(18.210.12.229) 您好!臺灣時間:2021/03/03 16:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭明智
研究生(外文):Ming-Chih Kuo
論文名稱:室溫下電解沉積生醫陶瓷在金屬植入材上之研究
論文名稱(外文):Electrolytic Deposition of Bioceramics on Metallic Implants at Room Temperature
指導教授:顏秀崗顏秀崗引用關係
指導教授(外文):Shiow-Kang Yen
學位類別:博士
校院名稱:國立中興大學
系所名稱:材料工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:150
中文關鍵詞:電解沈積氧化鋯塗層氫氧基磷灰石磷酸鈣塗層Co-Cr-Mo合金
外文關鍵詞:Electrolytic depositionZirconia coatingHydroxyapatiteCalcium phosphate coatingCo-Cr-Mo alloyTitanium
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在0.0625 M ZrO(NO3)2溶液(pH = 2.2)中,使用電流密度2 mA/cm2能夠在ASTM F-75 Co-Cr-Mo合金上電解沉積得到Zr(OH)4膠體(gel)。經過350-700 oC空氣中熱處理120 min後,藉由在Hank’s溶液中電化學極化,與超高分子量聚乙烯(ultra-high molecular-weight polyethylene, UHMWPE)在負載應力50 MPa下磨耗試驗、刮痕試驗、表面型態觀察、與XRD分析評估被覆ZrO2的試片,被覆ZrO2的試片經500oC熱處理120 min後具有良好的附著力、較低的UHMWPE磨耗損耗、與在Hank’s溶液中有較高的保護電位,在350oC £ T £ 400oC熱處理能得到平行試片的單斜(monoclinic) ( 1 1)擇優取向(preferred orientation),T ³ 500oC能得到正方(tetragonal)結構的ZrO2,在T ³ 700oC則得到隨機取向(random orientation)的單斜結構與正方結構的混合結構。
磷酸鈣(calcium phosphate)陶瓷,尤其是氫氧基磷灰石(hydroxyapatite, HA)由於絕佳的生物相容性(biocompatibility)而廣受矚目,並已臨床應用在骨科與牙科中,在製備HA塗層的方法中,電化學沉積法是一較新穎並具有潛力的方法,然而,文獻指出的電化學製程均控制在較高的溫度,本研究成功地在室溫下沉積均勻的HA塗層於鈦表面,XRD的結果顯示在低電流密度(1和5 mA/cm2)下沉積所得的塗層主要成分為DCPD (dicalcium phosphate dihydrate, CaHPO4·2H2O),在電流密度10 mA/cm2以上能夠得到HA結構,且其經100-600 oC熱處理1 hr後仍維持相穩定,經700oC熱處理後部分HA相轉換成b-TCP成為雙相磷酸鈣(biphasic calcium phosphate)塗層,刮痕試驗顯示HA塗層能夠承受106.3 MPa的剪應力(shear stress)而不被刮落,其附著力優於較高溫度下沉積的HA塗層,HA塗層具有緻密的內層與粗糙的表面型態,其可能較滿足植入材料的要求與適合骨組織的貼附(attachment)。
鈦與電解沉積的HA及DCPD塗層在37 oC模擬體液(Hank’s溶液)中浸泡1、7、14、和30天,藉由表面型態,成分,和晶體結構分析探討其浸泡行為,DCPD塗層快速溶解且HA相在其表面析出,重量和HA的繞射強度隨浸泡時間而增加,HA和熱處理的HA塗層經過浸泡後較具結晶性與隨機取向,首先在被覆HA的試片表面析出的HA相是隨機取向(random orientation),隨著(1 1 2)面漸漸析出後造成2q在31.5-32.5o間的寬化的(broaden)繞射峰,此寬化的繞射峰亦顯示析出的HA相為低結晶性或由微小的晶體所組成,SEM照片觀察到大量的HA小顆粒析出在塗層表面,因此HA塗層在浸泡於Hank’s溶液時,扮演新生HA相的先驅物(precursor)的重要角色,在細胞培養評估中,細胞能在HA和熱處理的HA塗層表面伸展良好,並且在500oC熱處理的HA上所觀察到的細胞數量最多,G-292細胞在500oC熱處理的HA上呈現較高的酸性磷酸酯脢(acid phosphatase)活性,且在HA和500oC熱處理的HA上呈現相近的鹼性磷酸酯脢(alkaline phosphatase)活性,因此,HA塗層經500oC熱處理後具有較佳結晶性、在模擬體液中穩定、並且在細胞培養評估中較具相容性。
An electrolytic Zr(OH)4 gel has been coated on ASTM F-75 Co-Cr-Mo alloy specimens in 0.0625 M ZrO(NO3)2 solution with pH = 2.2 at a current density of 2 mA/cm2. After heating at 350-700oC for 120 min in air, the ZrO2-coated specimen was evaluated by electrochemical polarization in Hank’s solution, wear tests with UHMWPE (Ultra-high molecular-weight polyethylene) under a load stress of 50 MPa, scratch tests, surface morphology observations, and XRD analysis. The ZrO2-coated specimen heated at 500oC for 120 min revealed a good adhesion of 610 MPa on Co-Cr-Mo substrate, a lower wear loss of UHMWPE and a higher protection potential than the uncoated specimen in Hank’s solution. A monoclinic structure with ( 1 1) preferred orientation parallel to the sheet plane was detected at 350oC £ T £ 400oC and a tetragonal structure of ZrO2 was detected at T ³ 500oC. Then a monoclinic structure with random orientation and a tetragonal structure were mixed at T ³ 700oC.
Calcium phosphate (CaP) ceramics, especially hydroxyapatite (HA), have received much attention and have been clinically applied in orthopaedics and dentistry due to their excellent biocompatibility. Among several methods for preparing hydroxyapatite (HA) coating, electrochemical deposition is a relatively new and possible process. However, documented electrochemical processes were conducted at elevated temperature. In this study, uniform HA coatings have been directly deposited on titanium at room temperature. XRD results demonstrated that dicalcium phosphate dihydrate (CaHPO4×2H2O, DCPD) was the main component of the coating deposited at lower current densities (1 and 5 mA/cm2). HA structure was obtained at current density above 10 mA/cm2 and remained stable after heat treatment at 100-600oC for 1 hr. Part of HA phase was transformed into b-TCP and became a biphasic calcium phosphate coating after heating at 700oC. Scratch tests showed that HA coating was not scraped off until a shear stress of 106.3 MPa. Coatings deposited at room temperature exhibited stronger adhesion than those at elevated temperature. HA coating revealed a dense inner layer and rough surface morphology which could fulfill the requisition of implant materials and be adequate to the attachment of bone tissue.
The immersion behaviors of titanium and electrolytic hydroxyapatite (HA) and dicalcium phosphate dihydrate (DCPD) coatings were investigated in the simulated physiological fluid (Hank’s solution) at 37oC for 1, 7, 14, and 30 days for evaluation of changes in morphology, composition, and crystal structure. The specimens were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy before and after immersion. The mass variations of the specimens and the pH values of the solutions were measured for understanding the immersion behavior. DCPD coating dissolved rapidly and subsequently HA phase precipitated on the surface. The weight and the intensity of HA increased with immersion time. HA and heated HA coatings became more crystalline and random orientated after immersion. The primary HA phase precipitated on the surface of HA coated specimen was random orientation. The (1 1 2) plane precipitated gradually and caused a broaden peak between 2q of 31.5-32.5o. The broaden diffraction peaks also indicate the precipitated HA phase is poor crystalline or composed of small crystals. A lot of small precipitated HA granular particles can be observed on the coatings in the SEM photographs. The electrolytic HA coating played as a significant precursor in the precipitation process of newly formed HA phase in Hank’s solution. In the cell culture evaluation, cells spread out well on the surface of HA and heated HA coatings according to SEM observation. The amount of cells grown on HA coated specimen after heated at 500oC was greater than that of the other specimens. G-292 cells also presented a higher acid phosphatase activity on HA coating heated at 500oC and similar alkaline phosphatase activity on HA and heated at 500oC specimens. Therefore, HA coating after heating at 500oC with more crystalline was stable in simulated body fluid and presented better biocompatible in cell culture evaluation.
摘要 I
Abstract III
誌謝 VI
Contents VII
Figure contents XI
Table contents XV
Abbreviations XVI
Chapter 1. Introduction 1
1-1 Total hip replacement 2
1-2 Classification of biomaterials 3
1-3 Issues of the total hip replacement 6
1-4 Coatings on metallic implants 15
1-5 Preparation of ceramic coatings 15
1-5-1 Preparation of zirconia coatings 15
1-5-2 Preparation of calcium phosphate coatings 16
1-6 The purposes of this study 18
Chapter 2. Basis of theories 21
2-1 Composition and structure of bone 21
2-2 Metals as biomaterials 24
2-3 Ceramics as biomaterials 27
2-4 Biological apatites 30
2-5 The structure of hydroxyapatite 36
2-6 Phases of calcium phosphates in aqueous equilibrium 38
2-7 Phases of calcium phosphates at high temperature 40
Chapter 3 Experimental methods 44
3-1 Electrolytic zirconia coating on Co-Cr-Mo alloy 44
3-1-1 Samples preparation 44
3-1-2 Electrolytic depositions and heating 44
3-1-3 Scratch and wear tests 47
3-1-4 Corrosion test 47
3-1-5 SEM/EDS, surface roughness, and XRD 51
3-2 Electrolytic calcium phosphate coatings on titanium 52
3-2-1 Cathodic polarizations, deposition, and heating 52
3-2-2 XRD, TGA/DTA, SEM/EDS, and scratch tests 54
3-2-3 FTIR and AFM analysis of calcium phosphate coatings 54
3-2-4 Immersion of calcium phosphate coatings in Hank’s solution 54
3-2-5 Evaluation of cell culture 55
Chapter 4 Results and discussion
4-1 Characterization of electrolytic zirconia coating on Co-Cr-Mo alloy 57
4-1-1 Mud crackings and adhesion 66
4-1-2 Corrosion resistance and wear loss 68
4-1-3 Crystal structures 69
4-2 Process and characterization of electrolytic calcium phosphate coatings on titanium 71
4-2-1 Cathodic reactions and crystal structures 71
4-2-2 TGA/DTA and phase transformation 76
4-2-3 SEM observations and scratch tests 81
4-2-4 FTIR and AFM analysis of calcium phosphate coatings 86
4-3 Immersion behaviors of electrolytic calcium phosphate coatings in simulated body fluid 88
4-3-1 Weight variations of specimens after immersion 88
4-3-2 XRD analysis of immersed specimens 91
4-3-3 Ca/P ratios of specimens after immersion 100
4-3-4 The pH values of Hank’s solution 100
4-3-5 SEM observation of immersed specimens 103
4-4 Cell cultural evaluation of calcium phosphate coatings 109
4-4-1 SEM observations of osteoblast-like G-292 cells 109
4-4-2 Acid and alkaline phosphatase activities 112
Chapter 5. Conclusions 117
5-1 Electrolytic zirconia coating on Co-Cr-Mo alloy 117
5-2 Electrolytic calcium phosphate coatings on titanium 117
Chapter 6. References 120
1. R. Filmon, M. F. Baslé, H. Atmani, and D. Chappard, “Adherence of osteoblast-like cells on calcospherites on developed on a biomaterials combining poly(2-hydroxyethyl) methacrylate and alkaline phosphatase,” Bone, 30 (1), 152-158, 2002.
2. A. C. Fraker and A. W. Ruff, “Metallic surgical implants: State of the art,” Journal of Metals, 29, 22-28, 1977.
3. J. F. Shackelford, Bioceramics, Gordon and Breach Science Publishers, The Netherlands, 1999.
4. W. Cao and L. L. Hench, “Bioactive materials,” Ceramics International, 22, 493-507, 1996.
5. B. D. Ratner, “New ideas in biomaterials science - A path to engineered biomaterials,” Journal of Biomedical Materials Research, 27, 837-850, 1993.
6. D. Devanathan, “Orthopedic composites,” in International Encyclopedia of Composites, edited by S. M. Lee, Vol. 4, pp. 74-87, VCH Publishers, New York, 1991.
7. M. W. Chapman, ed., Operative Orthopedics, 2nd Ed., Vols. 1-4, J. P. Lippincorr, Philadelphia, 1993.
8. J. F. Shackelford, Introduction to Materials Science for Engineers, 4th Ed., Prentice Hall, Upper Saddle River, New Jersey, 1996.
9. L. L. Hench and E. C. Ethridge, Biomaterials: An Interfacial Approach, Academic Press, New York, 1982.
10. J. B. Park and R. S. Lakes, Biomaterials: An Introduction, Plenum Press, New York, 1992.
11. T. Hanawa, “In vivo metallic biomaterials and surface modification,” Materials Science and Engineering A, 267, 260-266, 1999.
12. B. K. F. Kummer, “Biomechanics of bone,” in Biomechanics: Its foundations and objectives, Y. C. Fung, N. Perrone, and M. Anliker, eds., Prentice-Hall, Engle-wood Cliffs, N. J., p. 263, 1972.
13. Anonymous, “Report of the international committee on nickel carcinogenesis in man,” Scand. J. Work Environ. Hlth., 16, 1-82, 1990.
14. IARC, “Monographs on the evaluation of carcinogenic risk of chemicals to man,” Vol. 2, IARC, Lyon, 1973.
15. H. F. Hildebrand, C. Véron, and P. Martin, “Nickel, chromium, cobalt dental alloys and allergic reactions: an overview,” Biomaterials, 10, 545-548, 1989.
16. J. Breme, “Titanium and titanium alloys, biomaterials of preference,” Mémoires et Études Scientifiques, Rev. Métall. Octobre, 625-638, 1989.
17. K. J. Bundy, “Corrosion and other electrochemical aspects of biomaterials, Crit. Rev. Biomed. Engng, 22, 139-251, 1994.
18. H. G. Willert, G. H. Buchhorn, and M. Semlitsch, “Particle disease due to wear of metal alloys,” in Biological, Material, and Mechanical Considerations of Joint Replacement, ed. B. F. Morres, Raven Press, New York, pp. 239-246, 1993.
19. R. M. Streicher, M. Semlitsch, R. Schön, H. Weber, and C. Rieker, “Metal-on-metal articulation for artificial hip joints: laboratory study and clinical results,” Proc. Inst. Mech. Engr., 210, 223-232, 1996.
20. A. Sarmiento and T. A. Gruen, “Radiographic analysis of a low-modulus titanium-alloy femoral total hip component: Two to six year follow up,” J. Bone Joint Surg., 67A, 48-56, 1985.
21. L. D. Dorr, R. Bloebaum, J. Emmanual, and R. Meldrum, “Histologic, biochemical, and ion analysis of tissue and fluids retrieved during total hip arthoplasty,” Clin. Orthoped. Relat. Res., 261, 82-95, 1990.
22. H. A. McKellop, A. Sarmiento, C. P. Schwinn, and E. Ebramzadeh, “In vivo wear of titanium-alloy hip prostheses,” J. Bone Joint Surg., 72A, 512-517, 1990.
23. B. N. Weissman, R. D. Scott, G. W. Bridk, and J. M. Corson, “Radiographic detection of metal-induced synovitis as a complication of arthoplasty of the knee,” J. Bone Joint Surg., 73A, 1002-1007, 1991.
24. J. A. Helsen and H. Jűrgen Breme, “Metals as Biomaterials,” John Wiley & Sons, England, 1998.
25. L. P. Zichner and H. -G. Willert, “Comparison of alumina-polyethylene and metal-polyethylene in clinical trials,” Clin. Orthop. Relat. Res., 282, 86-94, 1992.
26. A. H. De Aza, J. Chevalier, G. Fantozzi, M. Schehl, and R. Torrecillas, “Crack growth resistance of alumina, zirconia, and zirconia toughened alumina ceramics for joint prostheses,” Biomaterials, 23, 937-945, 2002.
27. G. Willmann, “Ceramic femoral heads fot total hip arthroplasty, Advanced Eng. Mater., 2, 114-122, 2000.
28. R. Heros and G. Willmann, “Ceramics in total hip arthroplasty: history, mechanical properties, clinical results, and current manufacturing state of the art,” Seminars Arthroplasty, 9, 114-122, 1998.
29. C. Piconi, G. Maccauro, “Zirconia as a ceramic biomaterial, a review,” Biomaterials, 20, 1-25, 1999.
30. H. McKellop and B. Lu, “Friction, lubrication, and wear of polyethylene/metal and polyethylene/ceramic hip prostheses on a joint simulator,” Trans. 4th World Biomaterials Congress, Berlin, Germany, p. 118, 1992.
31. Oka M. Kumar, K. Ikeuchi, K. Shimizu, T. Yamamuro, H. Okumura, and Y. Koloura, “Low wear rates of UHMWPE against zirconia ceramic in comparison to alumina ceramic and SUS 316 alloy,” J. Biomed. Mater. Res., 25, 813-828, 1991.
32. J. L. Guan and H. C. Chen, “Signal transduction in cell-matrix interactions,” Int. Rev. Cytol. 168, 82-121, 1996.
33. H. C. Amstutz, “Innovations in implants for orthopedic surgery,” Med. Instrum., 7, 91, 1973.
34. E. P. Lautenschlager, B. K. Moore, and C. M. Schoenfield, “Physical characteristics of setting of acrylic bone cements,” Biomed. Mater. Symp., 5, 185-196, 1974.
35. E. P. Lautenschlager, B. K. Moore, and C. M. Schoenfield, “Physical characteristics of setting of acrylic bone cements,” Biomed. Mater. Symp., 5, 185-196, 1974.
36. J. A. Davidson, “Ceramic coatings for orthopaedic bearing surfaces,” in Ceramics in substitutive and reconstructive surgery, P. Vincenzini ed., Elsevier Science Publishers, Amsterdam, p. 157-166, 1991.
37. P. A. Lilley, D. R. May, P. S. Walker, and G. W. Blunn, “Wear performance of ceramic coated titanium used in the Stanmore hinge total knee arthoplasty,” in Biomaterial-tissue interfaces, advances in biomaterials, vol. 10, P. J. Doherty, R. L. Williams, D. F. Williams, and A. J. C. Leek, eds., Elsevier Science Publishers, Amsterdam , p. 147-151, 1992.
38. B. F. Coll, M. A. Pellman, J. P. Souchard, and P. Jarquot, “Metallurgical and tribological modi"cation of titanium and titanium-based alloys for medical devices by plasma assisted techniques,” in Surface modification technologies, vol. V, T. S. Sudarshan and J. F. Braza eds., The University Press, Cambridge, p. 77-88, 1992.
39. J. A. Davidson and A. K. Mishra, “Surface modification issues for orthopedic implant bearing surfaces,” in Surface modification technologies, vol. V, T. S. Sudarshan and J. F. Braza eds., The University Press, Cambridge, p. 1-14, 1992.
40. E. Wachtel, P. Villars, A. Armini, and M. Spector, “Tribology of alumina and diamond-like coatings for orthopaedic applications,” in Surface modification technologies, vol. V, T. S. Sudarshan and J. F. Braza eds., The University Press, Cambridge, p. 125-138, 1992.
41. R. A. Poggie, A. K. Mishra, and J. A. Davidson. Three-body abrasive wear behavior of orthopedic implant bearing surfaces from titanium debris,” J. Mater. Sci. Mater. Med., 5, 387-392, 1994.
42. R. M. Streicher, H. Weber, R. Schoen, M. F. Semlitsch, “Wear resistance couplings for longer lasting articulating total joint replacements,” in Biomaterial-tissue interfaces, advances in biomaterials, vol. 10, P. J. Doherty, R. L. Williams, D. F. Williams, and A. J. C. Lee eds., Elsevier Science Publishers, Amsterdam, p. 179-186, 1992.
43. M. J. Filiaggi, N. A. Coombs, R. M. Pilliar, “Characterization of the interface in the plasma-sprayed HA coating/Ti-6Al-4V implant system,” J. Biomed. Mater. Res., 25, 1211-1229, 1991.
44. R. Y. Whitehead, W. R. Lacefield, L. C. Lucas, and J. E. Lemons, “Structural and bond strength evaluations of plasma sprayed HA coatings,” Proceedings of the Fourth World Biomaterial Congress, p. 503, 1992.
45. R. M. Pilliar, D. Deporter, and P. A. Watson, “The effect of partial coating with hydroxyapatite on bone remodeling in reaction to porous-coated titanium-alloy dental implants in the dog,” J. Dent. Res., 70, 1338-1345, 1991.
46. C. C. Berndt, G. N. Haddad, A. J. D. Farmer, and K. A. Gross, “Thermal spraying for bioceramic applications,” Mater. Forum. 14, 161-173, 1990.
47. W. R. Lacefield, “Hydroxylapatite coatings,” in An introduction to bioceramics, L. L. Hench and J. Wilson eds.,. World Scientific, Singapore, p. 223-228, 1993.
48. P. Serekian, “Process application of hydroxylapatite coatings,” in Hydroxylapatite coatings in orthopedic surgery, R. G. Geesink and M. T. Manley eds., Raven Press, New York, p. 81-87, 1993.
49. P. Ducheyne P and J. F. McGuckin, “Composite bioactive ceramic-metal materials,” in CRC handbook of bioactive ceramics, Vol. II, T. Yamamuro, L. L. Hench, and J. Wilson eds., CRC Press, Boca Raton, Florida, p. 175-186, 1990.
50. S. J. Yankee, B. J. Pletka, H. A. Luckey, and W. A. Johnson, “Processes for fabricating hydroxyapatite coatings for biomedical applications,” in Thermal spray research and applications, ASM International, Materials Park, Ohio, p. 433-438, 1991.
51. R. M. Pilliar, M. J. Filiaggi, “New calcium phosphate coating methods,” in Bioceramics, vol. 6, P. Ducheyne and D. Christiansen eds., Butterworth-Heinemann, Ltd., Oxford, UK, p. 165-171, 1993.
52. H. Dislich, “Thin films from the sol-gel process,” in Sol-gel technology for thin films, preforms, electronics, and specialty shapes, L. C. Klein ed., Noyes Publications, Park Ridge, NJ, p. 50-79, 1988.
53. B. D. Fabes, B. J. J. Zelinski, and D. R. Uhlmann, “Sol-gel derived ceramic coatings,” in Ceramic films and coatings, J. B. Wachtman and R. A. Haber eds., Noyes Publications, Park Ridge, NJ, p. 224-283, 1993.
54. L. C. Klein, “Sol-gel coatings,” in Thin Film Processes, Vol. II, J. L. Vossen and W. Kern eds., Academic Press, Boston, p. 501-522, 1991.
55. G. Yi and M. Sayer, “Sol-gel processing of complex oxide films,” Am. Ceram. Soc. Bull., 70, 1173-1179, 1991.
56. M. J. Filiaggi, R. M. Pilliar, and D. Abdulla, “Evaluating sol-gel ceramic thin films for metal implant applications. II. Adhesion and fatigue properties of zirconia films on Ti-6Al-4V,” J. Biomed. Mater. Res., 33, 239-256, 1996.
57. F. Perdomo, P. de Lima, M. A. Aegerter, and L. A. Avaca, “Corrosion behavior of AISI steels coated with sol-gel ZrO2 films,” 13th International Corrosion Congress, Melbourne, Australia, paper 082, 1996.
58. S. K. Yen and T. Y. Huang, “Characterization of the electrolytic ZrO2 coating on Ti-6Al-4V,” Mater. Chem. Phys., 56, 214-221, 1998.
59. K. de Groot, R. Geesink, C. P. A. T. Klein, and P. Serekian, “Plasma sprayed coatings of hydroxyapatite,” J. Biomed. Mater. Res., 21, 1375-1381, 1987.
60. J. Weng, Q. Liu, J. G. C. Wolke, X. Zhang, and K. de Groot, “Formation and characteristics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid,” Biomaterials, 18, 1027-1035, 1997.
61. J. H. Chern Lin, M. L. Liu, and C. P. Ju, “Structure and properties of hydroxyapatite bioactive glass composites plasma sprayed on Ti6Al4V,” J. Mater. Sci.: Mater. Med. 28, 1-5, 1994.
62. J. G. C. Wolke, J. P. C. M. van der Waerden, K. de Groot, and J. A. Jansen, “Stability of radiofrequency magnetron sputtered calcium phosphate coatings under cyclically loaded conditions,” Biomaterials, 18, 483-488, 1997.
63. S. J. Ding, C. P. Ju, and J. H. Chern Lin, J. Biomed. Mater. Res. 44 (1999) 266.
64. C. K. Wang, J. H. Chern Lin, C. P. Ju, H. C. Ong, and R. P. H. Chang, “Structural characterization of pulsed laser-deposited hydroxyapatite film on titanium substrate,” Biomaterials, 18, 1331-1338, 1997.
65. C. M. Lopatin, V. Pizziconi, T. L. Alford, and T. Laursen, Thin Solid Films, 326 (1998) 227.
66. P. Ducheyne, S. Radin, M. Heughebaert, and J.C. Heughebaert, “Calcium phosphate ceramic coatings on porous titanium: effect of structure and composition on electrophoretic deposition, vacuum sintering and in vitro dissolution,” Biomaterials 11, 244-254, 1990.
67. M. Gottlander, C. B. Hohansson, A. Wennerberg, T. Albrektsson, S. Radin, and P. Ducheyne, “Bone tissue reactions to an electrophoretically applied calcium phosphate coating,” Biomaterials, 18, 551-557, 1997.
68. M. Shirkhanzadeh, “Bioactive calcium phosphate coatings prepared by electrodeposition,” J. Mater. Sci. Lett., 10, 1415-1417, 1991.
69. T. V. Vijayaraghavan and A. Bensalem, “Electrodeposition of apatite coating on pure titanium and titanium alloys,” J. Mater. Sci. Lett., 13, 1782-1785, 1994.
70. S. Ban and S. Maruno, “Effect of temperature on electrochemical deposition of calcium phosphate coatings in a simulated body fluid,” Biomaterials, 16, 977-981, 1995.
71. M. Shirkhanzadeh, “Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes,” J. Mater. Sci.: Mater. Med., 9, 67-72, 1998.
72. M. Shirkhanzadeh and M. Azadegan, “Hydroxyapatite particles prepared by electrocrystallisation from aqueous electrolytes,” Mater. Lett., 15, 392-395, 1993.
73. K. de Groot, “Hydroxyapatite as coatings for implants,” Interceram, 4, 38, 1987.
74. E. Lugscheider, Th. Weber, M. Knepper, and F. Vizethum, “Production of biocompatible coatings by atmospheric plasma spraying,” Mater. Sci. Eng. A, 139, 45-48, 1991.
75. H. C. Gledhill, I. G. Turner, and C. Doyle, “Direct morphological comparison of vacuum plasma sprayed and detonation gun sprayed hydroxyapatite coatings for orthopedic applications,” Biomater. 20, 315-322, 1999.
76. J. Weng, X. G. Liu, J. G. C. Wolke, D. Zhang, and K. de Groot, “The role of amorphous phase in nucleating bone-like apatite on plasma-sprayed hydroxyapatite coatings in simulated body fluid,” J. Mater. Sci. Lett., 16, 335-337, 1997.
77. E. Park, R. A. Condrate, and D. Lee, “Infrared spectral investigation of plasma sprayed coated hydroxyapatite,” Mater. Lett., 36, 38-43, 1998.
78. K. A. Gross, V. Gross, and C. C. Berndt, “Thermal analysis of amorphous phases in hydroxyapatite coatings,” J. Am. Ceram. Soc., 81, 106-112, 1998.
79. J. Chen, W. Tong, Y. Cao, J. Feng, and X. Feng, “Effect of atmosphere on phase transformation in plasma-sprayed HA coatings during heat treatment,” J. Biomed. Mater. Res., 34, 15-20, 1997.
80. W. Bonfield, “New trends in implant materials,” in Biomaterials and clinical applications,” A. Pizzoferrato ed., European Society for Biomaterials, p.13-121, 1987.
81. K. Soballe and S. Overgaard, “The current status of hydroxyapatite coating of prosthesis,” J. Bone Jt. Surg.; 78, 689-690, 1987.
82. K. A. Gross, B. Ben-Nissan, and W. R. Walsh, “Analysis of retrieved hydroxyapatite coated orthopedic implants,” Proceedings of the 15th ITSC, Nice, France, p. 1133-1138, 1998.
83. J. P. Chern Lin, M. L. Liu, and C. P. Ju, “Structure and properties of hydroxyapatite-bioactive glass composites plasma sprayed on Ti6Al4V,” J. of Mater. Sci. Mater. Med., 5, 729-283, 1994.
84. K. de Groot, “Calcium phosphate coatings: alternatives to plasma spray,” in Bioceramics Vol. 11 Proceedings of the 11th International Symposium on Ceramics in Medicine, R. Z. LeGeros and J. P. LeGeros eds., Word Scientific, Singapore, p. 41-43, 1998.
85. L. Gal-Or, I. Silberman, and R. Chaim, “Electrolytic ZrO2 coatings I. Electrochemical aspects,” J. Electrochem. Soc., 138, 1939-1942, 1991.
86. S. K. Yen, “Modeling electrolytic ZrO2 coating on Ti,” 192nd Meeting Abstracts of The Electrochemical Society, 97-2, 636, 1997.
87. J. Redepenning and J. P. McIsaac, “Electrocrystallization of brushite coatings on prosthetic alloys,” Chem. Mater., 2, 625-627, 1990.
88. B. D. Ratner, “New ideas in biomaterials science — A path to engineered biomaterials,” Journal of Biomedical Materials Research, 27, 837-850, 1993.
89. R. Z. LeGeros, “Apatites in biological systems,” Prog. Crystal Growth Charact., 4, 1-45, 1981.
90. G. Daculsi, J. -M. Bouler, and R. Z. LeGeros, “Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials,” International Review of Cytology, 172, 129-191, 1997.
91. F. C. M. Driessens, “Formation and stability of calcium phosphate in relation to the phase composition of the mineral in calcified tissues,” in Bioceramics of calcium phosphate, K. de Groot, ed., CRC Press, Boca Raton, FL, p. 1, 1983.
92. K. de Groot, C. P. A. T. Klein, J. G. C. Wolke, and J. M. A. de Blieck-Hogervorst, “Chemistry of calcium phosphate bioceramics,” in CRC Handbook of bioactive ceramics Vol. 2 Calcium phosphate and hydroxyapatite ceramics, T. Yamamuro, L. L. Hench, and J. Wilson, eds., CRC Press, Boca Raton, FL, 1990.
93. H. Newesely, “High temperature behavior of hydroxy- and fluorapatite,” J. Oral Rehab., 4, 97, 1977.
94. J. H. Chern Lin, H. J. Lin, S. J. Ding, and C. P. Ju, “Characterization of immersed hydroxyapatite-bioactive glass coatings in Hank’s solution,” Mater. Chem. Phys., 64, 229-240, 2000.
95. A. J. Bard and L. R. Faukler, “Electrochemical method - fundamentals and applications,” John Wiley & Sons, New York, p. 105, 1980.
96. H. H. Uhlig and R. W. Revie, “Corrosion and corrosion control,” 3rd ed., John Wiley & Sons, p. 54, 1985.
97. S. K. Yen and T. Y. Huang, “Characterization of the electrolytic ZrO2 coating on Ti-6Al-4V,” Mater. Chem. Phys., 56, 214-221, 1998.
98. N. Verdonschot, M. Dalstra, and R. Huskes, in Implantable telemetry in orthopedics, G. Bergmann, F. Graidren, and A. Roklmann eds., Berlin Free University, p. 249, 1990.
99. H. C. Hsu and S. K. Yen, “Evaluation of metal ion release and corrosion resistance of ZrO2 thin coating on the dental Co-Cr alloys,” Dent. Mater., 14, 339-346, 1998.
100. R. C. Garvie and M. V. Swain, “Thermodynamics of the tetragonal to monoclinic phase transformation in constrained zirconia microcrystals - Part I. In the absence of an applied stress field,” J. Mater. Sci., 20, 1193-1200, 1985.
101. R. Strinivasan, M. B. Harris, S. F. Simpson, R. J. DeAngelis, and B. H. Davis, “Zirconium oxide crystal phase: the role of the pH and time to attain the final pH for precipitation of the hydrous oxide,” J. Mater. Res., 3(4), 787-797, 1988.
102. P. Singh and S. K. Date, “Synthesis of the pure and calcia stabilized ZrO2 via liquid mix technique and their characterization,” J. Mater. Sci. Lett., 6, 621, 1987.
103. F. Barrere, C. A. van Blitterswijk, K. de Groot, and P. Layrolle, “Influence of ionic strength and carbonate on the Ca-P coating formation from SBF´5 solution,” Biomaterials, 23, 1921-1930, 2002.
104. R. Rhoades and R. Pflanzer, “Human physiology,” 3rd ed., Saunders College Publishing, Florida, USA, p. 770, 1996
105. C. Gabrielli, G. Maurin, G. Poindessous, and R. Rosset, “Nucleation and growth of calcium carbonate by an electrochemical scaling process,” Journal of Crystal Growth, 200, 236-250, 1999.
106. A. S. Posner, “The mineral of bone,” Clin. Orthop. Relat. Res., 200, 87-99, 1985.
107. L. M. Rodrigues-Lorenzo, M. Vallet-Regi, and J. M. F. Ferreira, “Fabrication of hydroxyapatite bodies by uniaxial pressing from a precipitated powder,” Biomaterials, 22, 583-588, 2001.
108. G. Daculsi, “Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute,” Biomaterials, 19, 1473-1478, 1998.
109. L. -D. Piveteau, B. Gasser, and L. Schlapbach, “Evaluating mechanical adhesion of sol-gel titanium dioxide coatings containing calcium phosphate for metal implant application,” Biomaterials, 21, 2193-2201, 2000.
110. A. Stoch, W. Jastrzębski, A. Brożek, J. Stoch, J. Szaraniec, B. Trybalska, and G. Kmita, “FTIR absorption-reflection study of biomimetic growth of phosphates on titanium implants,” Journal of Molecular Structure, 555, 375-382, 2000.
111. C. Combes, C. Rey, and M. Freche, “XPS and IR study of dicalcium phosphate dihydrate nucleation on titanium surfaces,” Colloids and Surfaces B: Biointerfaces, 11, 15-27, 1998.
112. R. Z. LeGeros, “Calcium phosphates in oral biology and medicine,” New York University College of Dentistry, NY, p. 114-121, 1991.
113. M. H. Prado Da Silva, J. H. C. Lima, G. A. Soares, C. N. Elias, M. C. de Andrade, S. M. Best, and I. R. Gibson, “Transformation of monetite to hydroxyapatite in bioactive coatings on titanium,” Surface and Coatings Technology, 137, 270-276 (2001).
114. L. Frauchiger, M. Taborelli, B. -O. Aronsson, and P. Descouts, “Ion adsorption on titanium surfaces exposed to a physiological solution,” Applied Surface Science, 143, 67-77 (1999).
115. A. Piattelli, M. Piattelli, and A. Scarano, “Simultaneous demonstration of alkaline and acid phosphatase activity in bone, at bone-implant interfaces and at the epiphyseal growth plate in plastic-embedded undemineralized tissues,” Biomaterials, 18, 545-549, 1997.
116. M. H. Fernandes, M. A. Costa, and G. S. Carvalho, “Mineralization in serially passaged human alveolar bone cells,” Journal of Materials Science: Materials in Medicine, 8, 61-65, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔