environ. Sci. Technol. 33(17), 2899-2904.
Nopharatana, A.; Clarke, W. P.; Pullammanappallil, P. C.; Silvery, P. and D. P. Chynoweth (1998): Evaluation of methanogenic activities during anaerobic digestion of municipal solid waste. 64, 169-174.
Nzengung, V. A.; Wang, C. and G. Harvey (1999): Plant-mediated transformation of perchlorate into chloride. Environ. Sci. Technol. 33(9), 1470-1478.
Oleszkiewicz, J. A. and H. M. Poggi-Varaldo (1997): High-solids anaerobic digestion of mixed municipal and industrial waste. Journal of Environmental Engineering 123(11), 1087-1092.
Oliver, D. P.; Hannam, R.; Tiller, K. G.; Wilhelm, N. S.; Merry, R. H. and G. D. Cozens (1994): The effects of zinc fertilization on cadmium concentration in wheat grain. J. Environ. Qual. 23, 705-711.
Ontiveros, J. L.; Clapp, T. L. and D. S. Kosson (1989): Physical properties and chemical species distributions within municipal waste combustor ashes. Environmental Progress 8(3), 200-206.
Owen, W. F.; Stuckey, D. C.; Healy, J. B.; Young, L. Y. and P. L. McCarty (1978): Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Wat. Res. 13, 485-492.
Owens, J. M. and D. P. Chynoweth (1992): Biochemical methane potential of MSW composition. Proc Int Symp on Anaerobic Digestion of Solid Waste, 29-42.
Owens, G.; Ferguson, V. K.; McLaughlin, M. J.; Singleton, L.; Reid, R. J. and P. A. Smith (2000): Determination of NTA and EDTA and speciation of their metal complexes in aqueous solution by capillary electrophoresis. Environ. Sci. Technol. 34(5), 885-891.
Parkin, G. F. and W. F. Owen (1986): Fundamentals of anaerobic digestion of wastewater sludges. Journal of Environmental Engineering 112(5), 867-920.
Parkin, G. F. and R. E. Speece (1982): Model toxicity in methane fermentation systems. J. Environ. Eng. Div. ASCE 108, 515-531.
Parkin, G. F. and R. E. Speece (1983): Attached versus suspended growth anaerobic reactors: response to toxic substances. Water Science and Technology 15, 261-289.
Parkin, G. F. and R. E. Speece (1984): Anaerobic biological waste treatment. Chem. Eng. Prog. CEP December, 55-58.
Peiffer, S. (1994): Predicting trace-metal speciation in sulphidic leachates from anaerobic solid-waste digesters by use of the pH2S-value as a master variable. Journal of Contaminant Hydrology 16, 289-313.
Peiffer, S.; Becker, U. and R. Herrmann (1994): The role of particulate matter in the mobilisation of trace metals during anaerobic digestion of solid waste material. Acta hydrochim. hydrobiol. 22, 130-137.
Pfennig, N.; Widdel, F. and H. G. Träpper (1981): The dissimilatory sulphate-reducing bacteria. In: The prokaryotes: a handbook on habitats, isolation and identification of bacteria I, Starr, M. P; Stolp, H.; Träpper, H. G.; Balows, A. and H. Schlegel (eds), Springer-Verlag, New York, 926-940.
Pierzynski, G. M. and A. P. Schwab (1993): Bioavailability of zinc, cadminum, and lead in a metal-contaminated alluvial soil. J. Environ. Qual. 22, 247-254.
Pillman, A. and M. Jusaitis (1997): Revegetation of waste fly ash lagoons:II.seedling transplants and plant nutrition. Waste Management 15(4), 359-370.
Pohland, F. G. and B. Al-Yousfi (1994): Design and operation of landfills for optimum stabilisation and biogas production. Water Science and Technology 30(12), 117-124.
Pohland, F. G. and J. P. Gould (1986): Co-disposal of municipal refuse and industrial waste sludge in landfills. Water Science and Technology 18(12), 177-192.
Poudel, D. D.; Midmore, D. J. and L. T. West (1999): Erosion and productivity of vegetable systems on sloping volcanic ash-derived Philippine soils. Soil Sci. Soc. Am. J. 63, 1366-1376.
Qian, X. and M. A. Barlaz (1996): Enumeration of anaerobic refuse-decomposing micro-organisms on refuse constituents. Waste Management and Research 14, 151-161.
R.O.C. Taiwan EPA (1991): The measure method of total Cd, Cr, Cu, Pb, Ni and Zn in solid waste- atomic absorption spectrophtometry In: The measurement method of waste. NIEA R303.20T, NIEA R305.20T, NIEA R306.20T and NIEA R307.20T, Taiwan EPA.
Trapp, S. and M. Matthies (1997): Modeling volatilization of PCDD/F from soil and uptake into vegetation. Environ. Sci. Technol. 31(1), 71-74.
Raynal, D. J.; Joslin, J. D.; Thornton, F. C.; Schaedle, M. and G. S. Henderson (1990): Sensitivity of tree seedlings to aluminum:III. red spruce and loblolly pine. J. Environ. Qual. 19, 180-187.
Reardon, E. J.; Czank, C. A.; Warren, C. J.; Dayal, R. and H. M. Johnston (1995): Determining controls on element concentrations in fly ash leachate. Waste Management and Research 13, 435-450.
Reddy, K. R. and S. Chinthamreddy (1999): Electrokinetic remediation of heavy metal-contaminated soil under reducing environments. Waste Management 19, 269-282.
Reimann, D. O. (1989): Heavy metals in domestic refuse and their distribution in incinerator residues. Waste Management and Research 7, 57-62.
Retana, J.; Parker, D. R.; Amrhein, C. and A. L. Page (1993): Growth and trace element concentrations of five plant species grown in a highly saline soil. J. Environ. Qual. 22, 805-811.
Rhee, E. and R. E. Speece (1992): Maximum biodegradation of chloroform and trichloroethylene in anaerobic treatment. Water Science and Technology 25, 121-130.
Rhew, R. D. and M. A. Barlaz (1995): Effect of lime-stabilized sludge as landfill cover on refuse decomposition. Journal of Environmental Engineering 121(7), 499-506.
Rolle, E.; Boni, M. R. and G. Carucci (1997): Effects of leachate salinity on the aerobic and anaerobic mineralization of the municipal solid waste organic fraction. Environmental Technology 18, 203-209.
Rubin, E. and A. Ramaswami (2001): The potential for phytoremediation of MTBE. Wat. Res. 35(5), 1348-1353.
Sandell, J. F.; Dewey, G. R.; Sutter, L.L. and J. A. Willemin (1996): Evaluation of lead-bearing phases in municipal waste combustor fly ash. Journal of Environmental Engineering 122(1), 34-40.
Sarada, R. and R. Joseph (1994): Characterization and enumeration of microorganisms associated with anaerobic digestion of tomato-processing waste. Bioresource Technology 49, 261-265.
Sarret, G.; Vangronsveld, J.; Manceau, A.; Musso, M.; Haen, J. D.; Menthonnex, J.-J. and J.—L. Hazemann (2001): Accumulation forms of Zn and Pb in Phaseolus vulgaris in the presence and absence of EDTA. Environ. Sci. Technol. 35(13), 2854-2859.
Sawell, S. E.; Bridle, T. R. and T. W. Constable (1988): Heavy metal leachability from solid waste incinerator ashes. Waste Management and Research 6, 227-238.
Sawell, S. E.; Chandler, A. J.; Rigo, H. G.; Hetherington, S. and J. Frasery (1993): The waste analysis, sampling, testing and evaluation program: effect of lead and cadmium spiking of municipal solid waste on the characteristics of MSW incinerator residues. Proc Municipal Waste Combustion Conf, Williamsburg, VA, 288-302.
Sawyer, C. N. and P. L. McCarty (1978): Chemistry for Environmental Engineering, McGraw-Hill Inc., USA.
Scherer, M. M.; Richter, S.; Valentine, R. L. and P. J. J. Alvarez (2000): Chemistry and microbiology of permeable reactive barriers for In Situ grounder clean up. Critical Reviews in Environmental Science and Technology 30(3), 363-411.
Sims, T. and F. C. Boswell (1978): Effect of bentonite on plant availability of sludge-borne heavy metals in soil. J. Environ. Qual. 7(4), 501-505.
Smith, E. H. (1991): Evaluation of multicomponent adsorption equilibria for organic mixtures onto activated carbon. Wat. Res. 25(2), 125-134.
Soon, Y. K.; Bates, T. E.; Beauchamp, E. G. and J. R. Moyer (1978): Land application of chemically treated sewage sludge:I.Effects on corp yield and nitrogen availability. J. Environ. Qual. 7(2), 264-269.
Soon, Y. K.; Bates, T. E. and J. R. Moyer (1978): Land application of chemically treated sewage sludge: II.Effects on plant and soil phosphorus, potassium, calcium, and magnesium and soil pH. J. Environ. Qual. 7(2), 269-273.
Speece, R. E. (1985): Environmental requirements for anaerobic digestion of biomass. Advance in Solar Energy 2, 51-123.
Speece, R. E. (1988): A survey of municipal anaerobic sludge digester and diagnostic activity assays. Wat. Res. 22, 365-372.
Speece, R. E.; Parkin, G. F. and D. Gallagher (1983): Nickel stimulation of anaerobic digestion. Wat. Res. 17, 677-683.
Steenhuis, T. S.; McBride, M. B.; Richards, B. K.; E. Harrison (1999): Trace metal retention in the incorporation zone of land-applied sludge. Environ. Sci. Technol. 33(8), 1171-1174.
Stegemann, J. A.; Schneider, J.; Baetz, B. W. and K. L. Murphy (1995): Lysimeter washing of MSW incinerator bottom ash. Waste Management and Research 13, 149-165.
Street, J. J.; Sabey, B. R. and W. L. Lindsay (1978): Influence of pH, phosphorus, cadmium, sewage sludge, and incubation time on the solubility and plant uptake of cadmium. J. Environ. Qual. 7(2), 286-290.
Stuckey, D. J. and T. S. Newman (1977): Effect of dried anaerobically digested sewage sludge on yield and element accumulation in tall fescue and alfalfa. J. Environ. Qual. 6(3), 271-274.
Sucoff, E.; Thornton, F. C. and J. D. Joslin (1990): Sensitivity of tree seedlings to aluminum:I.honeylocust. J. Environ. Qual. 19, 163-171.
Sutter, L. L.; Sandell, J. F. and G. R. Dewey (1994): Application of electron microprobe and mineral liberation analysis techniques to municipal solid waste combustor fly ash. Proc Minerals Metals and Mat SOC Int Symp on Extraction and Processing for Wastes, San Francisco Feb/March, 1063-1074.
Takashima, M. and R. E. Speece (1989): Mineral nutrient requirements for high-rate methane fermentation of acetate at low SRT. Res. J. WPCF 61, 1645-1650.
Takashima, M. and R. E. Speece (1990): Mineral requirements for methane fermentation. Crit. Rev. Environ. Control 19, 465-479.
Tang, N. H.; Blum, D. J. W. and R. E. Spece (1990): Comparison of serum bottle toxicity test with OECD method. J. Environ. Eng. Div. ASCE 116, 1076-1084.
Tay, J. H. and A. T. C. Goh (1991): Engineering properties of incinerator residue. Journal of Environmental Engineering 117(2), 224-235.
Theis, T. L. and K. H. Gardner (1990): Environmental assessment of ash disposal. Crit. Rev. Environ. Control 20(1), 21-42.
U.S. EPA (1986): Test methods for evaluating solid waste. Method 3010, 3050, 7000 and 7130. USEPA.
Van Benschoten, J. E.; Matsumoto, M. R. and W. H. Young (1997): Evaluation and analysis of soil washing for seven lead-contaminated soil. Journal of Environmental Engineering 123(3), 217-224.
van Rensburg, L.; De Sousa Correia, R. I.; Booysen, J. and M. Ginster (1998): Revegetation on a coal fine ash disposal site in South Africa. J. Environ. Qual. 27(6), 1479-1486.
Verstraete, W. and P. Vandevivere (1999): New and broader applications of anaerobic digestion. Critical Reviews in Environmental Science and Technology 28(2), 151-173.
Wadge, A. and M. Hutton (1986): The uptake of cadmium, lead, and selenium by barley and cabbage grown on soils amended with refuse incinerator fly ash. Plant and Soil 96, 407-412.
Walter, I.; Cuevas, G.; Garcia, S. and F. Martinez (2000): Biosolid effects on soil and native plant production in a degraded semiarid ecosystem in central Spain. Waste Management 18, 259-263.
Wang, Y. S.; Odle, W. S.; Eleazer, W. E. and M. A. Barlaz (1997): Methane potential of food waste and anaerobic toxicity of leachate produced during food waste decomposition. Waste Management and Research 15, 149-167.
Webber, M. D.; Pietz, R. I.; Granato, T. C. and M. L. Svoboda (1994): Plant uptake of PCBs and other organic contaminants from sludge-treated coal refuse. J. Environ. Qual. 23, 1019-1026.
Weiss, P. (2000): Vegetation/soil distribution of semivolative organic compounds in relation to their physicochemical properties. Environ. Sci. Technol. 34(9), 1707-1714.
Whiting, S. N.; Leake, J. R.; McGrath, S. P. and A. J. M. Baker (2001): Hyperaccumulation of Zn by Thlaspi caerulescens can ameliorate Zn toxicity in the rhizosphere of Cocropped Thlaspi arvense. Environ. Sci. Technol. 35(15), 3237-3241.
Wolborska, A. (1989): Adsorption on activated carbon of p-nitrophenol from aqueous solution. Wat. Res. 23(1), 85-91.
Wong, J. W. C.; Cheung, K. C. and M. H. Wong (1999): Environmental implication of soils amended with anaerobically digested sewage sludge in Hong Kong. Water, Air, and Soil Pollution 124, 23-36.
Woodbury, P. B.; Arthur, M. A.; Rubin, G.; Weinstein, L. H. and D. C. McCune (1999): Gypsum application reduces selenium uptake by vegetation on a coal ash landfill. Water, Air, and Soil Pollution 110(3-4), 421-432.
Woodbury, P. B.; Rubin, G.; McCune, D. C.; Weinstein, L. H. and E. F. Neuhauser (1999): Assessing trace element uptake by vegetation on a coal fly ash landfill. Water, Air, and Soil Pollution 111(1), 271-286.
Xia, H. and G. D. Rayson (1998): Investigation of aluminum binding to a Datura innoxia material using 27Al NMR. Environ. Sci. Technol. 32(18), 2688-2692.
Yang, J. and R. E. Speece (1985): Effect of engineering controls on methane fermentation toxicity response. Journal WPCF 57, 1134-1141.
Yang, J. and R. E. Speece (1986): The response, acclimation, and remedial treatment of an enriched methanogenic culture to cyanide. Toxicity Assessment 1, 431-454.
Yen, C. Y. and P. C. Singer (1984): Competitive adsorption of phenols on activated carbon. Journal of Environmental Engineering, 110(5), 976-989.
Young, E. and C. J. Banks (1998): The removal of lindane from aqueous solution using a fungal biosorbent: the influence of pH, temperature, biomass concentration, and culture age. Environmental Technology 19, 619-625.
Zehnder, A. J. B.; Ingvorsen, K. and T. Marti (1982): Microbiology of methane bacteria in Anaerobic Digestion 1981, Hughes et al. Eds, Elsevier Biomedical Press, 45-68.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top