(3.237.234.213) 您好!臺灣時間:2021/03/09 12:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許信賢
論文名稱:枯草桿菌RNA聚合酶sigA因子區域1.1之C-端胺基酸對sigmaA蛋白構造與功能之重要性
論文名稱(外文):The Importance of Amino Acid Residues at the C-terminus of Region 1.1 to the Structural and Functional Properties of Bacilis subtilis sigA factor
指導教授:張邦彥張邦彥引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:58
中文關鍵詞:枯草桿菌
外文關鍵詞:sigma A
相關次數:
  • 被引用被引用:2
  • 點閱點閱:145
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
因子是原核生物RNA聚合酶辨識啟動子DNA,並引發轉錄作用的重要蛋白。以往的研究結果顯示,Bacillus subtilis(枯草桿菌)A蛋白N-端保留性區域1刪除26,52,73,94,或103個胺基酸,均不影響A-RNA聚合酶之體外轉錄活性,但是刪除至106個胺基酸,A蛋白的轉錄活性就會急遽降低。為了探討A蛋白N-端第103個胺基酸至106個胺基酸對A蛋白功能之重要性,首先我分析A蛋白N-端第103至第106個胺基酸之順序性刪除,對A蛋白轉錄活性之影響。 實驗結果顯示,A蛋白N-端刪除104 或105個胺基酸,即可急遽降低突變型A-RNA聚合酶的轉錄活性。由於SND104-A蛋白僅缺乏A蛋白N-端的103個胺基酸,可見A蛋白N-端第103個胺基酸存在與否,對A蛋白能否保持正常的轉錄功能是相當重要的。以單循環體外轉錄作用分析野生型及刪除突變型A蛋白之轉錄特性,發現相較於野生型A-RNA聚合酶,SND103-A-RNA聚合酶具有轉錄延遲的現象。推測SND103-A-RNA聚合酶,至少可能在與啟動子DNA形成開放式複合體的效率上,已不同於野生型A-RNA聚合酶。另外,SND104-A-RNA聚合酶之體外轉錄缺失,更甚於SND103-A-RNA聚合酶。免疫沉澱、分子篩層析、以及膠體遲滯的研究結果顯示, SND104-A-RNA聚合酶轉錄活性明顯降低的的原因,和SND104-A蛋白與RNA聚合酶核心酵素之結合能力、或SND104-A-RNA聚合酶與啟動子DNA之結合能力無關。因此,我推測SND104-A-RNA聚合酶體外轉錄活性急遽下降低的原因,可能和其與啟動子DNA結合後,無法有效形成正常的開放式複合體,或更進一步進入轉錄延長反應有關。以圓二色光譜儀分析SND103-、SND104-、以及 SND105-A蛋白所保持的二級構造,結果顯示具有轉錄活性之SND103-A,比明顯具有轉錄缺失之SND104-、及 SND105-A蛋白,含有較少的二級構造。由於更多的刪除突變研究結果顯示,具有轉錄活性的SND100-、及SND102-A均比不具轉錄活性之SND104-、及 SND105-A,含有較少的二級構造,因此我認為A蛋白區域1.1及區域1.2交界處的胺基酸,對A蛋白能否擁有正確的功能構造,是相當重要的。
Abstract
The sigma (σ) subunit of prokaryotic RNA polymerase is essential for the recognition of promoter DNA and the initiation of transcription. Our previous data have revealed that the truncated A factor of B. subtilis, with N-terminal 26, 52, 73, 94, or 103 amino acids being deleted, is as functional as its wild-type counterpart after reconstitution with core RNA polymerase. However, further N-terminal deletion into residue 106 has resulted in an abrupt reduction in transcription activity of the RNA polymerase harboring the truncated A. This purpose of this study was to investigate the role of amino acid residues, spanning 103 to 106, on the structural and functional properties of A. The experimental data showed that both SND104- and SND105-A-RNA polymerases also significantly reduced their in vitro activities. Since the difference between SND103- and SND104-A was the presence or absence amino acid residue 103 at the N-terminus of the truncated A, it seemed that this amino acid was essential to the maintenance of functional A properties. Single cycle in vitro transcription has been adopted to compare the transcription properties of both the wild-type and N-terminally trancated A-RNA polymerases. The data revealed that SND103-A-RNA polymerase, in comparison with the wild-type one, had a delayed in vitro transcription activity, indicating that at least the efficiency of open complex formation was affected by removal of N-terminal 102 amino acids of A. The defect of delayed transcription was much more pronounced with SND104-A-RNA polymerase under the same condition. Reasons responsible for the defect of SND104-A-RNA polymerase were irrelevant to the core-binding activity of SND104-A and the promoter-binding activity of SND104-A-RNA polymerase as evidenced by gel filtration and gel retardation assays. It was probably a result of inefficient open complex formation of SND104-A-RNA polymerase and G3b promoter or a result of inefficient transition from transcription initiation to transcription elongation. To unravel the mystery resulting in the defect of SND104-A, I compared the amounts of secondary structures possessed by SND104- and SND105-A, which had reduced transcription activity, as well as SND103-A, which possessed normal multiple cycle transcription activity. Interestingly, data from circular dichroism showed that less amount of secondary structure was possessed by the active SND103-A than by the inactive ones. Since a relatively low amount of secondary structures was also observed for the active SND100- or SND102-A comparing with that for SND104-A, it tends to suggest that the amino acid residues located in the junction of regions 1.1 and 1.2 were very critical for the truncated A to possess a correct functional structure.
目錄
壹、英文摘要……………………………………………………… 1
貳、中文摘要…………………………………………………….. 3
貳、前言…………………………………………………………… 5
參、材料與方法…………………………………………………… 12
一、試藥及實驗器材……………………………………………… 12
二、菌株與質體…………………………………………………… 12
三、實驗方法……………………………………………………… 12
1. pSNDX 刪除突變型sigA基因之構築……………………… 12
2. 刪除突變型σA蛋白之大量生產…………………………… 13
3. 刪除突變型σA蛋白之純化………………………………… 13
4. 純化具有histidine標示的枯草桿菌RNA聚合酶核心酵素
14
5. 蛋白質之定量………………….…………………………… 15
6. 刪除突變型σA蛋白的多循環體外轉錄活性 (in vitro multiple cycle transcription activity) 分析
……………………………………………………………… 16
7. 刪除突變型σA蛋白的單循環體外轉錄活性 (in vitro single cycle transcription activity) 分析………………………….. 16
8. 刪除突變型σA蛋白的部分水解 (partial proteolysis) 分析… 17
9. 刪除突變型σA蛋白的二級結構分析……………………… 18
10. 刪除突變型σA蛋白與RNA聚合酶核心酵素結合能力之分析 (一)………………………………………………………………18
11. 刪除突變型σA蛋白與RNA聚合酶核心酵素結合能力之分析 (二)…………………………………………………………. 18
12. 枯草桿菌Φ29噬菌體G3b啟動子DNA之製備、純化及標示
…………………………………………………………………..19
13. 刪除突變型σA蛋白與Φ29噬菌體G3b啟動子DNA結合能力之分析………………………………………………………… 20
伍、結果…………………………………………………………… 21
一、刪除突變型σA蛋白基因之選殖與大量表現……………… 21
二、N-端刪除突變型A蛋白之純化………………………….. 21
三、B. subtilis β''次單元體具有His-tag標示之RNA聚合酶核心酵素的純化…………………………………………………....... .. 22
四、刪除突變型σA蛋白的體外轉錄活性(in vitro transcriptionactivity)
分析 …..…………………………………………….. 23
五、刪除突變型σA蛋白與core enzyme結合能力的分析………..23
六、刪除突變型σA蛋白與噬菌體G3b啟動子DNA結合能力
之分析…………………………………………………………..24
七、刪除突變型σA蛋白的單循環體外轉錄活性 (single cycle in vitro transcription activity) 分析…………………………………. 25
八、刪除突變型σA蛋白之構形分析………………………………26
九、SND100、102-σA蛋白的多循環體外轉錄活性 (multiple cycle in vitro transcription activity ) 分析………………………………27
陸、討論…………………………………………………………… 28
柒、附圖……………………………………………………………. 32
捌、附表…………………………………………………………… 44
玖、附錄........................................................................................... 45
拾、參考文獻...................................................................................... 51
參考文獻
Arndt, K. M., and M. J. Chamberlin. (1988) Transcription termination in Escherichia coli measurement of the rate of enzyme release from rho-independant terminators. J. Mol. Biol., 202, 271-285.
Baldwin, N. E., and A. J. Dombroski. (2001) Isolation and characterization of mutation in region 1.2 of Escherichia coli 70.Molecular Microbiology, 42(2), 427-437.
Barkly, M. D. (1981) Salt dependence of the lac repressor-operator interaction: Role of nonoperator deoxyribonucleic acid in the association reaction. Biochemistry, 20, 3833-3842.
Berg, O. G., R. B. Winter, and P. H. von Hippel. (1981) Diffusion-driven mechanism of protein translocation on nucleic acid. I. Model and theory. Biochemistry, 20, 6929-6948.
Bowers, C. W., and A. J. Dombroski. (1999) A mutation in region 1.1 of 70 affects promoter DNA binding by Escherichia coli RNA polymerase holoenzyme. EMBO, 18(3) 709-716.
Burgess, R. R. (1969) Factor stimulating transcription by RNA polymerase . Nature, 221, 43-46.
Burgess, R. R. (1969) Separation and characterization of the subunits of ribonucleic acid polymerase. J. Biol. Chem., 244, 6168-6176.
Buttner, M. J., K. F. Chater, and M. J. Bibb. (1990) Cloning, disruption, and transcriptional analysis of three RNA polymerase sigma factor genes of Streptomyces coelicola A3 (2). J. Bacteriol., 172, 3357-3378.
Carpousis, A. J., and J. D.Gralla. (1980) Cycling of ribonucleic acid polymerase to produce oligonucleotide during in vitro at the lac UV5 promoter DNA. Biochemistry, 19, 3245-3253.
Carpousis, A. J., and J. D.Gralla. (1985) Interaction of RNA polymerase with lac UV5 promoter DNA during mRNA initiation and elongation. Footprinting, methylation, and rifampicin-sensitive change accompanying initiation. J. Mol. Biol., 183, 165-177.
Chamberlin, M. J. (1993) New models for the mechanism of transcription elongation and its regulation. Harvey lect., 88, 1-21.
Chang, B. Y. and R .H. Doi. (1990) Overexpression, purification and characterization of Bacillus subtilis RNA polymerase A factor. J. Bacteriol., 172, 3257-3263.
Chang, B. Y., Y. T. Shyu, and R. H. Doi. (1992) The interaction between Bacillus subtilis sigma-A (A) factor and RNA polymerase with promoters. Biochimie, 74, 601-612.
Chang, B. Y., and R. H. Doi. (1993a) Conformational properties of the Bacillus subtilis RNA polymerase factor during transcription initiation. Biochem. J., 294:43-47.
Chang, B. Y., and R. H. Doi. (1993b) Effects of amino acid substitutions in the promoter -10 binding region of the on growth of Bacillus subtilis. J. Bacteriol., 175, 2470-2474.
Chang, B. Y., C. T. Liao, Y. D. Wen, and W. H. Wang. (1997) The temperature sensitivity of Bacillus subtilis DB1005 is due to insufficient activity, rather than insufficient concentration, of the mutant A factor. Microbiology, 143, 1299-1308.
Chater, K. F., C. J. Bruton, K. A. Plaskitt, M. J. Buttner, C. Mendez, and J. D. Helmann. (1989) The developmental fate of S. coelicolor hyphae depends upon a gene product homologous with the mobility sigma factor of Bacillus subtilis. Cell, 59, 103-136.
Chen, J. P. (1998) Characterization of the deletion mutant A factors of Bacillus subtilis RNA polymerase. Master''s Thesis. National Chung-Hsing University, Taiwan, R. O. C.
Chen, Y., Y. W. Ebright, and R. H. Ebright. (1994) Identification of the target of a transcription activator protein by protein-protein photocrosslinking. Science, 265, 90-92.
Daniels, D., P. Zuber, and R. Losick. (1990) Two amino acids in an RNA polymerase  factor is involved in the recognition of adjacent base pairs in the -10 recognition region of the cognate promoter. Proc. Natl. Acad. Sci. USA, 87, 8075-8079.
Das, A. (1993) Control of transcription termination by RNA-binding protein. Ann. Rev. Biochem., 62, 893-930.
Doi, R. H., and L. F. Wang. (1986) Multiple procaryotic ribonucleic acid polymerase  factor. Microbiol. Rev., 50, 227-243.
Dombroski, A. J., W. A. Walter, M. T. Record, Jr., D. A. Siegele, and C. A. Gross. (1992) Polypeptides containing highly conserved regions of transcription initiation factor 70 exhibit specificity of binding to promoter DNA. Cell, 70, 501-512.
Dombroski, A. J., W. A. Walter, and C. A. Gross. (1993) Amino-terminal amino acids modulate -factor DNA-binding activity. Genes & Development, 7, 2446-2455.
Dombroski, A. J., W. A. Walter, and C. A. Gross. (1993) The role of the sigma unit in promoter recognition by RNA polymerase. Cellular and Molecular Biology Research, 39, 311-317.
Geiduschek, P. E. (1997) Paths to activation of transcription. Science, 275, 1614-1615.
Gilman, M. Z., J. L. Wiggs, and M. J. Chamberlin. (1981) Nucleotide sequence of two Bacillus subtilis promoters used by Bacillus subtilis Sigma-28 RNA polymerase. Nucl. Acids Res., 9, 5991-6000.
Gralla, T. (1989) A mutant Escherichia coli 70 subunit of RNA polymerase with altered promoter specificity. J. Mol. Biol., 206, 579-590.
Hawley, D. K., and W. R. McClure. (1980) In vitro comparison of initiation properties of bacteriophage Lambda wild-type PR and X3 mutant promoters. Proc. Natl. Acad. Sci. USA, 77, 6381-6385
Helmann, J. D., and M. J. Chamberlin. (1988) Structure and function of bacteria sigma factors. Ann. Rev. Biochem., 57, 839-872.
Hernandez, V. J., H. M., Lilian, and M. Cashel. (1996) Conserved region 3 of Escherichia coli 70 is implicated in the process of abortive transcription. J. Biol. Chem., 271, 18775-18779.
Igarashi, K., and A. Ishihama. (1991) Bipartitie functional map of E. coli RNA polymerase subunit: involvement of the C-terminal region in transcription activation by cAMP-CRP. Cell, 65 (6), 1015-1022.
Inouye, S., M. Yamada, A. Nakazawa, and T. Nakazawa. (1989) Cloning and sequence analysis of the ntrA (rpoN) gene of Pseudomonas putida. Gene, 85, 145-152.
Ishihama, A. (1981) Subunit assembly of Escherichia coli RNA polymerase. Adv. Biophys., 14, 1-35.
Iwakura, Y., A. Ishihama, and T. Yura. (1973) RNA polymerase mutants of E. coli. II. Streptolydigin resistance and its relation to rifampicin resistance. Mol. Gen. Genet., 121, 181-196.
Jeon, Y. H., T. Negishi, M. Shirakawa, T. Yamazaki, N. Fujita, A. Ishihama, Y. Kyogoku. (1995) Solution structure of the activator contact domain of the RNA polymerase  factor. Science, 270, 1495-1497.
Johnson, R. S., R. E. Chester, (1998) Stopped-flow kinetic analysis of the interaction of Escherichia coli RNA polymerase with the bacteriophage T7 A1 promoter. J. Mol. Biol. 283, 353-370.
Joo, D. M., NG Moran, and R. Calendar. (1997) A 32 mutant with a single amino acid change in the highly conserved region 2.2 exhibits reduced core RNA polymerase affinity. Proc. Natl. Acad. Sci. USA, 94, 4907-4912.
Juang, Y. L., J. D. Helmann. (1994) A promoter melting region in the primary  factor of Bacillus subtilis. Identification of functionally important aromatic amino acids. J. Mol. Biol., 235:1470-1488.
Kenney, T. J., and C. P. Moran. (1991) Genetic evidence for interaction of A with two promoters in Bacillus subtilis. J. Bacteriol., 173, 3282-3290.
Kenney, T. J., K. York, P. Youngman, and C. P. Moran. (1989) Genetic evidence that RNA polymerase associated with A use a sporulation-specific promoter in Bacillus subtilis. Proc. Natl. Acad. Sci. USA, 86, 9019-9113.
Lesley, S. A., and R. R. Burgess. (1989) Characterization of the Escherichia coli transcription factor 70: location of a region involved in the interaction with core RNA polymerase. Biochemistry, 28, 7728-7734.
Lonetto, M., M. Gribskov, and C. Gross. (1992) The 70 family: sequence conservation and evolution relationship. J. Bacteriol., 174, 3843-3849.
Losick, R., and M. J. Chamberlin, Eds. (1976) RNA polymerase . New York: Cold Spring Habor Lab.
Losick, R., P. Yangman, and P. J. Piggot, Eds. (1986) Genetic of endospore formation in Bacillus subtilis. Ann. Rev. Genet., 20, 625-669.
Malhotra, A., E. Severinova, and S. A. Darst. (1996) Crystal structure of a subunit fragment from E. coli RNA polymerase. Cell, 87, 731-741.
Margolis, P. M., A. Dirks, and R. Losick. (1991) Establishment of cell type by compartmentalized activation of a transcription factor. Science, 254, 562-565.
Moran, C. P. Jr., N. Lang, C. D. B. Banner, W. G. Haldenwang., and R. Losick. (1981) Promoter for the developmentaly regulated gene in Bacillus subtilis. Cell, 25, 783-791.
Moran, C. P. Jr., N. Lang, S. F. J. LeGrice, G. Lee, M. Stephens, A. L. Sonnenshein, J. Pero, and R. Losick. (1982) Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Mol. Gen. Genet., 186, 339-346.
Moyle, M. L. GH., M. M. Susskind. (1994) Target of the transcription activation function of phage  CI protein . Science, 263, 75-77.
Mukhopadhyay, J., R. H. Ebright, etc. (2001) Translocation of 70 with RNA polymerase during transcription: Fluorescence resonance energy transfer assay for movement relative to DNA. Cell, 106, 453-463.
Murakami, K. S., S. Masuda, S. A. Darst. (2002) Structure basis of transcription initiation: RNA polymerase holoenzyme at 4Å resolution. Science, 296, 1280-1284.
North, A. K., David, S. W., Hideyuki, S., Yehuda, F.,and Syndey, K..(1996) Repressors forms of the enhancer-binding protein NtrC: some fail in coupling ATP hydrolysis to open complex formation by 54-holoenzyme. J.Mol. Biol., 260, 317-331.
Nudler, E., A. Goldfarb, and M. Kashlev. (1994) Discontinuous mechanism of transcription elongation. Science, 265, 793-796.
Bar-Nahum G, Nudler E,(2001) Isolation and characterization of 70-retaining transcription elongation complexes frome Escherichia coli. Cell ,106, 443-451.
Platt, T.,and J. P. Richardson. (1992) Escherichia coli Rho factor: protein and enzyme of transcription termination. In Transcription regulation (McKinght, S. L. & Yamamoto, K. R., eds), pp. 365-388, Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY.
Pribnow, D. (1975) Nucleotide sequence of two RNA polymerase binding sites. J. Mol. Biol., 99, 419-433.
Ptashne, M., and A. Gann. (1997) Transcription activation by recruitment. Nature, 386, 569-577.
Ray, C., K. M. Tatti, and C. P. Moran, Jr. (1987) Genetic analysis of RNA polymerase-promoter interaction during sporulation in Bacillus subtilis. J. Bacteriol., 169, 1807-1811.
Renzikoff, W. S., D. A. Siegele, D. W. Cowing, and C. A. Gross. (1985) The regulation of transcription initiation in bacteria. Ann. Rev. Genet., 19, 355-387.
Ring, B., W. S. Yarnell, and J. W. Roberts. (1996) Function of E. coli RNA polymerase 70 factor in promoter-proximal pausing. Cell, 86, 485-493.
Rong, J. C., and J. D. Helmann. (1994) Genetic and physiological studies of Bacillus subtilis A mutants defective in promoter melting. J. Bacteriol., 176, 5218-5224.
Rosenberg, M. D., and D. L. Court. (1979) Regulatory sequence involved in the promotion and termination of RNA transcription. Ann. Rev. Genet., 13, 319-353.
Ross, W., K. K. Gosink, J. Salomon, K. Igarashi, C. Zou, A. Ishihama, K. Severinov, R. L. Gourse. (1993) A third recognition element in bacterial promoters: DNA binding by the  subunit of RNA polymerase. Science, 262, 1407-1413.
Schmidt, R., P. Margolis, L. Duncan, R. Coppolecchia, C. P. Moran, Jr., and R. Losick. (1990) Control of developmental transcription factor F by sporulation regulatory proteins SpoIIAA and SpoIIAB in Bacillus subtilis. Proc. Natl. Acad. Sci. USA, 87, 9221-9225.
Siebenlist. (1979) RNA polymerase unwinds an 11-base pair segment of a phage T7 promoter. Nature, 279, 651-652.
Siegele, D. A., J. C. Hu, W. A. Walter, and C. A. Gross. (1989) Altered promoter recognition by mutant forms of the 70 subunit of Escherichia coli RNA polymerase. J. Mol. Biol., 206, 591-603.
Tatti, K. M., C. H. Jones, and C. P. Moran. (1991) Genetic evidence for interaction of E with the spoIIID promoter in Bacillus subtilis. J. Bacteriol., 173, 7828-7833.
von Hippel, P. H., D. G. Bear, W. D. Morgan, and J. A. MvSwiggen. (1984) Protein-nucleic acid interactions in transcription: A molecular analysis. Ann. Rev. Biochem., 53, 389-446.
Waldburger, C., T. Gardella, R. Wong, and M. M. Susskind. (1990) Changes in conserved region 2 of Escherichia coli affecting promoter recognition. J. Mol. Biol., 215, 267-276.
Walter, G., W., P. H. Zilig, P. Palm, and E. Fuchs. (1967) Initiation of DNA-dependent RNA synthesis and the effect of heparin on RNA polymerase. Eur. J. Biochem., 3, 194-201.
Wang, D., T. I. Meier, C. L. Chan, G. Feng, D. N. Lee, and R. Landick. (1995) Discontinuous movements of DNA and RNA in RNA polymerase accompany formation of a paused transcription complex. Cell, 81, 341-350.
Wellman, A., and C. F. Mears. (1991) Footprint of the sigma protein: a re-examination. Biochem. Biophys. Res. Commun., 177, 140-144.
Wilson, C., and A. J. Dombroski. (1997) Region 1 of 70 is required for efficient isomerization and identification of transcription by Escherichia coli RNA polymerase. J. Mol. Biol., 257, 60-74.
Winter, R.B., and von Hippel, P.H. (1981) Diffusion-driven mechanism of protein translocation on nucleic acids. II. The Escherichia coli repressor-interaction : Equilibrium measurement. Biochemistry, 20, 6948-6960.
Zhou Y. N., Walter W. A., and Gross CA (1992) A mutant sigma 32 with a small deletion in conserved region 3 of sigma has reduced affinity for core RNA polymerase. J Bacteriol., 174, 5005-5012.
Zuber, P., J. Healy, H. L. Carter, S. Cutting, C. P. Moran, and R. Losick. (1989) Mutation changing the specificity of an RNA polymerase sigma factor. J. Mol. Biol. 206, 605-614.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔