(34.237.124.210) 您好!臺灣時間:2021/02/25 18:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張正彥
研究生(外文):Chen Yen Chang
論文名稱:錫-鋅-銅界面反應與微結構分析
論文名稱(外文):Ineterfacial Reactions and Microstructural Analysis of the Sn-Zn-Cu System
指導教授:薛富盛薛富盛引用關係
指導教授(外文):F. S. Shieu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:88
中文關鍵詞:無鉛銲錫
外文關鍵詞:lead-free
相關次數:
  • 被引用被引用:1
  • 點閱點閱:321
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
本研究藉由X光繞射分析儀(XRD)、掃描式電子顯微鏡(SEM)和場發射掃描式電子顯微鏡(FE-SEM)等儀器分析Sn(塊材)/Zn板、Zn(電鍍)/Cu板、Sn(電鍍)/Zn(電鍍)/Cu板和共晶Sn-9Zn/Cu板於蟻酸氣氛中,在溫度為200、250和300℃、時間為5、30分鐘熱處理條件下界面反應與微結構分析,作為無鉛Sn-Zn在未來電子構裝中使用的參考。
Sn(塊材)/Zn板在溫度為300℃、時間為5分鐘浸漬熱處理後,片狀之Zn與共晶Sn-9Zn層狀組織分佈於原Sn中。Zn(電鍍)/Cu板在溫度為200、250及300℃時間為5分鐘熱處理後,界面處生成γ-Cu5Zn8介金屬相。Sn(電鍍)/Zn(電鍍)/Cu板在溫度為200、250與300℃、時間為5分鐘熱處理後,Cu擴散到原電鍍之Zn層反應形成γ-Cu5Zn8介金屬相,當熱處理溫度上升至300℃時,發現Sn擴散進入Cu-Zn介金屬相中取代部份Cu原子位置,使得原γ-Cu5Zn8介金屬相轉變成γ-(Cu1-XSnX)5Zn8介金屬相結構,而且隨著熱處理溫度上升,介金屬相顆粒變大,粒徑分布不一。
Sn-9Zn/Cu板試片於蟻酸氣氛下,在溫度為250℃、300℃時間為5分鐘和溫度為300℃時間為30分鐘浸漬熱處理後,界面處形成γ-Cu5Zn8介金屬相,隨著溫度與時間增加厚度增加。

Interfacial reactions and microstructural analysis of the Sn/Zn and Zn (electroplated)/Cu binary systems, and Sn (electroplated)/Zn (electroplated)/Cu, and Sn-9Zn/Cu ternary systems upon heat treatment at 200, 250, and 300℃ for 5 and 30 min in formic acid atmosphere are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and field-emission scanning electron microscopy (FE-SEM).
In the case of the Sn/Zn system, the result shows that Zn dissolves into Sn and forms an eutectic layered structure, upon heat treatment of the specimen at 300℃for 5 min; whereas in the system of Zn (electroplated)/Cu, a new intermetallic compound, γ-Cu5Zn8, was formed at the Zn/Cu interface upon annealing at 200, 250, and 300℃ for 5 min. In the Sn (electroplated)/Zn (electroplated)/Cu ternary system heat-treated at 200℃、250℃and 300℃for 5 min, it is observed that Cu diffuses into the Zn layer and forms theγ-Cu5Zn8 intermetallic phase. As the heat treatment temperature was raised to 300℃, it is found that Sn diffuses into the Cu5Zn8 layer and a (Cu1-x Snx)5Zn8 phase was produced. In contrast, only theγ-Cu5Zn8 phase is detected in the Sn-Zn/Cu ternary system for the specimens heat-treated at 250 and 300℃ for 5 and 30 min, and the thickness of the intermetallic layer increases with temperature and annealing time.

目錄
中文摘要………………………….…………… Ⅰ
英文摘要……………………………….. Ⅱ
目錄……………………………………….….……….. Ⅲ
圖目錄…………………………….………….….. Ⅶ
表目錄………………………………………………… Ⅹ
第一章 緒 論…………………………….…………… 1
1.1前言.…..…………………………………………….. 1
1.2研究動機與目的……………………...………………. 3
第二章 文獻回顧與理論背景…………………………… 10
2.1 Sn-Pb合金銲錫簡介………………………………….. 10
2.2 Sn-9Zn無鉛銲錫(Lead-free Solder)簡介……………….. 11
2.2.1 Sn、Zn和Cu基本性質………………. 11
2.2.2 Sn-Zn相圖…………………………….……..…….. 11
2.2.3 電化學性質……………….…..……… 12
2.2.4 氧化物性質 12
2.3界面反應( Interface Reaction)……………… 13
2.3.1 Sn/Cu界面反應…………….. 13
2.3.2 Zn/Cu界面反應……… 13
2.3.3 Sn-9Zn合金銲錫與Cu界面反應. 14
2.4介金屬IMC熱力學性質(Thermodynamic Data )…… 15
2.5 相平衡之計算 16
2.6電鍍(Plating)…………………………………………………. 17
2.7無助銲劑軟銲(Fluxless Soldering)……………………… 18
第三章 實驗步驟與方法…………………………… 27
3.1 Cu、Zn和Sn試片規格與前處理………………………………. 27
3.1.1 Cu板規格與前處理……………………. 27
3.1.2 Zn板規格與前處理…………………………………… 27
3.1.3 Sn棒規格與前處理……………………………………. 27
3.2 電鍍液組成與電鍍設備……………………………………… 28
3.2.1 Zn和Sn電鍍液的組成………………………… 28
3.2.2 電鍍設備……………………………… 28
3.2.3 熱處理設備………………… 28
3.3 實驗流程………………………………………………... 30
3.3.1 Zn(電鍍)/Cu板界面反應………………………. 30
3.3.2 Sn(塊材)/Zn板界面反應……………………… 30
3.3.3 Sn(電鍍)/Zn(電鍍)/Cu板界面反應……………. 30
3.3.4 Sn-9Zn/Cu板界面反應 31
3.4 X-光繞射儀(Diffractometer)……………………...……… 32
3.5 掃描式電子顯微鏡(Scanning Electron Microscope, SEM)… 33
3.6 場發射掃描式電子顯微鏡(FE-SEM)…………………. 34
第四章 結果與討論………………………….………………. 38
4.1 Zn(電鍍)/Cu板界面反應……………………… 38
4.2 Sn(塊材)/Zn板界面反應....…………………………… 38
4.3 Sn(電鍍)/Zn(電鍍)/Cu板界面反應………………….. 39
4.3.1 XRD分析結果……………………………………. 39
4.3.2 SEM分析結果………………………… 39
4.3.3 蟻酸氣氛下,200℃、5分鐘熱處理… 40
4.3.4 蟻酸氣氛下,250℃、5分鐘熱處理… 41
4.3.5 蟻酸氣氛下,300℃、5分鐘熱處理… 42
4.4 Sn-9Zn/Cu板界面反應 44
4.4.1 Sn-9Zn共晶銲料 44
4.4.2 Sn-9Zn/Cu板界面反應 44
第五章 結論…………………………………… 78
參考文獻…………………………. 79

[1] R. R. Tummala, E. J. Rymaszewski and A. G. Klopfenstein, Microelectronics Packaging Handbook, McGraw-Hill., 1989, pp.20-32.
[2] 林光隆,電子構裝覆晶接合銲錫隆點材料及製程, Chinese Journal of Materials Science, Vol. 31, No.3, 1999, pp. 153-159.
[3] T. Kawanobe, K. Miyamoto, and Y. Inaba, Solder bump fabrication by electrochemical method for flip chip inter-connection, IEEE, 1981, pp. 149-155.
[4] L. F. Miller, Controlled Collapse Reflow Chip Joining, IBM J. Res. Develop., Vol. 13, No. 3, 1969, pp. 239-250.
[5] D. Napp, Lead-free interconnect materials for the electronics industry, in: Proceedings of the 27th International SAMPE Technical Conference, Albuquerque, NM, 9-12 October 1995, p. 342.
[6] Environmental Protection Agency, National Air Quality and Emission Trend Report, 1989, EPA-450/4-91-003, Research Triangle Park, NC, 1991.
[7] 邱國展, 電子材料之綠色風潮, 工業材料雜誌, 170期, pp. 110-117.
[8] J. H. Vincent, B. P. Richards, Alternative solders for electronics assemblies, Circuit World, Vol. 19, No. 3, 1993, p. 33.
[9] C. J. Thwaites, Soft Soldering Handbook, International Tin Research Institute, Publication No. 533, 1977.
[10] F. Hua, J. Glazer, Lead-free solders for electronic assembly, design and reliability of solders and solder interconnections, in: R.K. Mahidhara, D.R. Frear, S.M.L. Sastry, K.L. Liaw, W.L. Winterbottom (Eds.), The Minerals, Metals and Materials Society, 1997, pp. 65-74.
[11] J. Glazer, Metallurgy of low temperature Pb-free solders for electronic assembly, Int. Mater. Rev., Vol. 40, No. 2, 1995, pp. 65-93.
[12] K. Tojima, Wetting Characteristics of Lead-free Solders, Senior Project Report, Materials Engineering Department, San Jose State University, May 1999.
[13] ASM International, Electronic Materials Handbook, Vol. 1, Packaging, Materials Park, OH, 1989, p.58.
[14] T. P. Vianco, Development of alternatives to lead-bearing solders, in: Proceedings of the Technical Program on Surface Mount International, 19 August-2 September 1993, San Jose, CA.
[15] R. E. Reed-Hill, Physical Metallurgy Principles, PWS Publishing Company, Massachusetts, 1994, pp. 306-307.
[16] Mulugeta Abtewa, Guna Selvaduray, Lead-free Solders in Microelectronics, Materials Science and Engineering, Vol. 27, 2000, pp. 95-141.
[17] P. Walker and W. H. Tarn, CRC Handbook of Metal Etchants, CRC Press, 1991, pp.1241-1329.
[18] Z. Moser, J. Dutkiewicz, W. Gasior and J. Salawa, Binary Alloy phase Diagram, Vol. 3, ASM International, 1985, pp. 2.372.
[19] 柯文賢,腐蝕及其防治,全華科技圖書股份有限公司,1994, p.5.
[20] D. A. Jones, Principles and Prevention of Corrosion, Macmillan, New York, 1992, p. 43.
[21] J. H. Vincent, B. P. Richards, Alternative solders for electronics assemblies, Circuit World, Vol. 19, No. 3, 1993, p. 33.
[22] D. A. Jones, Principles and Prevention of Corrosion, Macmillan, New York, 1992, p. 43.
[23] K. Tojima, Wetting Characteristics of Lead-free Solders, Senior Project Report, Materials Engineering Department, San Jose State University, May 1999.
[24] N. Saunders and A. P. Miodownik, Binary Alloy phase Diagram, Vol. 3, ASM International, 1990, p. 2.178.
[25] K. N. Tu, Interdiffusion and reaction in bimetallic Cu-Sn thin films, Mat. Chem. and Physics, Vol. 46, 1996, pp. 217-223.
[26] M. Inaba, Y. Honma, K. Teshima, O. Hirao, T. Sakurai, Effects of Fe, Ni, and Sn on reaction diffusion at solder/Cu base alloy interface, J. Jpn. Instit. Metals, Vol. 48, 1984, p. 863.
[27] P. J. Kay, C. A. Mackay, The growth of intermetallic compounds on common base materials coated with tin and tin-lead alloys, Trans. Instit. Metal Finish., Vol. 54, 1976.
[28] J. D. Verhoeven, Fundamentals of Physical Metallurgy, John Wiley & Sons, New York, pp. 137-167.
[29] D. S. Dunn, T. F. Marinis, W. M. Sherry, C. J. Williams, Dependence of Cu/Sn and Cu/60Sn40Pb solder joint strength on diffusion controlled growth of Cu3Sn and Cu6Sn5, Mater. Res. Soc. Symp. Proc. 40, 1985. pp. 129-138.
[30] K. N. Tu, Cu/Sn interfacial reactions: thin-filmcase versus bulk case, Materials Chemistry and Physics, Vol. 46, 1996, pp. 217-223.
[31] J. S. Huang, J. Zhang, A. Cuevas and K. N. Tu, Recrystallization and grain growth in bulk Cu and Cu(Sn) alloy, Materials Chemistry and Physics, Vol. 49, 1997, pp. 33-41.
[32] Y.Wang, H. K. Kim, H. K. Liou, and K. N. Tu, Rapid Soldering Reaction of Eutectic SnPb and Eutectic SnBi on Pd Surface, Scripta Metallurgica et Materiallis, Vol. 32, No. 12, 1995 pp. 2087-2092.
[33] A. A. Liu, H. K. Kim, K. N. Tu and P. A. Totta, Spalling of Cu6Sn5 Spheroids in the Soldering Reaction of Eutectic SnPb on Au/Cu/Cr Thin Films, J. Appl. Phys., Vol. 80, 1996, pp. 2774-2780.
[34] D. W. Zheng, Z. Y. Jia, C. Y. Liu, Weijia Wen, and K. N. Tu, Size dependent dewetting and sideband reaction of eutectic SnPb on Au/Cu/Cr multilayered thin film, J. Mater. Res., Vol. 13, No. 5, May 1998 pp. 1103-1106.
[35] K. N. Tu and K. Zeng, Tin-lead (SnPb) solder reaction in flip chip technology, Materials Science and Engineering, R 34, 2001, pp. 1-58.
[36] A. P. Miodownik, Binary Alloy phase Diagram, Vol. 3, ASM International, 1990, p. 2.182.
[37] S.W. Yoon, J. R. Soh, H. M. Lee, H. M. Kim and B. J. Lee, Thermodynamic-aided alloy design and evaluation of Pb-free solder, Sn—Bi—In—Zn system, Acta Mater., Vol. 45, 1997, pp. 951-960.
[38] B. J. Lee, N. M. Hwang, H. M. Lee, Prediction of interface reaction products between Cu and various solder alloys by thermodynamic calculation, Acta Mater, Vol. 45, 1997, pp. 1867—1874.
[39] K. Suganuma, K. Niihara, T. Shoutoku, Y. Nakamura, Wetting and solder joint interface microstructure between Sn—Zn binary alloys and Cu, J. Mater. Res., Vol. 13, 1998, pp. 2859—2865.
[40] S. P. Yu, M. H. Hon, M. C. Wang, The adhesion strength of a lead-free solder hot-dipped on copper substrate, J. Electron Mater., Vol. 29, 2000, pp. 237-243.
[41] Y. C. Chan, M. Y. Chiu, T. H. Chuang, Intermetallic compounds formed during the soldering reactions of eutectic Sn-9Zn with Cu and Ni substrates, Z. Metallkd, Vol. 93, No. 2, 2002, pp. 95-98.
[42] R. hultgren. P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley, Selected Values of the Thermodynamic Properities of Binary Alloys (ASM Metals Park, OH, 1973), pp. 795-800.
[43] R. hultgren. P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley, Selected Values of the Thermodynamic Properities of Binary Alloys (ASM Metals Park, OH, 1973), pp. 810-822.
[44] M. Onishi and H. Fujibuchi, Trans. JIM, Vol. 16, 1975, p. 539.
[45] S. P. Yu, Formation of Intermetallic Compounds at Eutectic Sn-Zn-Al Solder/Cu Interface, J. Mater. Res., Vol. 16, No. 1, 1, Jan 2001, pp. 76-82.
[46] B. F. Dyson, T. R. Anthony and D. Turnbull, J. Appl. Phys. Vol. 38, 1967, p. 1479.
[47] F.H. Huang and H.B. Huntington, Phys. Rev. Vol. 9B, 1974, p. 1479.
[48] K. Hoshino, Y. Iijima and K. Hirano, Trans. Jpn. Inst. Met., Vol. 21, 1980, P. 674.
[49] L. Kaufan and H. Bernstein, Computer Calculation of Phase Diagrams, Academic Press, New York 1970.
[50] H. M. Lee, S. W. Yoon, and B. J. Lee, Thermodynamic Prediction of Interface Phases at Cu/Solder Joints, J. Electronic Materials, Vol. 11, No. 3, 1998, pp. 1161-1166.
[51] N. V. Parthasaradhy, Practical Electroplating Handbook, Prentice Hall, Englewood Cliffs, New Jersey, 1989, pp. 18-19.
[52] K. L. Lin and S. Y. Chang, Approaching a Uniform Bump Height of the Electroplated Solder bumps on a Silicon Wafer, IEEE Transaction on Components, Packaging, and Manufacturing Technology-Part B, Vol. 19, No. 4, November 1996, pp.747-751.
[53] F. Hine, S. Yoshizawa and S. Okada, Effect of the Walls of Electrolytic Cells on Current Distribution, Journal of the Electrochemical Society, Vol. 103,No. 3,March 1956,pp. 186-193.
[54] M. Gershovich, Micron-level Measurement of Soldering for Optoelectronic Assembly Process, M.S. thesis, Univ. Colorado, Boulder, 1994.
[55] W. Lin and Y.C. Lee, Study of Fluxess Soldering Using Formic Acid Vapor, IEEE TRANSACTIONS ON ADVANCED PACKAGING, Vol. 22, No. 4, NOVEMBER 1999, pp. 592-601.
[56] 余鐵城, 表面技術,全華科技圖書股份有限公司,1992, pp. 174-198.
[57] 許樹恩、吳泰伯,X光繞射原理與材料結構分析,行政院國家科學委員會精密儀器發展中心,民國82. 6月, pp. 219-231.
[58] 汪建明,材料分析,中國材料學學會,明全書局,民國87. 10月, pp. 121-149.
[59] 廖振尉,金-銦雙層鍍膜界面反應與微結構分析,中興大學碩士論文, 2000.
[60] 許穎超,錫銦共晶銲料與銅界面反應與接合性質之研究,中興大學碩士論文, 2001.
[61] M. H. James, Interfaces in Materials, John Wiley&Sons, Inc., 1997, pp.290-377.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔