(3.231.29.122) 您好!臺灣時間:2021/02/25 22:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃冠誌
論文名稱:電化學陽極氧化法製備二氧化鈦薄膜
論文名稱(外文):Synthesis of TiO2 Thin Films by Electrochemically Anodic Oxidation
指導教授:呂福興
指導教授(外文):Fu-Hsing Lu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:150
中文關鍵詞:電化學陽極氧化二氧化鈦異質基材電壓
相關次數:
  • 被引用被引用:3
  • 點閱點閱:172
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在電化學之陽極氧化鍍著二氧化鈦之研究中,文獻中陽極使用的皆是純鈦基材,因而限制了電化學法鍍著二氧化鈦薄膜的應用範圍。本研究主要的目的是以電化學法於異質的矽晶片基材上鍍著二氧化鈦薄膜,並與純鈦基材上結果比較,藉由詳細的製程監控與鍍膜分析,期望獲得高品質之二氧化鈦鍍膜。
實驗在室溫下1 M H2SO4鍍液中進行,以掃描電壓與定電壓模式
鍍著二氧化鈦薄膜於鈦箔與鍍鈦矽晶片上,同時並改變掃描電壓速率
及定電壓值,以探討鍍膜的成長與電壓大小的關係。鍍著結果經X光
繞射分析顯示,鈦箔在掃描0-100 V之鍍膜結晶結構為anatase與
rutile,鍍鈦矽晶片在掃描0-100 V之鍍膜結晶結構為anatase。鈦箔上
出現rutile之原因,可能是高電壓之驅動與火花放電產生之高熱,使
anatase部分相轉變為rutile。定電壓60 V以上,鈦箔表面即生成
anatase,鍍鈦矽晶片則在定電壓80 V以上生成anatase,此電壓值範
圍與兩基材在掃描0-100 V實驗中,電流產生振盪之電壓值範圍相
同,電流的振盪可能與陽極上產生介電崩潰有關,因此anatase可能
在電壓達崩潰電壓以上生成,而鍍鈦矽晶片上生成anatase之電壓值
較高可能是因基材之晶粒尺寸差異造成氧化進行所需之電壓不
同。拉曼光譜分析兩基材在掃描電壓與定電壓之鍍著結果,相當一致
顯示鍍膜表面均含有anatase相之結晶。所以兩基材在低於崩潰電壓
鍍著條件下,鍍膜厚度很薄,可能為非晶質結構之鈍態二氧化鈦膜。
高於崩潰電壓時,薄膜產生介電崩潰,陽極繼續反應並開始形成
anatase相之結晶,厚度隨電壓值升高而增加。以掃描式電子顯微鏡觀
察不同模式之鈦箔與鍍鈦矽晶片之鍍著結果,兩基材之鍍膜形貌上明
顯不同,可能由於鍍著過程中表面氧氣生成量的差異所致,造成鈦箔
上鍍膜易被氧氣撐破形成裂紋,而鍍鈦矽晶片上鍍膜則較緻密且無裂
紋產生。
Concerning the anodic oxidation-based electrochemical synthesis of of TiO2 films, the material used for anode should be titanium. The main purpose of this research is to prepare TiO2 films on heterogeneous substrates such as Si instead of pure Ti by electrochemical oxidation and compare to the results on titanium substrates. Through the programmable control of the process and the analyses of the resultant thin films, we expect to obtain the high quality TiO2 thin films on Si substrates.
The deposition has been performed at room temperature in 1 M H2SO4. Scanning voltage mode and constant potentiodynamic mode are used in the deposition of TiO2 thin films both on Ti and Ti/Si substrates. XRD results show that anatase and rutile phases of TiO2 were present on Ti foil whereas only anatase could be found on Ti/Si when both types of specimens were potentiodynamically scanned to 100 V with different scanning rates. When the electrolytic voltage is above 60 V using potentiodynamic mode, the surface of Ti foils exhibits an anatase phase. The anatase was formed on Ti/Si at a higher voltage of 80 V. Raman spectroscopy results also confirms the existence of the anatase phase on these two types of substrates.The resultant morphology of the films on the two types of substrates is also drastically different. The higher electrochemical surface activity and more rapid anodic reactions including the production of oxygen for Ti/Si substrates are the main causes of such differences.
目錄
摘要
Abstract
第一章 緒論
1-1 研究背景………………………………………………..1
1-2 研究動機………………………………………………..2
1-3 研究目的………………………………………………..3
第二章 文獻回顧與理論背景
2-1 文獻回顧………………………………………………..5
2-2 理論背景………………………………………………10
第三章 研究方法
3-1 實驗流程……………………………………………....13
3-2 電化學沈積系統………………………………………13
3-3 基材之準備……………………………………………14
3-4 電化學鍍著……………………………………………16
3-5 分析儀器………………………………………………17
第四章 結果與討論
4-1 鍍著時電解電壓、電流與時間之關係……………..20
4-1-1 掃描電壓模式實驗……………………………….21
4-1-2 定電壓模式實驗………………………………….25
4-2 二氧化鈦鍍膜之外觀觀察與結晶構造之分析……..26
4-2-1 掃描電壓模式之鍍膜外觀分析………………….26
4-2-2 定電壓模式之鍍膜外觀分析…………………….27
4-2-3 掃描電壓模式鍍著之XRD分析………………...29
4-2-4 定電壓模式鍍著之XRD分析…………………...32
4-3 二氧化鈦鍍膜之微結構分析與元素成分分析..……34
4-3-1 掃描式電子顯微鏡分析………………………….34
4-3-2 鍍膜膜厚分析…………………………………….37
4-3-3 元素成分分析…………………………………….38
4-4 鍍膜化學組態分析…………………………………..41
4-5 熱氧化對照實驗結果(對照實驗)…………………...43
4-6 本實驗中氧化機構之探討…………………………..45
第五章 結論…………………………………………………...48
參考文獻……………………………………………………...50
1.J. D. Matthew, “Titanium a Technical Guide,” ASM
International, United States of America, (1988) 57-73.
2.賴耿陽編著, “金屬鈦理論與應用,” 復漢出版社, (2000) 31.
3.汪建民主編, “粉末冶金技術手冊,” 中華民國粉末冶金協會,
(1994), 228-231.
4.J. I. Kroschwitz and M. H. Grant, Encyclopedia of Chemical
Technology, Vol. 24 : “Titanium Compunds,” John Wiley &
Sons, New York, (1997).
5.A. K. Datye, D.S. Kalakkad and D.J. Smith, "Comparison of
Metal -Support Interactions in Pt-CeO2 and Pt-TiO2," J.
Catal., 155, (1995) 148.
6.謝潼穎, 陳郁文, “二氧化鈦在光催化反應上的應用,” 觸媒與製程,
Vol. 7, No. 3, (1999)
7.盧明獻, 陳郁文, “二氧化鈦薄膜之製備及應用,” 觸媒與製程,
Vol. 8, No. 1, (2000)
8.Y. Ohko, K. Hashimoto, and A. Fujishima, “Kinetics of
Photocatalytic Reactions under Extremely Low-Intensity UV
Illumination on Titanium Dioxide Thin Films,” J. Phys. Chem.
A, 101 (1997) 8057.
9.K. S. Yeung and Y. W. Lan, “A Simple Chemical Vapor
Deposition Method for Depositing Thin TiO2 Films”, Thin
Solid Film, 109, (1983) 169.
10.T. Fuyuki and H. Matsunami, “Electronic Properties of
Interface between Si and TiO2 Deposited at Very Low
Temperature”, Japa. J. Appl. Phys., 25, (1986) 1288.
11.G. Blondeau, “Influence of Copper Addition on Optical
Properties of TiO2”, J. Electrochem. Soc., 126, (1979) 1592.
12.C. P. Fictorie, “Kinetic and Mechanistic Study of The
Chemical Vapor Deposition of Titanium Dioxide Thin Films
Using tetrakis- (isopropoxo) -tita-nium(IV)”, J. Vac. Sci.
Technol., A12, (1994) 1108.
13.J. F. Bocquet, K. Chhor, C. Pommier, “A new TiO2 Film
Deposition Process in a Supercritical Fluid,” Surf. Coat.
Tech., 70 (1994) 73 .
14.Y. Li, J. Hagen, W. Schaffrath, P. Otschik and D. Haarer,
“Titanium Dioxide Films for Photovolatic Cells Derived from a
Sol-Gel Process,” Solar Energy Materials and Solar Cells, 56
(1999) 167.
15.D. Wicaksana, A. Kobayashi and A. Kinbara, “Process Effects
on Structural Properties of TiO2 Thin Films by Reactive
Sputtering,” J. Vac. Sci. Tech. A10 (1992) 1479.
16.R. Dannenberg, P. Greene, “Reactive sputter Deposition of
titanium dioxide,” Thin Solid Films, 360 (2000) 122.
17.L. J. Meng, C. P. Moreira and M. P. Santos, “Study of
Porosity of Titanium Oxide Films by X-ray Photoelectron
Spectroscopy and Ir Transmittance”, Thin Solid Films 239
(1994) 117.
18.F. Zhang, Z. Zheng, Y. Chen, Y. Mao and X. Liu, “Effect of
Xe+ Bombardment on the Formation of Highly Oriented Rutile-
Type Titanium Oxide Films,” Thin Solid Films, 312 (1998) 1.
19.J. P. Liu, J. Wang and R. Raj, “Solution Precursor Chemical
Vapor Deposition of Titanium Oxide Thin Films,” Thin Solid
Films, 204 (1991) L13.
20.A. Bendavid, P. J. Martin, H. Takikawa, “Deposition and
Modification of Titanium Dioxide Thin Films by Filtered Arc
Deposition,” Thin Solid Films, 360 (2000) 241.
21.H. Tang, K. Prasad, R. Sanjines, P. E. Schmid and F. Levy,
“TiO2 Anatase Thin Films as Gas Sensors,” J. Appl. Phys., 75
(1994) 2040.
22.P. Babelon, A. S. Dequiedt, H. M. Sba, S. Bourgeois, P.
Sibillot and M. Sacilotti, “SEM and XPS Studies of Titanium
Dioxide Thin Films Grown by MOCVD,” Thin Solid Films, 322
(1998) 63.
23.J. Gluszek, J. Masalski, P. Furman and K. Nitsch,
“Structural and Electrochemical Examinations of PACVD TiO2
Films in Ringer Solution,” Biomaterials, 18 (1997) 789.
24.C. Martinet, V. Paillard, A. Gagnaire, J. Joseph,
“Deposition of SiO2 and TiO2 Thin Films by Plasma Enhanced
Chemical Vapor Deposition for Antireflection Coating,” J.
Non-crystalline Solids, 216 (1997) 77.
25.T. Shibata and Y. C. Zhu, “The Effect of Film Formation
Conditions on the Structural and Composition of Anodic Oxide
Films on Titanium,” Corr. Sci., 37 (1995) 253.
26.F. Climent and R. Capellades, “Anodic Oxidation of Titanium
at Low Voltages,” Mater.Lett., 18 (1994) 263.
27.M. Yasumlchl, T. Shlmlzu, A. Toyota and El-ichl Sato, “New
Preparation Method for Doped Polycrystalline TiO2 and Nb2O5
and Their Photoelectrochemical Properties,” J. Phys. Chem.,
86, (1982)3581.
28.Y. Masahiro, Seung-Eul Yoo, M. Mayashi and N. Ishizwa,
“Preparation of BaTiO3 Thin Film by Hydrothermal
Electrochemical Method,” Japa. J. Appl. Phys., 28, No. 11,
(1989) 2007.
29.A. Navrotsky and O. J. Kleppa, “Enthalpy of the Anatase-
Rutile Transformation,” J. Am. Ceram. Soc., 50 (1967) 626.
30.T. Mitosuhashi and O. J. Kleppa, “Transformation Enthalpies
of the TiO2 Polymorphs,” J. Am. Ceram. Soc., 62 (1979) 357.
31.M. Pourbaix, Atlas of Electrochemical Equilibria, National
Association of Corrosion Engineers, Houston, Texas, USA, 1974
32.L. Young, Anodic Oxide Films, Academic Press, London, 1962
33.G. Blondeau, M. Froelicher, M. Froment and A. H. Goff, “On
The Optical Indices of Oxide Films as A Function of Their
Crystallization: Application to Anodic TiO2 (Anatase)”,
Thin Solid Films, 42, (1977) 147.
34.D. Laser, M. Yaniv, and S. Gottesfeld, “Electrochemical and
Optical Properties of Thin Oxide Layers Formed on Fresh
Titanium Surfaces in Acid Solutions,” Electrochemical
Science and Technology, Vol. 125, No. 3. (1978) 358.
35.T. Ohtsuka, J. Guo and N. Sato, “Raman Spectra of The
Anodic Oxide Film on Titanium in Acidic Sulfate and Netrual
Phosphate Solutions”, J. Electrochem. Soc., Vol. 133, No.
12, (1986) 2473.
36.R. M. Torresi, O. R. Camara, C. P. De Pauli, “Hydrogen
Evolution Reaction on Anodic Titanium Oxide Films”,
Electrochimica Acta, Vol. 32, No. 9, (1987) 1291.
37.J.-L. Delplancke and R. Winand, “Galvanostatic Anodization
of Titanium-i. Structure and Compositions of the Anodic
Films,” Electrochimica Acta, Vol. 33, No. 11, (1988) 1539.
38.M. Kozlowski and W. H. Smyrl, “Local Film Thickness and
Photoresponse of Thin Anodic TiO2 Films on Polycrystalline
Titanium,” Electrochimica Acta, Vol. 34, No. 12, (1989) 1763.
39.J. Lausmaa, B. Kasemo, H. Mattsson and H. Odelius,
"Multi-technique Surface Characterization of Oxide Films on
Electropolished and Anodically Oxidized Titanium,”
Applied Surface Science 45 (1990) 189.
40.L. D. Arsov, C. Kormann and W. Plieth, “Electrochemical
Sythesis and In-Situ Raman Spectroscopy of Thin Films of
Titanium Dioxide,”J. Raman Spctrosc., Vol.22, (1991) 573.
41.M. Pankuch, R. Bell and C. A. Melendres, “Composition and
Structure of the Anodic Films on Titanium in Aqueous
Solutions”, Electrochimica Acta, Vol. 38, no. 18, (1993)
2777.
42.F. Climent and R. Capellades, “Anodic Oxidation of Titanium at Low Voltages,” Materials Letters 18 (1994) 263.
43.J.-L. Delplancke, A. Garnier, Y. Massiani and R. Winand,
“Influence of the Anodizing Procedure on the Structure and
the Properties of Titanium Oxide Films and its Effect on
Copper Nucleation,” Electrochimica Acta, Vol. 39, No. 8/9,
(1994) 1281.
44.T. Shibata and Y.-C. Zhu, “The Effect of Temperature on the
Growth of Anodic Oxide Film on Titanium,” Corrosion Science,
Vol. 37, No. 1, (1995) 133.
45.C. D. Fonseca, A. Traverse, A. Tadjeddine, M. C. Belo, “A
Characterization of Titanium Anodic Oxides by X-ray
Absorption Spectroscopy and Grazing X-ray Diffraction,”
Journal of Electroanalytical Chemistry 388 (1995) 115.
46.J. Pouilleau, D. Devilliers, F. Garrido, S. Durand-Vidal, E.
Mahe, “Structure and Composition of Passive Titanium Oxide
Films,” Materials Science and Engineering B47 (1997) 235.
47.A. Goossens, “Bandgap Enlargement in Anodic Oxide Films on
Titanium,” Surf. Sci., 371, (1997) 390.
48.T. Ohtsuka and T. Otsuki, “The Influence of the Growth Rate
on the Semiconductive Properties of Titanium Anodic Oxide
Films,” Corrosion Science, Vol. 40, No. 6, (1998) 951.
49.E. M. Oliveira, C. E. B. Marino, S. R. Biaggio, R. C. Rocha-
Filho, “Reactivation of Passive Titanium: The Enhancement of
O2 Evolution after Potentiodynamic Cyclings,”
Electrochemistry Communications 2 (2000) 254.
50.Y. T. Sul, C. B. Johansson, Y. Jeong, T. Albrektsson, “The
Electrochemical Oxide Growth Behaviour on Titanium in Acid
and Alkaline Electrolytes,” Medical Engineering & Physics 23
(2001) 329.
51.K. Azumi, M. Seo, “Changes in Electrochemical Properties of
the Anodic Oxide Film Formed on Titanium During Potential
Sweep,” Corrosion Science 43 (2001) 533.
52.F. H. Lu, C. T. Wu and C. Y. Hung, “Barium Titanate Films
Synthesized by Anodic Oxidation-Based Electrochemical
Method,” Surface Coating Technology, 153, (2002) 276.
53.J. Schreckenbach, F. Schlottig, and G. Marx, “Preparation
and Microstucture Characterization of Anodic Spark Deposited
Barium Titanate Conversion Layer,” J. Mter. Res., 14 (1999)
1437.
54.G. P. Wirtz, S. D. Brown and W. M. Kriven, “Ceramuc
Coatings by Anodic Spark Deposition,” Mater. & Manufacturing
Process, 6 (1991) 87.
55.Reference”University of Colorado, Mineral Structure Data,
http://ruby. Colorado.Edu/∼smyth/min/mineral.html”.
56.R. D. Shannon and J. A. Pask, “Kinetics of the Anatase-
Rutile Transformation”, J. Am. Ceram. Soc., Vol.48, No.8,
(1965) 391.
57.R. E. Loehman, “Characterization of Ceramics,” Manning
Publications Co, USA, (1993).
58.P. Hendra, C. Jones and G. Warnes, Fourier Transform Raman
Spectroscopy, Ellis Horwood Limited, England, (1991).
59.汪建民, “材料分析,” 中國材料科學學會, (1998)
60.鄭智文, “化學氣相沈積二氧化鈦薄膜及添加雜質之效應,” 國立成
功大學材料科學暨工程學系碩士論文, (1994)
61.C.-T. Wu and F.-H. Lu, (unpublished work)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔