跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/08 11:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許秀菁
研究生(外文):Hsiu-Ching Hsu
論文名稱:微量元素對AISI309不銹鋼銲料金屬之熱龜裂敏感性研究
論文名稱(外文):The Investigation on Hot Cracking Susceptibility of AISI Type 309 Filler Metal with Trace Elements
指導教授:吳威德吳威德引用關係
指導教授(外文):Weite Wu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:120
中文關鍵詞:309不銹鋼熱龜裂敏感性可調應變試驗沃斯田鐵系不銹鋼填料金屬BTR脆性溫度範圍
外文關鍵詞:AISI type 309 stainless steelhot cracking susceptibilityVarestraint testaustenitic stainless steelfiller metalBTRbrittle temperature range
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本研究主要在評估304不銹鋼銲接母材與309不銹鋼填料金屬之銲接熱龜裂敏感性,實驗上藉由AISI 309不銹鋼填料金屬中不同微量組成元素(C、S、Si及Al等)的改變,以觀察銲件銲道金屬之金相顯微組織變化、銲道及熱影響區(HAZ)之硬度分佈,並利用可調應變試驗(Varestraint Test)進行銲件之熱龜裂敏感性評估。
實驗過程中分別選用四種微量組成不同的309不銹鋼作為銲接填料金屬,並利用自動銲接機施行GTAW開槽式多道次銲接,銲接後的試片,一方面縱向截取銲道面觀察銲道金屬肥粒相的顯微結構分佈情形,並在銲道熱影響區與熔融區間進行硬度試驗分析。另一方面則是將銲道金屬施行可調應變銲接性試驗及銲接熱循環的量測。試驗後,觀察試片表面龜裂情形及熱循環曲線的製作,並由掃瞄式電子顯微鏡(Scanning Electronic Microscope, SEM)觀察龜裂的型態及龜裂破斷面銲道及熱影響區之組成分佈。並記錄下最大龜裂長度(Maximum crack length, MCL)或最大龜裂距離(Maximum crack distance, MCD)及總龜裂長度(Total crack length, TCL)。進而根據這些銲接性數據,來預測材料歷經銲接熱循環過程後的脆性溫度範圍(Brittle Temperature Range, BTR)。
實驗結果顯示含碳量較高之銲件其熱龜裂敏感性較大,銲道流動性佳且表面氧化情形較為嚴重;而根據可調應變銲接性能試驗評估出其龜裂數目相較其他309不銹鋼填料金屬為多,總龜裂長度最長,脆性溫度範圍最為寬廣,故對熱龜裂最為敏感。但銲道的熱龜裂型態,以產生銲道凝固龜裂為最多,其次為熱影響區液化龜裂,再其次則為銲道與熱影響區之低延性龜裂,EDS分析銲道有無被覆液態薄膜之凝固晶粒的結果發現C、S、Si及Al等元素在熱影響區有增加的趨勢。
Abstract
In this thesis, there was estimated hot cracking susceptibility of AISI Type 309 stainless steel filler metal welded on AISI Type 304 stainless steel base metal. By controlling and adjusting elements (example: C, S, Si, Al etc.) to AISI Type 309 stainless steel filler metal, that could observe microstructure and hardness analysis on welded material, and estimate hot cracking properties by using Varestraint Test.
In the experiment procedure, an automatic welding machine executed multi-pass GTAW (Gas Tungsten Arc Weld). Further, by observed the welded samples, it would inspect the delta ferrite distribution in the weld metal and did the hardness analysis between the HAZ and fusion zone of the weld. On the other hand, there could execute the Varestraint Test and measure the welding thermal cycles. After tests, the cracks of weld were observed, the thermal cycle curve of welding was measured, and the cracking types and the crack fracture morphologies were analyzed. After serial experiments, the maximum crack length (MCL), maximum crack distance (MCD), and total crack length (TCL) were recorded. According to the data of weldability, it would predict the brittle temperature range (BTR) for the materials in terms of weld thermal cycle.
In the experimental results, it shows that the weld metal with higher carbon content has higher hot crack susceptibility, better welding fluid flow, serious oxidization, wider BTR. From SEM observation, most of the cracks showed solidification cracking, the next is liquid cracking in HAZ, and then is ductile-dip cracking between weld and HAZ. The EDS analyzed found that carbon, silicon, sulfur, and aluminum elements segregated in the solidified grain with liquid film covered.
總目錄
中文摘要-------------------------------------------------------------------Ⅰ
英文摘要-------------------------------------------------------------------Ⅱ
誌謝-------------------------------------------------------------------------Ⅲ
圖目錄----------------------------------------------------------------------Ⅳ
表目錄----------------------------------------------------------------------Ⅶ
第一章 緒論-------------------------------------------------------------------------------------------1
第二章 文獻回顧-------------------------------------------------------------------------------------3
2.1 發展背景-------------------------------------------------------------------------------------3
2.2 異種金屬銲接-------------------------------------------------------------------------------5
2.2-1 影響異種金屬銲接接合因素----------------------------------------------------5
2.3 沃斯田鐵系不銹鋼-------------------------------------------------------------------------8
2.3-1 簡介----------------------------------------------------------------------------------8
2.3-2 沃斯田鐵不銹鋼之高溫熱龜裂-------------------------------------------------9
2.3-3 高溫熱龜裂之原理說明---------------------------------------------------------12
2.3-4 沃斯田鐵不銹鋼之金相顯微---------------------------------------------------31
2.3-5 成分對沃斯田鐵系不銹鋼銲道金屬的影響---------------------------------37
2.4 AISI 309不銹鋼-------------------------------------------------------------------------39
第三章 實驗項目與方法---------------------------------------------------------------------------41
3.1 實驗流程-----------------------------------------------------------------------------------41
3.2 實驗材料-----------------------------------------------------------------------------------42
3.2-1 銲接設計與方法------------------------------------------------------------------44
A. 不銹鋼多層銲接開槽式銲接設計------------------------------------------------44
B. 銲接設備操作與控制----------------------------------------------------------------49
3.3 實驗項目、分析與方法-------------------------------------------------------------------50
3.3-1 銲接製程---------------------------------------------------------------------------50
3.3-2 銲後檢驗與分析------------------------------------------------------------------50
A. 金相顯微分析------------------------------------------------------------------------50
B. 微小維氏硬度試驗-------------------------------------------------------------------51
C. 填料金屬之熔化—凝固溫度範圍測定-------------------------------------------51
D. 銲道金屬成分分析------------------------------------------------------------------53
E. 銲道δ-Ferrite量測--------------------------------------------------------------------53
F. 可調應變試驗之熱龜裂評估試驗-------------------------------------------------54
G. 可調應變試樣之龜裂型態觀察及分析-------------------------------------------55
H. 銲接熱循環的測定------------------------------------------------------------------55
第四章 結果與討論---------------------------------------------------------------------------------56
4.1 AISI 309填料金屬之差示熱分析-------------------------------------------------------56
4.2 AISI 309填料金屬銲後之化學成分----------------------------------------------------59
4.3 銲道金屬金相分析------------------------------------------------------------------------61
4.3-1銲道外觀觀察----------------------------------------------------------------------61
4.3-2不銹鋼多道次開槽銲接----------------------------------------------------------62
4.4 熱龜裂性評估試驗------------------------------------------------------------------------67
4.4-1 銲道熱龜裂之巨觀觀察---------------------------------------------------------67
4.4-2 銲接熱龜裂之金相顯微觀察---------------------------------------------------71
4.4-3 可調應變試驗之熱龜裂性評估------------------------------------------------74
4.4-4熱龜裂之SEM觀察及EDS分析------------------------------------------------81
4.5凝固脆性溫度範圍(BTR)的測定-------------------------------------------------------95
4.5-1 銲接熱循環冷卻速率之測定---------------------------------------------------95
4.5-2 銲接熱龜裂之金相顯微觀察--------------------------------------------------104
第五章 結 論---------------------------------------------------------------------------------------108
第六章 未來研究發展方向-----------------------------------------------------------------------110
第七章 參考文獻-----------------------------------------------------------------------------------111
附 錄A---------------------------------------------------------------------------------------------117
附 錄B---------------------------------------------------------------------------------------------118
附 錄 C ----------------------------------------------------------------------------------------------119
附 錄 D ---------------------------------------------------------------------------------------------120
圖目錄
圖2.3-1 金屬凝固中和凝固後之延性曲線。 -------------------------------------------------10
圖2.3-2 熱龜裂的種類及其發生的位置示意圖。 -------------------------------------------10
圖2.3-3 全沃斯田鐵不銹鋼銲道金屬之SEM凝固龜裂型態。----------------------------11
圖2.3-4 Inconel 690超合金銲道金屬之SEM液化龜裂示意圖。-------------------------11
圖2.3-5 銲接過程中熔池附近之變位行為示意圖。-----------------------------------------13
圖2.3-6 銲接凝固過程中溫度、微觀組織、延性及應變的發展過程示意圖。--------15
圖2.3-7 銲道金屬之各部位區域。-------------------------------------------------------------16
圖2.3-8 圖示說明假設相圖A-AxBy合金係的組成液化之非平衡固化過程。----------18
圖2.3-9 裂紋沿著晶界發展的過程。----------------------------------------------------------20
圖2.3-10 說明綜合理論的銲接凝固階段。----------------------------------------------------23
圖2.3-11 技術理論強度之延性/應變/溫度示意圖。-----------------------------------------25
圖2.3-12 Trans-varestraint test工作示意圖。------------------------------------------------27
圖2.3-13 溫度-時間之銲接循環示意圖。------------------------------------------------------29
圖2.3-14 Cr-Fe-Ni三元合金相圖。--------------------------------------------------------------31
圖2.3-15 60%、70%Fe含量之Cr-Ni二元相圖。---------------------------------------------32
圖2.3-16 Schaeffler組織圖。----------------------------------------------------------------------33
圖2.3-17 沃斯田鐵係不銹鋼之凝固固化型態(由Suutala提出)。----------------------34
圖2.3-18 沃斯田鐵係不銹鋼之凝固固化型態(由Katayama提出)。-------------------35
圖2.3-19 不銹鋼銲接金屬修正過之Schaeffler組織圖。-----------------------------------40
圖3.1-1 本研究之實驗分析流程圖。----------------------------------------------------------41
圖3.2-1 試片基座架設示意圖。----------------------------------------------------------------44
圖3.2-2 試片之開槽式多層銲接設計。--------------------------------------------------------44
圖3.2-3 (a)開槽式多層銲接順序
(b)可調應變試驗之加工試片尺寸。------------------------------------------------46
圖3.2-4 可調應變試驗機之構造圖。----------------------------------------------------------47
圖3.2-5 可調應變試驗機之工作示意圖。----------------------------------------------------48
圖3.3-1 微小維氏硬度之試片橫向測定位置。----------------------------------------------51
圖3.3-2 典型差示熱分析儀器構造圖。-------------------------------------------------------52
圖3.3-3 DTA溫度記錄圖顯示高分子聚合物所產生的反應變化類型。---------------53
圖3.3-4 試片經可調應變試驗後的表面龜裂分佈情形。----------------------------------54
圖3.3-5 銲接熱循環量測方法示意圖。--------------------------------------------------------55
圖4.1-1 AISI 309不銹鋼之DTA凝固過程曲線(a)Y309B。--------------------------------57
AISI 309不銹鋼之DTA凝固過程曲線(b)Y309LSi。-----------------------------57
AISI 309不銹鋼之DTA凝固過程曲線(c)Y309L1。-----------------------------58
AISI 309不銹鋼之DTA凝固過程曲線(d)Y309L。------------------------------58
圖4.3-1 銲件銲道外觀觀察。圖中填料金屬分別用(a)Y309B、(b)Y309LSi----------60
(c)Y309L1、(d)Y309L。-----------61
圖4.3-2 四種銲道金屬之頂層銲道、銲道中、及底層銲道金相顯微組織結構。--------64
圖4.3-3 銲道金屬之微小維氏硬度測定結果。-----------------------------------------------65
圖4.3-4 銲道δ-ferrite量測結果。---------------------------------------------------------------66
圖4.4-1 可調應變試驗之試片表面外觀。-----------------------------------------------------69
(銲接電流120A,應變量由左至右為5%,4%)
圖4.4-2 可調應變試驗之試片表面外觀。-----------------------------------------------------70
(銲接電流140A,應變量由左至右為5%,4%)
圖4.4-3 可調應變試驗試樣之龜裂表面金相顯微觀察。填料金屬
(a)Y309L1、(b)Y309B。----------------------------------------------------------------72
圖4.4-3 可調應變試驗試樣之龜裂表面金相顯微觀察。填料金屬
(c)Y309LSi、(d)Y309L。----------------------------------------------------------------73
圖4.4-4 可調應變試驗之銲材類別、銲接電流與總龜裂紋長度關係圖。
(a)應變量4%、(b)應變量5%。--------------------------------------------------------77
圖4.4-5 可調應變試驗之銲材類別、銲接電流與總龜裂紋數目關係圖。
(a)應變量4%、(b)應變量5%。--------------------------------------------------------78
圖4.4-6 可調應變試驗之銲材類別、熱龜裂發生位置與總龜裂紋長度關係圖。
(a)應變量4%、(b)應變量5%。--------------------------------------------------------79
圖4.4-7 可調應變試驗之銲材類別、熱龜裂發生位置與總龜裂紋數目關係圖。
(a)應變量4%、(b)應變量5%。-----------------------------------------------------80
圖4.4-8 可調應變試驗試片之SEM裂紋破裂型態觀察(Y309L1)。----------------------83
圖4.4-9 圖4.4-8之放大圖。----------------------------------------------------------------------84
圖4.4-10 Y309L1未被覆液態膜之晶粒(圖4.4-8之甲處)、(b)被液態膜被覆之晶粒
(圖4.4-8之乙處)破裂型態之EDS分析。-------------------------------------------85
圖4.4-11 可調應變試驗試片之SEM裂紋破裂型態觀察(Y309B)。----------------------86
圖4.4-12 圖4.4-11之放大圖。--------------------------------------------------------------------87
圖4.4-13 Y309B(a)未被覆液態膜之晶粒(圖4.4-11之甲處)、
(b)被液態膜被覆之晶粒(圖4.4-11之乙處)破裂型態之EDS分析。-----------88
圖4.4-14 可調應變試驗試片之SEM裂紋破裂型態觀察(Y309LSi)。---------------------89
圖4.4-15 圖4.4-14之放大圖。---------------------------------------------------------------------90
圖4.4-16 Y309LSi(a)未被覆液態膜之晶粒(圖4.4-11之甲處)、(b)被液態膜被覆之晶
粒(圖4.4-11之乙處)破裂型態之EDS分析。---------------------------------------91
圖4.4-17 可調應變試驗試片之SEM裂紋破裂型態觀察(Y309L)。------------------------92
圖4.4-18 圖4.4-17之放大圖。---------------------------------------------------------------------93
圖4.4-19 Y309L(a) 未被覆液態膜之晶粒(圖4.4-11之甲處)、(b)被液態膜被覆之晶
粒(圖4.4-11之乙處)破裂型態之EDS分析。---------------------------------------94
圖4.5-1 可調應變試驗之Y309L1試樣之(a)銲接熱循環曲線、
(b)峰值溫度-1300℃區間放大圖。(銲接電流120A)----------------------------- 96
圖4.5-2 可調應變試驗之Y309B試樣之(a)銲接熱循環曲線。
(b)峰值溫度-1300℃區間放大圖。(銲接電流120A)------------------------------97
圖4.5-3 可調應變試驗之Y309LSi試樣之(a)銲接熱循環曲線、
(b)峰值溫度-1300℃區間放大圖。(銲接電流120A)------------------------------98
圖4.5-4 可調應變試驗之Y309L試樣之(a)銲接熱循環曲線、
(b)峰值溫度-1300℃區間放大圖。(銲接電流140A)------------------------------99
圖4.5-5 可調應變試驗之Y309L1試樣之(a)銲接熱循環曲線、
(a)峰值溫度-1300℃區間放大圖。(銲接電流140A)---------------------------- 100
圖4.5-6 可調應變試驗之Y309B試樣之(a)銲接熱循環曲線。
(b)峰值溫度-1300℃區間放大圖。(銲接電流140A)----------------------------101
圖4.5-7 可調應變試驗之Y309LSi試樣之(a)銲接熱循環曲線、
(b)峰值溫度-1300℃區間放大圖。(銲接電流140A)----------------------------102
圖4.5-8 可調應變試驗之Y309L試樣之(a)銲接熱循環曲線、
(b)峰值溫度-1300℃區間放大圖。(銲接電流140A)----------------------------103
表目錄
表2-1 綜合各家學說之沃斯田鐵系不銹鋼固化過程與顯微型態關係之歸納。-------- 36
表2-2 沃斯田鐵系不銹鋼在傳統銲接方法下的凝固固化模式。-------------------------- 36
表3-1 實驗材料之化學組成成分。------------------------------------------------------------- 42
表3-2 世界符合標準規範之309型不銹鋼。-------------------------------------------------43
表3-3 AISI 309不銹鋼之機械與物理性質。------------------------------------------------- 43
表3-4 AISI 304不銹鋼之機械與物理性質。 ------------------------------------------------43
表3-5 不銹鋼開槽式多層銲接之銲接參數。-------------------------------------------------45
表3-6 Varestraint Test之銲接參數設計。------------------------------------------------------45
表4-1 AISI 309不銹鋼填料金屬銲接前後之化學組成成分。--------------------------- 59
表4-2 AISI 309不銹鋼填料金屬銲接前後之凝固類型預測。---------------------------- 60
表4-3 AISI 309不銹鋼可調應變試驗後試樣之最大龜裂長度及距離統計表(一)。---76
表4-4 AISI 309不銹鋼可調應變試驗後試樣之最大龜裂長度及距離統計表(二)。---76
表4-5 各試樣熱循環曲線分析後之彙整表。--------------------------------------------------95
表4-6 AISI 309不銹鋼之凝固脆性溫度範圍(BTR)測定結果。--------------------------105
【1】. 中國材料學會, ”鋼鐵材料手冊,” 新竹, 第195-204頁, 民87年七月.
【2】. 周長彬、蔡丕樁, “銲接學,” 全華書局, 第198-202頁, 民86年五月.
【3】. J.K. Brimacombe and K. Sorimachi, “ Crack formation in the Continuous
Casting of Steel,” Metallurgical Transactions, Vol.8, pp.489-505, Sept. 1977.
【4】. Wangen Lin and John C. Lippold, “ Weldability Testing of Inconel Filler
Materials,” Edison Welding Institute Report, Columbus, Ohio, U.S.A., pp.1-11, December, 1992.
【5】. 陳宏志, “銲接結構強度學,” 復文圖書出版社, 高雄, 第358-361頁,民84年
三月.
【6】. 林旺恩, “銲接熱裂紋探討,” 機械月刊, 第二十卷, 第三期, 165-172頁,民83.
【7】. Wangen Lin and John C. Lippold, “ Weldability Testing of Inconel Filler
Materials,” Edison Welding Institute Report, Columbus, Ohio, U.S.A., pp.14-37, December, 1992.
【8】. J.A. Brooks and F.J. Lambert, “ The Effects of Phosphorus, Sulfur and Ferrite
content on Weld Cracking of Type 309 Stainless Ssteel,” Welding Journal, pp.139s-143s, 1978.
【9】. H.Y. Han, Z. Sun, “ Development of Welding Wire for High Purity Austenitic
Stainless Steels,” Welding Research, pp.38s-44s, Feburary 1999.
【10】. 黃祺祥、陳宏志, “不銹鋼銲接研究之探討(Ⅰ),” 銲接與切割,第八卷,
第一期,第40-50頁,民87年一月.
【11】. 黃振賢, “機械材料,” 文京圖書出版社,第119-120頁,民80年十月.
【12】. 劉中青,劉凱編著, “異種金屬銲接技術指南,” 機械工業出版社, 北京,
第75-91頁, 民86年八月.
【13】. C. Zapffe, “ Stainless Steel,” American Society of Metals, Cleveland, Ohio,
pp.132-145, 1949.
【14】. AWS, “Dissimilar Metal,” ASM Handbook: Welding:Brazing and Soldering,
Vol.6, pp.823-829, 1968.
【15】. J.J. B Rutherford., “ Welding Stainless Steel to Carbon or Low Alloy Steel,”
Welding Journal, Vol.38, No.1, pp.19-26, Jan., 1959.
【16】. G.R. Pease. and H.B. Bott, “ Welding High Nickel Alloys to other Metals,”
Welding Journal, Vol.29, No.1, p19-26, Jan., 1950.
【17】. Günther Rabensteiner, Ernst Perteneder, Heinz Schabereiter, and Josef Tösch,
“ Welding Metalurgy of Stainless Steel,” Springer-Verlag Wien New York,
pp.144-171, 1987.
【18】. P. Marshall, “Austenitic Stainless Steels Microstructure and Mechanical
Properties,” Elsevier Applied Science, New York, pp.1-44, 1984.
【19】. J.A. Brooks., A.W. Thompson and J.C. Williams, ”A Fundamental Study of the
Beneficial Effects of Delta Ferrite in Reducing Weld Cracking,” Welding Journal, 5th, pp.71-83S, 1984.
【20】. 陳宏志, “銲接結構強度學,” 復文圖書出版社, 高雄, 第358-361頁, 民84年
三 月.
【21】. F. Mastuda, “ Hot Crack Susceptibility of Weld Metal,” Advances in Welding
Metallurgy, JWS, pp.19-34, 1990.
【22】. 姜志華,蔡金峰,”銲接冶金概論,”徐氏基金會,民76年8月.
【23】. 陳宏志, “銲接結構強度學,” 復文圖書出版社, 高雄, 第358-361頁, 民84年
三月.
【24】. 蔡政宏, “690合金銲件之熱龜裂敏感性研究,”高雄工學院料科學與工程
研究所,民86年七月.
【25】. Günther Rabensteiner, Ernst Perteneder, Heinz Schabereiter, and Josef Tösch,
“ Welding Metalurgy of Stainless Steel,” Springer-Verlag Wien New York,
pp.144-171, 1987.
【26】. Günther Rabensteiner, Ernst Perteneder, Heinz Schabereiter, and Josef Tösch,
“ Welding Metalurgy of Stainless Steel,” Springer-Verlag Wien New York, pp.147, 1987.
【27】. 蔡政宏, ”690合金銲件之熱龜裂敏感性研究,”高雄工學院材料科學與工
程研究所,第108頁,民86年七月.
【28】. 陳宏志, “銲接結構強度學,” 復文圖書出版社, 高雄, 第362-365頁, 民84年
三月.
【29】. Wangen Lin and J.C. Lippold, “ Weldability Testing of Inconel Filler
Materials,” Edison Welding Institute Report, Columbus, Ohio, U.S.A., pp.1-11, December, 1992.
【30】. W.A.Ⅲ Baselack, and D. E. Nelson, “ Morphology of Weld Heated-Affected
Zone Liquation Cracking in Ta-Modified Cast Alloy 718,” Metallography,
Vol.23, No.3, pp.219-229, 1986.
【31】. B.L. King, “ Weld Metal and Heat Affected Zone Cracking in the Weld Heat
Affected Zone of Austenitic Stainless Steels,” Trans. JWS, Vol.4, No.1, pp.30-42, 1966.
【32】. 鄭伊洛, ”銲接破裂與防止(一)--高溫破裂,” 銲接與切割,第三卷,第一期,
第51-65頁,民82年一月.
【33】. Wangen Lin and J.C. Lippld, “ Weldability Testing of Inconel Filler Materials
to WestingHouse Electric Corporation,” Edison Welding Institute, December
1992.
【34】. B. Hemsworth, T. Bonizewski, and, N.F. Eaton, “ Classfication and Definition of
High Temperature Welding Cracks in Alloys,” Metal Construction and British
Welding Journal, Vol.36, No.7, 1969.
【35】. W.F. Savage, and B.M. Krantz, “An Iinvestigation of Hot Cracking in Hastelloy
X, ” Welding Jouurnal, Vol.31, No.1, pp.13s-25s, 1966.
【36】. J.A. Brooks, “Effect of Alloy Modifications on HAZ Cracking of A-286
Stainless Steel,” Welding Journal, Vol.53, No.11, pp.517s-523s, 1974.
【37】. W. Yenisavich, “A Correlation of Ni-Vr-Fe Alloy Weld Metal Fissuring with Hot
Ductility behavior,” Welding Journal, Vol.45, No.8, pp.334s-356s, 1966.
【38】. V.P. Kujanpää, S. A. David, and C. L. White,”Characterization of Heat-Affected
Zone Cracking in Austenitic Stainless Steel Welds,” Welding Journal, Vol.66,
No.8, pp.221s-229s, 1987.
【39】. R.D. Thomas, “ HAZ Cracking in Thick Sections of Austenitic Stainless Ssteel,”
Part Ⅰ:Welding Journal, Vol.63, No.12, pp.24s-32s, PartⅡ: Welding Journal,
Vol.63, No.12, pp.355s-368s, 1984.
【40】. A.D. Romig, J. C. Lippold, and M. J. Ciesiak, “An analytical EElectron
Microscope Iinvestigation of the Phase Transformations in a Simulated Hheat-Affected Zone in Alloy 800,” Materials Transformation, Vol.19A, No.1, pp.35-50, 1988.
【41】. W.F. Savage, “ Solidification, Segregation and Weld Iimperfections,” Welding in
the World, Vol.18, No5, pp.89-114, 1980.
【42】. P.G.. Shewmon, “Diffusion in Solids,” The Minerals, Metals and Materials
Society, Warrendale, Pennesylvania, 2nd edition, pp.189-208,1989.
【43】. W.F. Savage, E. F. Nippes and T. W. Miller, “ Microsegregation in Partially
Melted Regions of 70Cu-30Ni weldments,” Welding Journal, Vol.55, No.7, pp.181s-187s, 1976.
【44】. J.J. Pepe, and W.F. Savage, “ Effects of Constitutional Liquation in 18-Ni
Maraging Steel Weldments”, Welding Journal, Vol.46, No.8, pp.411s-42s, 1967.
【45】. H. Tamura, and T. Watanabe, “ Mechanism of liquation cracking in the weld
heat-affected zone of austenitic stainless steel,” Trans. JWS, Vol.4, No.1, pp.30-42, 1973.
【46】. A.A. Griffith, “ The Phenomena of rupture and flow in solids,” Phil. Trans. Roy.
Soc., A221, pp.163-198, 1920.
【47】. R. Ebroalt, and P. Gregory, “ The mechanism of embrittlement by a liquid
phase,” Journal of the Institute of Metals,Vol.84, pp.88-90, 1955-1956.
【48】. B. I. Medovar, “On the nature of the weld hot cracking,” Avtom. Svarka, Vol.7,
No.3, pp.12-28,1954.
【49】. W.R. Apblet, and W.S. Pellinni, “Factors which influence weld hot cracking,”
Welding Journal, Vol.32, No.2, pp.83s-90s, 1954.
【50】. J.C. Borland, “ Generalized theory of supper-solidus cracking in weld and
casting,” British Welding Journal,Vol.7, No.8, pp.508-512, 1961.
【51】. N.N. Prokhorov, “ The technological strength of metals while crystallising
during welding,” Welding Production,Vol.9, No.4, 1962.
【52】. J.A. Brooks, A.W. Thompson and J.C. Williams, “A fundamental study of the
beneficial effects of delta ferrite in reducing weld cracking,” Welding Journal, Vol.63. No.3, pp.71s-83s, 1984.
【53】. T. Senda Matsuda, F. Takano, G. Watanabe, i T.K. Kobayash, and Matsuzaka, T.,
“Fundamental investigations on solidification crack susceptibility for weld metals with Transvaresstraint test,” Trans. JWS, Vol.2, No.2, pp.1-22, 1971.
【54】. C.C. Chen, “Evulation of weld solidification cracking in aluminum alloys
Al-2219 and Al-2090 using the Gleeble 1500 system,” Ph.D. Thesis, The Ohio State University, Clumbus, Ohio, 1991.
【55】. B.F. Yakushin, N.N. prokforov, and N.N. Novikov, “ Amachine for
determining the susceptibility of metals to hot cracking during welding,” Automatic Welding, No.10, 1970.
【56】. G. Rebensteiner, J. Tosch, , and H. Schabereiter, “ Hot cracking problems in
different fully austenitic weld metals,” Welding Journal, Vol.62, No.1, pp. 21s-27s1983.
【57】. B.F. Yakushin, “ Reliability of technical strength criteria and testes for metals
solidifying after welding,” Welding Production, Vol.18, No.6, pp.17-22, 1971.
【58】. F. Matsuda, H. Nakagawa, , and K. Sorada, “ Dynamic observation of
solidification and solidification cracking during welding with optical microscope,” Trans. JWRI, Vol.11, No.2, pp.67-77, 1982.
【59】. W.A.Ⅲ Baselack and J.C. Lippold, “ Evaluation of weldability testing
techniques,” Proceedings of EWI Annual North American Welding Research Seminar on The influence of New Materials Developments on Weldability, Columbus, Ohio, 1987.
【60】. J.C. Borland, and J.H. Rpgerson, “ Examination of the patch test foe assessing
hot cracking tendencies of weld metal,” British Welding Journal, Vol.9, No.7, pp.494s-499s, 1962.
【61】. P.T. Houldcroft, “A simple cracking test for use with argon arc welding,”
British Welding Journal, Vol.2, No.10, pp.471-475, 1955.
【62】. G.M. Goodwin, “ Development of a new hot-cracking test-The Sigmajig,”
Welding Journal, Vol.66, No.2, pp.33s-38s, 1987.
【63】. C.D. Lundin, and C .P.D. Chow, “ Hot cracking susceptibility of austenitic
stainless steel weld metals,” Welding Research Council, Bulletin No.289, 1983.
【64】. H. Tamura, N. Kato, S. Ochiai, and Y. katagiri, “ Cracking study of aluminum
alloys by the variable tensile strain hot cracking test,” Trans. JWS, Vol.8, No.2, pp.63-69, 1977..
【65】. J.C. Borland, “Generalized theory of super-solids cracking in welds (and
casting),” Brit. Welding Journal, Vol.7, No.8, pp.508-512, 1960.
【66】. W.F. Savage, and C.D. Lundin, “The Varestraint Test,” WRC Bulletin 280,
pp.433s-442s., 1982.
【67】. R. Mehrabian, “rapid solidification,” Internation Metals Review, Vol.27, No.4,
pp.185-208, 1982.
【68】. C.D. Lundin, W.T. Delong and D.F. Spond, “The Fissure bend test,” Welding
Journal, pp.145s-151s, 1976.
【69】. G.M. Goodwin, “Development of a new hot cracking test—the Sigmajig,”
Weldling Journal, pp.33s-38s, 1987.
【70】. C.D. etal. Lundin, “The Varestraint Test,” WRC Bulletin 280, 1982.
【71】. B.F. Dixon and R.H. Phillips, “Cracking in the trans-varestraint test:part 1-a
new procedure for assessment of cracking,” Metal construction, pp.86-90, 1984.
【72】. B.F. Dixon and R.H. Phillips, “Cracking in the trans-varestraint test:part 2-The
pattern of solidification cracking,” Metal construction, pp.154-160, 1984.
【73】. B.F. Dixon and R.H. Phillips, “Cracking in the trans-varestraint test:part
3-Fractography,” Metal construction, pp.232-237, 1984.
【74】. C.D. Lundin and C.P.D. Chou, “Fissuring in the “Hazard HAZ” region of
austenitic stainless steel welds,” Welding Journal, pp.113s-118s, 1985.
【75】. W.T. Delong and G.A. Ostrom, “Measurement and calculation of ferrite in
stainless steel weld metal,” Welding Journal, pp.521s-528s, 1956.
【76】. F.C. Hull, “Delta ferrite and martensite formation in stainless steels,” Welding
Journal, pp.193s-203s, 1973.
【77】. O. Hammer and U. Svesson, “solidification and casting of metals,” pp.401-410,
1979.
【78】. C.D. Lundin, W.T. Delonng, and D.F. Spond, “Ferrite-fissuring relationship in
austenitic stainless steel weld metals,” Welding Journal, pp.241s-246s, 1975.
【79】. J.A. Brooks and F. J. Lambert, “The effects of phosphorus, sulfur and ferrite
content on weld cracking of type 309 stainless steel,” Welding Journal, pp.139s-143s, 1978.
【80】. F. etal. Matuda, “a new explanation for role of delta ferrite improving weld
solidification cracking susceptibility in austenitic stainless steel,” transaction of JWRI, No.1, pp.105-112, 1979.
【81】. J. A. Brooksw “Weldability of hogh N, high Mn austenitic stainless steel,”
Welding Journal, pp.189s-195s, June 1975.
【82】. F. Matsuda, S. Katayama, and Y. Arata, “Solidification crack susceptibility in
weld metals of fully austenitic stainless steels (report V)-solidification crack susceptibility and amount of phosphide and sulphide in SUS 310s weld metals,” Trensaction of JWRI, Vol.10, No.2, pp.73-84, 1981.
【83】. E.D. Hondros, and M.P. Seah, “Segrgation to interfaces,” International Metals
Reviews, Vol.12, No.222, pp.262-01, 1977.
【84】. D.S. Duvall and W.A. Owczarski, “Technocal note:Behavior of solute at mobile
heat affected zone grain boundaries,” Welding Journal, Vol.45, No.8, pp.356s-384s, 1966.
【85】. P.G.. Shewmon, “Doffusion in solids,” The Minerals, Metals and Materials
Society, Warrendale, Pennesylvaia, 2nd edition pp.189-208, 1989.
【86】. J.F. King and R.W.Jr. Reed, “ Weldability testing of alloy 800,”
ORNL/TM-6276, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
【87】. S.J. Matthew and W. F. Savage, “Heat affected zone infiltration by dissimilar
liquid weld metal,” Welding Journal, Vol.50, No.4, pp.174s-182s, 1971.
【88】. W.F. Savage, E.P. Nippes and M.C. Mushala, “Copper contamination cracking
in the weld heat affected zone,” Welding Journal, vol.57, No.5, pp.145s-152s, 1978.
【89】. W.F. Savage, E.P. Nippes and M.C. Mushala, “Liquid-metal embrittlement of
the heat affected zone by copper contamination,” Welding Journal, Vol.57, No.8, pp.237s-245s., 1978.
【90】. J.C. Lippold, “An Investigation of Heat –Affected Zone Hot Cracking in Alloy
800,” Welding Journal, pp.1s-11s, January 1983.
【91】. Carel D. Lundin, “The Varestraint Test,” WRC Bulletin 280, August 1982.
【92】. C.D. Lundin, A.C. Lingenfelter, G..E. Grotke, G.G. Lessmann and S. J .
Mathews, “The varestraint Test,” Welding Research Council, Bulletin No.280, 1982.
【93】. B.Dixon, “Tests for weld metal solidification cracking- A review,” Australian
Welding Journal, No.2, pp.16-22, 1983.
【94】. C.D. Lundin, C.Y. P. Qiao, and C.H. Lee, “Standardization of Gleeble hot
ductility testing,” PartⅠ:Historical review, pp.1-8, PartⅡ:Experimental evaluation, pp.9-22, Weldability of Materials, eds .R. A. Patterson and K.W. Mahin, ASM International, Materials Park, Ohio., 1990.
【95】. Private Communcation with David O’donnell, Inco Alloys international, Inc.
Huntigton, Wedt Virginia, 1989.
【96】. T.G. Gooch and J. Honeycombe, “Welding variables and microfissuring in
austenoitic stainless steel weld meta,” Weldng Journal, Vol.59, No.8, pp233s-241s, 1980.
【97】. C.D. Lundin C.P.D. Chou and C.J. Sullivan, “ Hot cracking resistance of
austenitic stainless steel weld metal,” Welding Journal, Vol.60, No.8, pp.226-232s, 1980.
【98】. H. Muesch, “Welding of Materials TP 347 mod.,” Technical Report of
Mannesmann Research institute, Duisburg, West Germany.
【99】. L.K. Poole, “the incidence of Cracking in welded Type 347 steels,” Welding
Journal, Vol.32, No.8, pp.403s-412s, 1953.
【100】. N.F. Gittos and M.H. Scott, “Heat-affected zone cracking of Al-Mg-Si alloys,”
Welding Journal, Vol.60, No.6, pp.95s-103s, 1981.
【101】. R.H. Dudley, “An experimental investigation of the constitutional liquation
hypothesis,” Ph.D. Thesis, Rensselaer Polytechnic institute, Toy, New York., 1962.
【102】. A.H. Aronson, “Constitutional liquation in the iron-iron carbide system,” M.S.
Thesis, Rensselaer Polytechnic institute, Toy, New York., 1963.
【103】. F.C. Hill, “Effect of Delta Ferrite on Hot Cracking of Stainless Steel,” Welding
Journal, Vol.52, No.5, pp,193s-203s, 1973.
【104】. 姜志華,蔡金峰,”銲接冶金概論,”徐氏基金會,民76年8月.
【105】. 陳皇鈞, “材料科學與工程,” 曉園出版社, 第323-335頁, 1986.
【106】. 劉增豐等著, “材料工程實驗與原理,” 先登出版社, 第446至459頁, 1988.
【107】. AWS, “Welding Handbook,” Welding Processes, 8th Edition, Vol.2, pp.75-89,
1991.
【108】. F. etal Matuda, “a new explanation for role of delta ferrite improving weld
solidification cracking susceptibility in austenitic stainless steel,” transaction of JWRI, No.1, pp.105-112, 1979.
【109】. 陳宏志, “銲接結構強度學,” 復文圖書出版社, 高雄, 第362-365頁,
民84年三月.
【110】. 呂明賢、王文樑, “銲接產業概況,” 金工雙月刊,第26卷,第3期,第32-39
頁,民81年五月
【111】. E.L. Hall, C.L. Briant, “Chromium Depletion in the Vicinity of carbides in
Sensitized Stainless Steels,” Metallurgy Transaction, 15A, pp.793-811, 1984.
【112】. S. A. David, “Ferrite morphology and variations in ferrite content in austenitic
stainless steel weld,” Welding Journal, pp.63s-71s, April 1981.
【113】. W.T. Delong and G..A. Ostrom, “Measurement and calculation of ferrite in
austenitic stainless steel weld metal,” Welding Journal, pp.521s-528s, November 1956.
【114】. 林永吉, “沃斯田不銹鋼MIG銲接金屬銲道性質研究,” 交通大學機械研究
所,民84年三月。
【115】. J.A. Brooks, A.W. Thompson and J.C. Williams, “A fundamental study of the
beneficial effects of delta ferrite in reducing weld cracking,” Welding Journal, Vol.63. No.3, pp.71s-83s, 1984.
【116】. 蔡政宏,”690合金銲件之熱龜裂敏感性研究,”高雄工學院料科學與工程
研究所,民86年七月.
【117】. E.D. Hondros, and M.P. Seah, “Segrgation to interfaces,” International Metals
Reviews, Vol.12, No.222, pp.262-01, 1977.
【118】. B.F. Yakushin, N.N. prokforov, and N. N. Novikov, “Amachine for
determining the susceptibility of metals to hot cracking during welding,” Automatic Welding, No.10, 1970.
【119】. K.F. Krysiak, “Welding Behavior of Ferrite Stainless Steel –An Overview,”
Welding Journal Vol.65, No.4, pp.37-41, 1986.
【120】. J.N. DuPONT, “Microstructural Development and Solidification Cracking
Susceptibility of Stabilized Stainless Steel,” Welding Research Supplement,
Vol.78, No.7, pp253s-263s, July 1999.
【121】. S. Askura M. Nihei, “Weldability of high strength martensitic steels,” Journal of
Janpan Weld Society, No.50, pp.49-56, 1981.
【122】. J.N. DuPONT, “Microstructural Development and Solidification Cracking
Susceptibility of Stabilized Stainless Steel,” Welding Research Supplement,
Vol.78, No.7, pp253s-263s, July 1999.
【123】. Wang-en Lin, J.C. Lippold, and W.A. Baeslack III, “An Evaluation of Heat-
Affected Zone Liquation Cracking Susceptibility, Part 1: Development of a
Method for Qtantification,” Welding Research Supplement, Vol..72, No. 4,
pp.135s-153s, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top