跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/14 03:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:石心怡
研究生(外文):Hsien-Yee Hsih
論文名稱:鼠傷寒沙門氏菌之致病相關基因、表型特性及其與李斯特菌之免疫磁珠-PCR檢測
論文名稱(外文):Analysis of the virulence genes, phenotypes of Salmonella Typhimurium and the development of immunomagnetic separation -PCR system for the simultancous detection of Listeria monocytogenes and Salmonella
指導教授:曾浩洋曾浩洋引用關係
指導教授(外文):Hau-Yang Tsen
學位類別:博士
校院名稱:國立中興大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:203
中文關鍵詞:鼠傷寒沙門氏菌毒性基因與表型多重抗藥性單核球增多性李斯特菌免疫磁珠分離法聚合酶鏈鎖反應
外文關鍵詞:Salmonella Typhimuriumvirulence genes and phenotypesmultidrug resistantListeria monocytogenesimmunomagnetic separationpolymerase chain reaction
相關次數:
  • 被引用被引用:9
  • 點閱點閱:602
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
自行政院衛生署預防醫學研究所,蒐集1991至1994年鼠傷寒沙門氏菌(Salmonella enterica subsp. enterica servar Typhimurium)人體分離株共45株,主要分離自臨床下痢者與食物中毒案例患者之血液與糞便檢體,小鼠動物毒性結果可將菌株毒性分成兩群,即高毒性群(high virulence)與低毒性群(low virulence)。隨機挑選五株脈衝式電場膠體電泳法(pulsed-field gel electrophoresis, PFGE)分型之主要次分型(subtype)菌株(X5A4S4),分析其動物毒性,五株主要次分型之菌株皆為高毒性菌株。並非所有臨床S. Typhimurium菌株皆具有毒性質體,PFGE主要次分型菌株13株 (28.9 %)帶有毒性質體,臨床來源菌株有毒性質體共有30株(66.7 %),無毒性質體者為33.3 % (15/45)。45株S. Typhimurium均具有inv與stn基因,且stn基因之限制酶片段多型性(restriction fragment length polymorphism, RFLP)於菌株間並無不同,S. Typhimurium菌株之腸毒素力價(titer of enterotoxin)介於4至32之間,三株PFGE主要次分型菌株力價最高。S. Typhimurium於小鼠來源Raw 264.7巨噬細胞內中侵入、抗吞噬能力與菌株毒性並不相關,因此,S. Typhimurium於Raw 264.7巨噬細胞侵入與抗吞噬能力能力,不適合用以鑑別菌株之毒性。S. Typhimurium菌株對巨噬細胞Raw264.7之毒殺能力與毒性無關,屬於低毒性次分型X6A7S6與X17之菌株對H2O2敏感性較高。S. Typhimurium高毒性菌株之耐酸性 (acid tolerance response, ATR) 能力較強,以SDS-聚丙烯醯胺膠體電泳 (polyacrylamide gel electrophoresis, PAGE) 分析S. Typhimurium胞外分泌蛋白質之類型,結果發現:無法找出胞外分泌蛋白質類型與菌株毒性之相關性,PFGE主要次分型菌株於耐酸性、抗H2O2、腸毒素力價等毒性因子之整體表現較其他菌株毒性高,可能為此次分型菌株成為高毒性與主要致病流行菌株之主要原因。S. Typhimurium之毒性與刺激巨噬細胞Raw264.7產生腫瘤壞死因子-a(tumor necrosis facrtor alpha, TNF-a) 與生物膜(biofilm)產生能力無關,無法取代動物試驗。
近年來多重抗藥性(multidrug resistant) S. Typhimurium菌株逐年增加,本研究收集並分析比較台灣地區動物與人體分離之S. Typhimurium抗微生物藥劑圖譜(antibiogram),透過這些抗藥基因之研究以了解抗藥基因之起源,結果顯示本地區分離之人體與家畜等動物來源S. Typhimurium抗微生物藥劑圖譜相近。台灣地區人體與動物分離菌株對第一線抗微生物藥劑如tetracycline 、sulfisoxazole 、ampicillin、streptomycin、chloramphenicol具高抗藥性,對gentamicin、fluoroquinolone類抗微生物藥劑如norfloxacin與第三代頭芽胞菌素cefoperazone則為敏感性,93~100 %之本地區菌株受其抑制。台灣S. Typhimurium菌株多重抗藥性比例高,動物來源佔58.6 %,人體來源菌株亦有68.9 %為多重抗藥性,且其PFGE主要次分型菌株為對ampicillin、chloramphenicol、streptomycin、sulfonamide、tetracycline (ACSSuT)之多重抗藥性菌株。以5’CS/3’CS引子組進行聚合酶鏈鎖反應 (polymerase chain reaction, PCR)分析integron,PFGE次分型與抗微生物藥劑圖譜均相同之兩來源菌株,二者之抗藥基因integron大小相同,台灣人體來源分離之多重抗藥性S. Typhimurium菌株,可能是由感染之動物經食物鏈媒介傳播。
多重抗藥性之S. Typhimurium菌株,逐年增加成為世界各地沙門氏菌病之元兇,成為 Salmonella 感染時,臨床治療上的一大問題,因此,醫生與科學家將治療病原菌感染由抗微生物藥劑之施用,轉為使用益生菌強化腸黏膜防禦機制,保護腸道免於病原菌之侵襲。乳酸菌為人體腸道之益生菌,作為益生菌之基本條件,包括具有耐酸性、耐膽鹽性、抑制病原菌的生長,且能附著於宿主的腸道上皮細胞。本研究先以磷酸鹽緩衝系統 (pH 2) 以及牛膽汁 (0.3 ﹪oxgall),篩選出動物與植物來源之耐酸、耐膽鹽之乳酸菌菌株LA5、LF33、MP012與CCRC 10069,再以人體腸道細胞株Int 407及Caco-2來進行體外附著試驗,菌株LA5、LF33具有與腸上皮細胞附著能力。受試乳酸菌株經連續口服7天後,四株乳酸菌對S. Typhimurium於小鼠體內的感染提供了部分保護作用,以LA5效果最佳,CCRC 10069與LF33再次之,MP012再次之,由於CCRC 10069在人體腸道細胞株Int 407及Caco-2不具附著性,而於小鼠活體具有保護 Salmonella 侵入之功效。因此,進一步探討 CCRC 10069於活體具保護效果之原因。在小鼠腸道吸附性試驗中,CCRC 10069具有吸附性,推測CCRC 10069於小鼠感染S. Typhimurium時可提供保護作用與其吸附能力有關。動物性來源之乳酸菌LA5、LF33於小鼠腸道中具高吸附現象,與其對小鼠有腸道保護作用有關。
由於 Salmonella spp.與Listeria monocytogenes為引起人類食品中毒重要之食品病原菌,本研究發展同時檢測Salmonella spp.與Listeria monocytogenes之方法,此方法為免疫磁珠分離法(immunomagnetic separation method, IMS)合併聚合酶連鎖反應之方法(polymerase chain reaction, PCR),並將此方法應用於食品中Salmonella與Listeria monocytogenes之同時檢測。若只使用多套式PCR,雖然兩目標細菌菌數都在檢測靈敏度之上,若菌數差異在兩個對數值以上,例如n x 107 與 n x 104 或是n x 106 與 n x 103,則無法檢測出菌數較低之目標菌;若在PCR反應前,使用等量anti-Salmonella 與anti-Listeria免疫磁珠吸附目標細菌菌體,則可以同時檢測出兩種目標細菌。經過增菌步驟,IMS-mPCR可成功應用於牛奶、乳製品、肉類等食品樣品中Salmonella 與Listeria monocytogenes之檢測。
45 Salmonella Typhimurium strains isolated between 1991-1994 were collected from the National Institute of Preventive Medicine, Department of Health, Executive Yuan. These S. Typhimurium strains were divided into two groups,ie, high and low virulence groups, according to the virulence study to the mice. Five strains randomly selected from the major PFGE subtypes were subjected to the virulence study to mice. It was found that they were all high virulent strains. Virulence plasmids could not be isolated from all of these 45 strains. However, 13 S. Typhimurium strains (28.9 %) of the major PFGE subtype carry the virulence plasmid and 30 strains (66.7 %) of the clinical isolates carry the virulence plasmid. Virulence plasmid were not isolated from 33.3 % (15/45) of S. Typhimurium strains studied. On the other hand, the inv and stn genes were found in all of the 45 strains. The restriction fragment length polymorphism (RFLP) patterns of stn gene show no difference for these 45 Salmonella Typhimurium strains. The relationships between invasive ability to human and the enterotoxin titers of S. Typhimurium strains were not found. Also, the relationship between invasion ability and replication capability to the virulence of S. Typhimurium cells in Raw 264.7 macrophage cell line was not found. Thus, the abilities of invasion and replication of S. Typhimurium to Raw 264.7 were not useful for the analysis of Salmonella virulence The relationship between cytotoxic to macrophage and virulence was not found. Strains in PFGE subtypes X6A7S6 and X17 were belonging to low virulence strains and were more susceptible to H2O2. Strains of high virulence subtypes were more acid tolerant. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) patterns of the secretion proteins for those Salmonella Typhimurium strains were not relative to their virulence. Strains from PFGE major subtype were more acid tolerant, more resistant to H2O2, and possess higher enterotoxin titer, which might be the reasons of being virulent and epidemic. Tumor necrosis factor alpha (TNF-a) formations in macrophage and biofilm formation ability were also not related to the virulence of these S. Typhimurium strains. The method mentioned above could not replace the method of animal models for the study of the virulence of S. Typhimurium.
In recently years, the number of multidrug resistant Salmonella Typhimurium strains was increasing. In this study, the antibiograms of 45 human isolates and 87 animal isolates of Salmonella Typhimurium in Taiwan was investigated. Analysis of the antibiotic resistant genes in molecular level may help us to realize the origins of antibiotic resistance strains. It was found that the antibiograms for human and animal isolates are quite similar. Both the human and animal isolates are highly resistant to first-line antibiotics, such as tetracycline, sulfisoxazole, ampicillin, streptomycin and chloramphenicol; but are sensitive to gentamicin, fluoroquinolone antibiotics, such as norfloxacin and the third generation antibiotic of cephalosporin, such as cefoperazone. Between 93 % and 100 % of the local strains is inhibited by these antibiotics. Also, a significant fraction of these S. Typhimurium isolates are multidrug resistant strains. For example, 58.6 % of the animal isolates and 68.9 % of the human isolates are multidrug-resistant. Strains from PFGE major subtype were resistant to ampicillin, chloramphenicol, streptomycin, sulfonamide, tetracycline (ACSSuT). When sizes of the integrons were analyzed using PCR primers 5’CS/3’CS, the integron sizes were the same for human and animal isolates, which show identical PFGE and antibiogram patterns. Thus, antibiotic resistant human isolates may be circulated through foods from the infectious animals.
The increasing of multidrug resistant Salmonella Typhimurium strains in recent years and the predominance of these multidrug resistant strains as major infectious strains of Salmonellosis all over the world become a serious problem. Such fact has induced the interest of probiotic use. Probiotic are capable of protecting the gastrointestinal tract from invasion by pathogens. The effectiveness of probiotic could be assessed by their prevention of pathological conditions and by their form as biotherapeutic agents. Due to the probiotic properties of lactic acid bacteria (LAB), we have used some LAB strains for the study of their prevention of Salmonella invasion. The basic probiotic properties evaluated for LAB strains are their capability to tolerate to gastric acid and bile salts, the ability to inhibit pathogenic bacteria and the adherence capability to human intestinal epithelium cells. In this study, four LAB strains LA5, LF33, MP012 and CCRC 10069 have been shown to be tolerant to pH 2.0 buffer, and resistant to 0.3% bile salts. However, for the adhesive ability study, only LA5 and LF33 strains were found adhesive to the human Int 407 or Caco-2 cell lines. The protective effectiveness for the orally administered LAB strains to the invasion of mice spleen and liver organs by S. Typhimurium was investigated. Results showed that the cell numbers of S. Typhimurium in liver and spleen organs of mice measured at the 6th day after Salmonella infection was lower for LAB administered mice as compared to the control mice. Of them, strain LA5 strain was most effective; followed by strains CCRC 10069 and LF33. CCRC 10069 was not able to adhere to Int 407 or Caco-2 cell lines but it provides the protective effect too. These four LAB strains were also studied for their adhesion ability to the mice intestinal cells. CCRC 10069 show the adherence to the mice intestinal cells, and this may be the reason why CCRC 10069 provides the protective effect for S. Typhimurium infection too.
Owing to Salmonella and Listeria monocytogenes to human health, in this study, we also tried to develop a method for the simultaneous and rapid detection of these two kinds of organisms. The method we developed was the immunomagnetic separation followed by PCR method.
A method that combined the immunomagnetic separation (IMS) technique and the multiplex polymerase chain reaction (PCR) method (i. e., the IMS-mPCR method) were developed for simultaneous detection of Listeria monocytogenes and Salmonella spp. in food samples. When only the multiplex PCR method was used, it was found that if cell numbers of each of the two target organisms (L. monocytogenes and Salmonella spp.) were above the detection limit, but differed by more than 2 logs-e. g., n x 107 to n x 104 or n x 106 to n x 103 — the organism presenting the lower numbers might go undetected. Listeria and anti-Salmonella immunomagnetic beads was performed prior to PCR, both pathogens could be detected unambiguously. Such results could be obtained for target organisms in food samples, such as milk, dairy, and meat products, if similar enrichment and IMS steps were performed prior to PCR.
目次
頁次
中文摘要………………………………………………………………………...1
Abstract……………………………………………………………………4
第一章、研究背景與目的…………………………………………………8
第二章、文獻整…………………………………………………………….12
第一部分、Salmonella……………………………………………………12
一、 Salmonella 之型態及生理特性……………………………………12
二、Salmonella與食品中毒之關係……………………………………….13
三、Salmonella 感染之症狀………………………………………………13
四、Salmonella之傳統檢測………………………………………………14
五、S. Typhimurium之致病性……………………………………………14
(一)病原菌、病原性、毒性、毒性因子之定義………………………14
(二)Salmonella 成為病原菌之相關基因及機制……………………16
(三)毒性基因之調控……………………………………………………20
六、活體內測定Salmonella毒性方法……………………………………20
七、S. Typhimurium之抗藥性研究………………………………………21
(一)多重抗藥性菌株之增加與傳播…………………………………….21
(二)integron與抗藥基因……………………………………………...…21
(三)多重抗藥性S. Typhimurium之研究……………………………….22
八、乳酸菌對Salmonella之抑制………………………………………….23
(一)乳酸菌作為益生菌之特性……………………………………….…23
(二)乳酸菌對Salmonella之抑制…………………………………….…24
(三)、乳酸菌抑制Salmonella侵入或感染之相關研究…………………25
第二部分Listeria monocytogenes之簡介及其與Salmonella之快速檢驗法…………………………………………………25
一、Listeria monocytogenes簡介…………………………………………25
(一)、Listeria monocytogenes之一般特性………………………………25
二、Listeria monocytogenes之傳統檢驗法………………………………28
三、Salmonella、Listeria monocytogenes之快速檢驗法……………28
(一)DNA探針分析法…………………………………………………...28
(二)免疫分析……………………………………………………………29
(三)免疫磁珠分離法……………………………………………………30
(四)聚合酶鏈鎖反應及其應用…………………………………………31
表 2-1~表2-5…………………………………………………………33
圖2-1~圖.2-4………………………………………………………….41
第三章、人體來源S. Typhimurium毒性質體、致病基因、表型與動物毒性之關係………………………………………………….…………………45
壹、前言………………………………………………………… …………47
貳、材料與方法……………………………………………………………47
一、 實驗材料………………………………………………………………47
二、 實驗方法………………………………………………………………55
(一)小鼠模式毒性試驗…………………………………………………...55
(二)以聚合酶鏈鎖反應確認spv gene之存在……………………57
(三)以DNA雜合法確認spv位於質體上………………………………..58
(四)90 kb毒性質體之確認………………………………………………..60
(五)以聚合酶鏈鎖反應確認inv基因………………………………60
(六)S. Typhimurium對巨噬細胞株Raw 264.7侵入能力之測定………..60
(七)S. Typhimurium於巨噬細胞株Raw 264.7抗吞噬能力之測定……..61
(八)S. Typhimurium對巨噬細胞株Raw 264.7之細胞毒性測定………..61
(九)S. Typhimurium對H2O2之敏感性測定……………………………...62
(十)以聚合酶鏈鎖反應確認stn基因與PCR產物之限制酶片段多型性62
(十一) Salmonella腸毒素對CHO細胞毒性之分析…………………….63
(十二)S. Typhimurium之耐酸反應(Acid tolerance response; ATR)試驗.64
(十三)以SDS-聚丙烯醯胺膠體電泳分析胞外分泌蛋白質類型………..64
(十四)S. Typhimurium對巨噬細胞株Raw 264.7 產生TNF-a 能力之測定…………………………………………………………………………..…65
(十五)於adherence test medium(ATM)培養,生物膜(biofilm)產生能力之測定……………………………………………………………………65
(十六) 統計分析與繪圖………………………………………………….65
參、結果與討論……………………………………………………………66
(一)小鼠模式中S. Typhimurium之毒性…………………………………66
(二)S. Typhimurium90 kb毒性質體存在之確認…………………………67
(三)90 kb毒性質體與動物毒性、人類之致病性之關係…………………68
(四)以聚合酶鏈鎖反應確認inv基因………………………….…69
(五)S. Typhimurium對巨噬細胞株Raw 264.7………………………….69
(六)S. Typhimurium對H2O2敏感性測定………………………………..71
(七)S. Typhimurium菌株之stn基因檢測及其RFLP……………………72
(八)S. Typhimurium腸毒素對CHO細胞毒性分析………………………72
(九)耐酸反應(acid tolerance response; ATR)………………………73
(十)S. Typhimurium胞外分泌蛋白質類型………………………………74
(十一)S. Typhimurium之基因與毒性相關表型之綜合討論……………74
(十二)S. Typhimurium刺激巨噬細胞株Raw 264.7 產生TNF-a 能力之測定……………………………………………………………………………..75
(十三)於ATM培養S. Typhimurium生物膜產生能力之測定………….75
肆、結論…………………………………………………………………………76
表3-1~表3-10…………………………………………………………...78
圖3-1~圖3-13…………………………………………………………...98.
第四章、人體與家畜等動物來源S. Typhimurium抗微生物藥劑圖譜與抗藥性來源之分析………………………………………………………………106
壹、前言…………………………………………………………………….106
貳、材料與方法…………………………………………………………….108
一、實驗材料……………………………………………………………..108
二、方法…………………………………………………………………..109
(一)抗微生物藥劑感受性試驗…………………………………………..109
(二)以聚合鏈鎖反應檢測integron……………………………………110
(三)由洋菜瓊脂膠體上回收PCR產物…………………………………..110
(四)PCR產物定序……………………………………………………….111
(五) PCR產物核苷酸序列比對………………………………….111
參、結果與討論………………………………………………………….111
肆、結論………………………………………………………………….117
表4-1 ~表4-8 ………………………………………………………….118
圖4-1 ~圖4-3 ………………………………………………………….130
第五章乳酸菌抑制Salmonella之感染……………………………………133
壹、前言…………………………………………………………………133
貳、材料與方法…………………………………………………………….134
一、實驗材料……………………………………………………………..134
二、實驗方法……………………………………………………………..134
(一)耐酸性試驗…………..……………………………………………...136
(二)耐膽鹽性試驗…………………..…………………………………...136
(三) 腸道細胞株附著性 (adhesion)試驗…………………………….136
(四)乳酸菌抑制S. Typhimurium侵入腸道細胞株Int 407之試驗……137
(五) 乳酸菌於BALB/c小鼠模式中抑制S. Typhimurium之感染試驗..139
(六)乳酸菌在小鼠腸道上皮細胞之吸附……………………………….140
(七)統計分析……………………….……………………...140
參、結果與討論…………………………………………………………….140
一、耐酸性之評估………………………………………………………..140
二、耐膽鹽特性之評估…………………………………………………..141
三、乳酸菌於Int407與Caco-2腸上皮細胞株之吸附…………………….142
四、乳酸菌抑制S. Typhimurium侵入腸道細胞株Int 407之試驗………143
五、乳酸菌於小鼠活體對Salmonella之抑制作用……………………..145
六、乳酸菌吸附於小鼠腸道上皮細胞之試驗…………………………..147
肆、結論…………………………………………………………………….148
表5-1 ~表5-4…………………………………………………………..150
圖5-1 ~圖5-9………………………………………………………….154
第六章、結合免疫磁珠分離技術與多套式PCR同時檢測食品中Salmonella及Listeria monocytogenes…………………………………154
壹、前言…………………………………………………………...163
貳、材料與方法…………………………………………………………...165
一、實驗材料……………………………………………………………..165
二、實驗方法……………………………………………………………...167
(一)菌株之培養方法……………………………………………………….167
(二)多套式聚合酶鏈鎖反應……………………………………………….167
(三)免疫磁珠分離法之應用……………………………………………….168
(四)UP broth增殖培養後,以多套式PCR檢測Listeria monocytogenes及 Salmonella……………………………………………………………...169
(五)多套式PCR法應用於食品樣品中Listeria monocytogenes及 Salmonella之檢測………………………………………………………...169
參、結果與討論……………………………………………………………169
一、多套式PCR特異性之探討…………………….170
二、多套式PCR引子組之檢測靈敏度…………………………………….170
三、以UP 增殖培養步驟提高多套式PCR之檢測靈敏度……………….171
四、UP broth增殖培養後,以IMS-mPCR檢測Listeria monocytogenes及Salmonella……………………………………………………………….172
肆、結論………………………………………………………………...174
表 6-1~表6-4…………………………………………………………..175
圖6-1 圖6-4……………………………………………………………179
參考文獻……………………………………………………………………183
台灣省政府農林廳編印,民國八十七年,飼料管理手冊:飼料添加物詳細品目,p.300-301.
中國國家標準:食品微生物檢驗法-食品中 Listeria monocytogenes之檢驗標準CNS12542.
行政院衛生署乳品類衛生標準,88衛署食字第88017907號
邱政洵。民國86年。北台灣地區沙門氏菌感染之現況並以分子生物學與生物學方法探討沙門氏菌之毒性質體與其致病性和宿主特異性之關係。私立長庚大學臨床醫學研究所博士論文。
Adlerberth, I., Ahrne, S., Johansson, M. L., Molin, G., Hanson, L. A. and Wold, A. E.1996. A mannose-specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29. Appl. Environ. Microbiol. 62:2244-2251.
Agersborg, A., Dahl, R. and martinez, I. 1992. Sample preparation and DNA extraction procedures for polymerase chain reaction identification of Listeria monocytogenes in seafoods. Int. J. Food. Microbiol. 35: 275-280.
Alpuche Aranda, C. M., Swanson, J. A., Loomis, W. P. and Miller, S. I. 1992. Salmonella Typhimurium activates virulence gene transcription within acidified
Altmeyer, R. M., McNern, J. K., Bossio, J. C., Rosenshine, I., Finlay, B.B.and Galán, J. E. 1993. Cloning and molecular characterization of a gene involved in Salmonella adherence and invasion of cultured epithelial cells.
Mol Microbiol.7:89-98.
Amyes, S. G. B. and Gemmell, C. G. 1997. Antibiotic resistance. J. Med. Microbiol. 46: 436-470.
Annika, M. Merja Manninen M., and Gyllenberg, H. 1983. The adherence of lactic acid bacteria to the columnar epithelial cells of pigs and calves. J. Appl. Bacteriol. 55:241-245.
Arcangioli, M. A., Leroy S. S., Martel, J. L. and Chaslus D. E. 2000. Evolution of chloramphenicol resistance, with emergence of cross-resistance to florfenicol, in bovine Salmonella Typhimurium strains implicates definitive phage type (DT)
Aron L, Faundez G, Gonzalez C, Roessler E, Cabello F. 1993. Lipopolysaccharide-independent radioimmunoprecipitation and identification of structural and in vivo induced immunogenic surface proteins of Salmonella typhi in typhoid fever.
Vaccine 11:10-17
Arvanitidou, M., Tsakris, A., Constantinidis, T. C. and Katsouyannopoulos, V. C. 1997. Transferable antibiotic resistance among Salmonella strains isolated from surface waters. Wat. Res. 31: 112-1116.
Bailey, J. S. and Cox, N. A.1992. Universal preenrichment broth for the simultaneous detection of Salmonella and Listeria in foods. J. Food Prot. 55:256-259.
Baig, M. I. and Prasad, V. 1996. Effect of incorporation of cottage cheese whey solids and Bifidobacterium bifidum in freshly made yogurt. J. Dairy Res. 63:467-473.
Baran, C. N., Sensoz, O. and Ulusoy, M. G. 1999. Prophylactic antibiotics in plastic and reconstructive surgery. Plast. Reconstr. Surg. 103: 561-1566.
Barbara, B. and Bennett, M. D. 1995. Gastroenteritis. Prim Care Update Ob/Gyns. 2: 6-11.
Barefoot, S. F. and Nettles, C. G.1993. Antibiosis revisited: bacteriocins produced by dairy starter cultures. J. Dairy Sci. 76:2366-2379.
Barker, I.K., van Dreumel, A. A. and Palmer, N. 1993. Pathology of Domestic Animals. vol 2. 4th ed. p.223. Jubb, K. V. F., Kennedy, P. C. and Palmer, N. ed. Academic Press, London, U.K.
Baumler, A. J., Kusters, J. G., Stojiljkovic, I. and Heffron, F. 1994. Salmonella typhimurium loci involved in survival within macrophages. Infect. Immun. 62:1623-1630.
Bej, A. K., Mahbubani, M. H., Boyce, M. J. and Atlas, R. M. 1994. Detection of Salmonella spp. in oysters by PCR. Appl. Environ. Microbiol. 60:368-373.
Bernet, M. F., Brassart, D., Neeser, J. R., Servin, A. L. 1993. Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interaction. Appl. Environ. Microbiol. 59: 4121-4128.
Bernet, M. F., Brassart, D., Neeser, J. R. and Servin, A. L. 1994. Lactobacillus acidophilus LA1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut. 35: 483-489.
Bernet-Camard, M. F., Lievin, V., Brassart, D., Neeser, J. R., Servin, A. L. and Hudault, S. 1997. The human Lactobacillus acidophilus strain LA1 secretes a nonbacteriocin antibacterial substance(s) active in vitro and in vivo. Appl. Environ. Microbiol. 63:2747-2753.
Berrada, N., Lemeland, J. F., Laroche, G., Thouvenot, P. and Piaia, M. 1991. Bifidobacterium from fermented milks: survival during gastric transit. J. Dairy Sci. 74 (2):409-413.
Beutler, B., and Grau, G. E. 1993. Tumor necrosis factor in the pathogenesis of infectious disease. Crit. Care. Med. 21: S423-S425.
Bibiloni, R., Pérez, P. F. and De Antoni, G. L. 1995. Will a high adhering capacity in a probiotic strain guarantee exclusion of pathogens from intestinal epithelia? Anaerobe 5:519-524.
Bickley, J., Short, J. K., McDowell, D. G. and Parker, H. C. 1996. Polymerase chain reaction (PCR) detection of Listeria monocytogenes in diluted milk and reversal of PCR inhibition caused by calcium ions. Lett. Appl. Microbiol. 22:153-158.
Björkman, J., Hughes, D. and Andersson, D. I. 1998. Virulence of antibiotic-resistant Salmonella Typhimurium. Proc. Natl. Sci. 95:3949-3953.
Blanc-Potard, A. B., Groisman, E. A. 1997. The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J. 16:5376-585.
Bohnert, M., Dilasser, F., Dalet, C., Mengaud, J. and Cossart, P.1992. Use of specific oligonucleotides for direct enumeration of Listeria monocytogenes in food samples by colony hybridization and rapid detection by PCR. Res Microbiol. 143:271-280.
Boonmar, S., Bangtrakulnonth, A., Pornruangwong, S., Samosornsuk, S., Kaneko, K. and Ogawa, M. 1998. Significant increase in antibiotic resistance of Salmonella isolates from human beings and chicken meat in Thailand. Vet. Microbiol. 62: 73-80.
Bowe, F., Lipps, C. J., Tsolis, R. M., Groisman, E., Heffron, F. and Kusters, J. G. 1998. At least four percent of the Salmonella typhimurium genome is required for fatal infection of mice. Infect. Immun. 66:3372-3377.
Brasher, C. W., Depaola, A., Jones, D. D. and Bej, A. K. 1998. Detection of microbial pathogens in shellfish with multiplex PCR. Curr. Microbiol. 37:101-107.
Brassart, D. and Schiffrin, E. J. 1997. The use of probiotics to reinforce mucosal defence mechanisms. Trends in Food Science &Technol. 8: 321-326.
Brenner, F. W., Villar, R. G., Aangulo, F. J., Tauxe, R. and Swaminathan, B. 2000. Salmonella nomenclature. J. Clin. Mircobiol. 38:2465-2467.
Bruno, M. E. C. and Montville, T. J. 1993. Common mechanistic action of bacteriocins from lactic acid bacteria. Appl. Environ. Microbiol. 59:3003-3010.
Bubert, A., Kohler, S., and Goebel. W. 1992.The homologous and heterologous regions within the iap gene allow genus- and species-specific identification of Listeria spp. by polymerase chain reaction. Appl. Envir. Microbiol. 58: 2625-2632.
Buchmeier, N., Lipps, C. J., So, M. H.Y., Heffron, F. 1993. Recombination-deficient mutants of Salmonella typhimurium are avirulent and sensitive to the oxidative burst of macrophages. Mol. Microbiol. 7:933-936.
Burtscher, C., Fall, P. A., Wilderer, P. A. and Wuertz, S.1999. Detection of Salmonella spp. and Listeria monocytogenes in suspended organic waste by nucleic acid extraction and PCR. Appl. Environ. Microbiol. 65:2235-2237.
Caldwell, A., and Gulig, P. A. 1991. The Salmonella typhimurium virulence plasmid encodes a positive regulator of a plasmid-encode virulence gene. J. Bacteriol. 173 (22):7176-7185.
Carbon, C. and Bax, R. P. 1998. Regulating the use of antibiotics in the community. BJM. 317: 663-665.
Carlson, S. A., Bolton, L. F., Briggs, C. E., Hurd, H. S., Sharma, V. K., Fedorka, C. P. J. and Jones, B. D. 1999. Detection of multiresistant Salmonella Typhimurium DT104 using multiplex and fluorogenic PCR. Mol. Cell Probes. 13:213-222.
Casadevall, A. and Pirofski, L. A. 1999. Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect. Immun. 67:3703-3713.
CDC. 1998. Morbidity and Mortality Weekly Report., Incidence and Foodborne
Illness Illnesses-Foodnet 1997. 47 p.378
Chang, C. C. and Ou, J.T. 2002. Excess production of interleukin-12 subunit p40 stimulated by the virulence plasmid of Salmonella enterica serovar Typhimurium in the early phase of infection in the mouse. Microb. Pathog. 32:15-25.
Chan, S. W., Wilson, S. G., Vera-Garcia, M., Whippie, K., Ottaviani, M., Whilby. A, Shah, A., Johnson, A., Mozola, M. A. and Halbert, D. N. 1990. Comparative study of colorimetric DNA hybridization method and conventional culture procedure for detection of Salmonella in foods. J. Assoc. Off. Anal. Chem. 73:419-424.
Chauviere, G., Coconnier, M. H., Kerneis, S., Darfeuille-Michaud, A., Joly, B. and Servin, A. L. 1992a. Competitive exclusion of diarrheagenic Escherichia coli (EHEC) from enterocyte-like Caco-2 cells in culture. FEMS Microbiol. Lett. 91:213-218.
Chauviere, G., Coconnier, M. H., Kerneis, S., Fourniat, J., and Servin, L. 1992b. Adhesion of human Lactobacillus acidophilus strain LB to human enterocyte-like Caco-2 cells. J. General. Microbiol. 138:1689-1696.
Chen, Y. H., Chen, T. P., Tsai, J. J., Hwang, K. P., Lu, P. L., Cheng, H. H. and Peng, C. F. 1999. Epidemiological study of human Salmonellosis during 1991-1996 in southern Taiwan. Kaohsiung J. Med. Sci. 15: 127-136.
Chiang, S. L., Mekalanos, J. J. and Holden, D. W. 1999. In vivo genetic analysis of bacterial virulence. Annu Rev Microbiol. 53: 129-154
Chiu, C. H. , Lin, T. Y. and Ou, J. T. 2000 b. Age-related differences of nontyphoid Salmonella bacteremia in clinical presentation and outcome: association with specific serovars but not necessarily with the virulence plasmids. Clin Infect Dis. 30:239-41.
Chiu, C. H., Chu, C. and Ou, J. T. 2000 a. Lack of evidence of an association between the carriage of virulence plasmid and the bacteremia of Salmonella typhimurium in human. Microbiol. Immunol. 44:741-748.
Chopra, A. K., Huang, J. H., Xu, X. -J., Burden, K., Niesel, D. W., Rosenbaum, M. W., Popov, V. L. and Peterson, J. W. 1999. Role of Salmonella enterotoxin in overall virulence of the organism. Microbiol. Pathogen. 27:155-171.
Chopra, A. K., Peterson, J.W., Chary, P. and Prasad, R. 1994. Molecular characterization of an enterotoxin from Salmonella typhimurium. Microb. Pathog. 16:85-98.
Chung, K. C. and Goepfert, J. M. 1970. Growth of Salmonella at low pH. J. Food Sci.. 35:326-328.
Cirillo, D. M., Valdivia, R.H., Monack, D. M. and Falkow, S. 1998. Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival.
Mol. Microbiol. 30:175-188.
Coconnier, M. H., Lievin, V., Bernet-Camard, M. F., Hudault, S. and Servin, A. L.1997. Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB. Antimicrob. Agents Chemother..41:1046-1052.
Coconnier, M. H., Lievin, V., Lorrot, M. and Servin, A. L. 2000. Antagonistic activity of Lactobacillus acidophilus LB against intracellular Salmonella enterica serovar Typhimurium infecting human enterocyte-like Caco-2/TC-7 cells. 66(3):1152-1157.
Coleman, D. J., Chick, K. E. and Nye, K. J. 1995. An evaluation of immunomagnetic separation of the detection of Salmonellas in raw chicken carcasses. Lett. Appl. Microbiol. 21:152-154.
Collis, C. M. and Hall, R. M. 1992. Site-specific deletion and rearrangement of integron DNA integrase. J. Bacteriol. 174:1574-1585.
Collazo, C. M. and Galan, J. E. 1997. The invasion-associated type-III protein secretion system in Salmonella--a review. Gene. 192:51-59. Review.
Conway, P. L., Gorbach, S. L. and Goldin, B. R. 1987. Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy Sci. 70:1-12.
Crociani, J., Grill, J. P., Huppert, M. and Ballongue, J. 1995. Adhesion of different bifidobacteria strains to human enterocyte-like Caco-2 cells and comparison with in vivo study. Lett. Appl. Microbiol. 21:146-148.
Courcol, R.J., Pinkas, M. and Martom. G. R., 1989. A seven year survey of antibiotic susceptibility and its relationship with usage. J. Antimicrob. Chemother. 23: 441-451.
Cudjoe, K. S., Hagtvedt, T., and Dainty, R. 1995. Immunomagnetic separation of Salmonella from foods and their detection using immunomagnetic particle (IMP)-ELISA. Int. J. Food Microbiol. 27:11-25.
Cudjoe, K. S. and Krona, R.1997. Detection of Salmonella from raw food samples using Dynabeads anti-Salmonella and a conventional reference method. Int. J. Food Microbiol. .37:55-62.
Cudjoe, K. S., Krona, R. and Olsen, E. 1994. IMS: a new selective enrichment technique for detection of Salmonella in foods. Int. J. Food Microbiol. 23:159-165.
Curiale, M. S., Klatt, M. J. and Mozola, M. A. 1990a. Colorimetric deoxyribonucleic acid hybridization assay for rapid screening of Salmonella in foods: collaborative study. J. Assoc. Off. Anal. Chem. 73: 248-256.
Curiale, M. S., Klatt, M. J., Gehle, W. D. and Chandonnet, H. E.1990b. Colorimetric and fluorometric substrate immunoassays for detection of Salmonella in all foods: comparative study. J. Assoc. Off. Anal. Chem. 73:961-968.
Daefler S. 1999. Type III secretion by Salmonella typhimurium does not require contact with a eukaryotic host. Mol. Microbiol. 31:45-51.
Daly, M., Buckley, J., Power, E., O’Hare, C., Cormican, M., Cryan, B., Wall, P. G. and Fanning, S. 2000. Molecular characterization of Irish Salmonella enterica serotype Typhimurium: detection of class I integrons and assessment of genetic relationships by DNA amplification fingerprinting. Appl. Environ. Microbiol. 66: 614-619.
Dahiya, R. S. and Speck, M. L.1968. Hydrogen peroxide formation by lactobacilli and its effect on Staphylococcus aureus. J Dairy Sci. 51:1068-1072.
D’Aoust, J. Y and Pivnick, H. 1976. Small infectious doses for Salmonella . Lancet. 1:866.
Datta, A. R., Wentz, B. A. and Russell, J. 1990. Cloning of the listeriolysin O gene and development of specific gene probes for Listeria monocytogenes. Appl. Environ. Microbiol. 56:3874-3877.
Darwin, K. H. and Miller, V. L. 1999. Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin. Microbiol. Rew. 12:405-428.
Davies, D. G. and Geesey, G. G. 1995. Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl. Environ. Microbiol. 61:860-867.
de Valk, Vaillant, H. V. and Goulet, V. 2000. Epidemiology of human Listeria infections in France. Bull. Acad. Natl. Med. 184:267-274.
DeGroote, M. A., Ochsmer, U. A., Shiloh, M. U., Nathan, C., Fang, F. C. 1997. Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc. Natl. Acad. Sci. USA 94:13997-14001.
Deneer, H. G., and Boychuk, I. 1991. Species-specific detection of Listeria monocytogenes by DNA amplification. Appl. Environ. Microbiol. 57:606-609.
Drago, L., Gismondo, M. R., Lombardi, A., Haen, De and Gozzini, L. 1997. Inhibition of in vitro frowth of enteropathogens by new Lactobacillus strains of human intestinal origin. FEMS Microbiol Lett. 153: 455-463.
Dziadkowiec, D., Mansfield, L.P. and Forsythe, S. J. 1995. The detection of Salmonella in skimmed milk powder enrichments using conventional methods and immunomagnetic separation. Lett. Appl. Microbiol. 20:361-364.
Edwards, M. C., and Gibbs, R. A.1995. Multiplex PCR, p.157-171. In C. W. Dieffenbach and Dveksler, G. S. (ed.), PCR primer a laboratory manual, CSHL Press, Plainview, New York.
Elder, R. O., Duhamel, G. E., Mathiesen, M. R., Erickson, E. D., Gebhart, C. J. and Oberst, R. D. 1997. Multiplex polymerase chain reaction for simultaneous detection of Lawsonia intracellularis, Serpulina hyodysenteriae, and Salmonellae in porcine intestinal specimens. J. Veter. Dis. Invest. 9: 281-286.
Elsinghorst, E. A., Baron, L. S. and Kopecko, D. J. 1989. Penetration of human intestinal epithelial cells by Salmonella: molecular cloning and expression of Salmonella typhi invasion determinants in Escherichia coli. Proc. Natl. Acad. Sci. U S A. 86:5173-5177.
Erin, E. and Connor, M.D. 1998. Sulfonamide antibiotics. Prim. Care Update. 5: 32-35.
Falkow, S. 1997. What is pathogen? ASM News 63: 359-365.
Fang, C. T. and Chang, S, T. 1998. Optimal use of antibiotics. Current Medical Science (Taiwan). 25(6): 33-41.
Fantasia, M., Paglietti, B., Filetici, E., Anastasio, M. P., and Rubino, S. 1997. Conventional and molecular approaches to isolates of Salmonella hadar from sporadic and epidemic cases. J. Appl. Microbiol.82: 494-498.
Hitchins, A. D. 1995. FDA Bacteriologtical Analytical Manual, 8 ed., Chapter 10. Listeria monocytogenes.
Feld, N. C., Ekeroth, L., Gradel, K. O., Kabell, S. and Madsen, M. 2000. Evaluation of a serological Salmonella mix-ELISA for poultry used in a national surveillance programme. Epidemiol. Infect. 125: 263-268
Fierer, J. 2001. Extra-intestinal Salmonella infections: The significance of spv genes. Clin Infect Dis. 32: 519-520.
Fitts, R., Diamond, M., Hamilton, C. and Neri, M. 1983. DNA-DNA hybridization assay for detection of Salmonella spp. in foods. Appl. Environ. Microbiol. 46:1146-1151
Flowers, R. S., Klatt, M. J., Mozola, M.A., Curiale, M. S., Gabis, D.A. and Silliker, J. H.1987. DNA hybridization assay for detection of Salmonella in foods: collaborative study. J. Assoc. Off. Anal. Chem. 70: 521-529.
Fluit, A. C. and Schmitz, F. J. 1999. Class 1 integrons, gene cassettes, mobility, and epidemiology. Eur. J. Clin. Microbiol. Infect. Dis. 18:761-770.
Fluit, A. C., Torensma, R., Visser, M. J. C., Aarsman, C. J. M., Poppelier, M. J. J. G., Keller, B. H. I., Klapwijk, P. and Verhoef, J.1993a. Detection of Listeria monocytogenes in cheese with the magnetic immuno-polymerase chain reaction assay. Appl. Environ. Microbiol. 59:1289-1293.
Fluit, A. C., Widjojoatmodjo, M. N., Box, A. A., Torensma, R. and Verhoef, J. 1993b. Rapid detection of Salmonellae in poultry with the magnetic immuno-polymerase chain reaction assay. Appl. Environ. Microbiol. 59:1342-1346.
Food and Drug Administration 1995. Bacteriological Analytical Manual, 8th edn. Arlington, VA, USA: Association Official Analytical Chemists.
Forestier, C., Champs, C. D., Vatoux, C. and Joly, B. 2001. Probiotic activities of Lactobacillu casei rhamnosus: in vitro adherence to intestinal cells and antimicrobial properties. Res. Microbiol. 152:167-173.
Foster, J. W. 1991. Salmonella acid shock proteins are required for the adaptive acid tolerance response. J. Bacteriol. 173:6896-6902.
Foster, J. W., and Bearson, B. 1994. Acid-sensitive mutants of Salmonella typhimurium identified through a dinitrophenol lethal screening strategy. J.
Foster, J. W., and Hall, H. K. 1990. Adaptive acidification tolerance response of Salmonella typhimurium. J. Bacteriol. 172: 771-778.
Foster, J. W., and Hall, H. K. 1991. Inducible pH homeostasis and the acid tolerance response of Salmonella typhimurium. J. Bacteriol. 173:5129-5135.
Fuller, R.1986. Probiotics. J. Appl. Bacteriol. 61:1s-7s.
Fuller, R. and Brooker, B. E.1974. Lactobacilli which attach to the crop epithelium of the fowl. Am J Clin Nutr. 27:1305-1312.
Galán, J. E. and Curtiss III R. 1989. Cloning and molecular characterizationof genes whose products allow Salmonella typhimurium to pentrate tissue culture cells. Proc. Natl.Acad, Sci. USA 86: 6383-6387.
Galán, J. E., Pace, J. and Hayman, M.J. 1992 Involvement of the epidermal growth factor receptor in the invasion of cultured mammalian cells by Salmonella typhimurium.Nature.357: 588-589.
Giannasca, K. T., Giannasca, P. J. and Neutra, M. R.1996. Adherence of Salmonella typhimurium to Caco-2 cells: identification of a glycoconjugate receptor. Infect Immun. 64:135-145.
Gibert, I., Barbe, J. and Casadesus, J. 1990, Distribution of insertion sequence IS200 in Salmonella and Shigella. J. Gen. Microbiol. 136 :2555-60.
Gilliland, S. E., T. E. Staley, and L. J. Bush. 1984. Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. J. Dairy Sci. 67:3045.
Gilot, P., Hertmans, C., Yde, M., Gigi, J., Janssens, M., Genicot, A., Andre, P. and Wauters, G.1997. Sporadic case of Listeriosis associated with the consumption of a Listeria monocytogenes-contaminated ''Camembert'' cheese. J. Infect. 35:195-197.
Ginocchio, C.C., Rahn, K., Coarke, R. C., and Galan, J. E. 1997. Naturally occurring deletion in the centisome 63 pathogenicity island of environmental isolates of Salmonella spp. Infect. Immun. 65(4):1267-1276.
Gismondo, M.R., Drago, L., and Lombardi, A.1999. Review of probiotics available to modify gastrointestinal flora. Int. J. Antimicrob. Agents. 12:287-292.
Glynn, M. K., Bopp, C., Dewitt, W., Dabney, P., Mokhtar, M. and Angulo, F. J. 1998. Emergence of multidrug-resistant Salmonella enterica serotype Typhimurium DT104 infections in the United States. N. Engl. J. Med. 338:1333-1338.
Gomez, T. M., Motarjemi, Y., Miyagawa, S., Kaferstein, F. K. and Stohr, K. 1997. Foodborne Salmonellosis. World Health Stat. Q. 50: 81-89.
Gopal, P. K., Prasad, J., Smart, J. and Gill, H. S. 2001. In vitro daherence properties of Lactobacillus rhamnosus DR 20 and Bifidobacterium lactis DR 10 strains and their antagonistic activity against an enterotoxigenic Escheriachia coli. Int. J. Food. Microbiol. 67: 207-216.
Granato, D., Perotti, F., Masserey, I., Rouvet, M., Golliard, M., Servin, A., Brassart, D. 1999. Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. Appl. Environ. Microbiol. 65:1071-1077.
Groisman, E. A. and Ochman, H. 1997. How Salmonella became a pathogen. Trends in Microbiol. 5:343-349.
Gross, U., Tsche, H., Bednarek, I. and Frosch, M. 1998. Antibiotic resistance in Salmonella enterica serotype Typhimurium. Eur. J. Clin. Microbiol. Infect. Dis. 17: 385-387.
Gulig, G. A., Danbara, H., M, Guieny, D. G, Lax, A. J.,Norel, F. and Rhen, M. 1993. Molecular analysis of spv virulence genes of the Salmonella virulence plasmids. Mol. Microbiol. 7: 825-830.
Gulig, P. A., Doyle, T. J., Hughes, J. A., Matsui, H. 1998. Analysis of host cells associated with the Spv-mediated increased intracellular growth rate of Salmonella typhimurium in mice. Infect. Immun. 66:2471-2485.
Gulig, P. A. 1990. Virulence plasmids of Salmonella typhimurium and other Salmonellae. Microb. Pathogen. 8: 3-11.
Gulig, P. A., Doyle, T. J., Clare-Salzler, M. J. 1997. Systemic infection of mice by wild-type but not spv- Salmonella typhimurium is enhanced by neutralization of gamma interferon an tumor necrosis factor alpha. Infect. Immun. 65; 5191-5197.
Hall, R. M. and Stokes, H. W. 1993. Integrons: novel DNA elements which capture genes by site-specific recombination Genetica. 90:115-132.
Hall, R. M., Brookes, D. E. and Stokes, H. W. 1991. Site-specific insertion of genes into integrons: role of the 59-base element and determination of the recombination cross-over point. Mol. Microbiol. 5: 1941-1959.
Hansen-Wester, I. and Hensel, M. 2001. Salmonella pathogenicity islands encoding type III secretion systems. Microbes Infect. 3: 549-559.
Hart, C. A. 1998. Antibiotic resistance: an increasing problem?B. M. J. 316: 1255-1256.
Hashimoto, Y., Itho, Y., Fujinaga, Y., Khan, A. Q., Sultana, F., Miyake, M., Hirose, K., Yamamoto, H. and Ezaki, T.1995. Development of nested PCR based on the ViaB sequence to detect Salmonella typhi. J Clin Microbiol. 33:775-777.
Hauri, H. P., Sterchi, E. E., Bienz, D., Fransen, J. A. M. and A. Marxer. 1985. Expression and intracellular transport to microvillus membrane hydrolases in human intestinal epithelial cells. J. cellular Biology 101:838-851.
Heffernan, H. M. 1991. Antibiotic resistance among Salmonella from human and other sources in New Zealand. Epidemiol. Infect. 106: 17-23.
Hensel, M., Shea, J. E., Waterman, S. R., Mundy, R., Nikolaus, T., Banks, G., Vazquez-Torres, A., Gleeson, C., Fang, F. C. and Holden, D. W.1998. Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol. Microbiol. 30:163-74.
Herikstad, H., Hayes, P., Mokhtar, M., Fracaro, M. L., Threlfall, E. J. and Angulo, F. J. 1997. Emerging quinolone-resistant Salmonella in the United States. Emerg. Infect. Dis. 3: 371-372.
Heurtin-Le, C. C., Donnio, P. Y., Perrin, M., Travert, M. F. and Avril, J. L. 1999. Increasing incidence and comparisom of nalidixic acid-resistant Salmonella enterica subsp. Enterica serotype Typhimurium isolates from humans and animals. J. Clin. Microbiol. 37: 266-269.
Hill, L. R. An index to deoxyribonucleic acid base compositions of bacterial species. J. Gen. Microbiol. 44. 419-437.
Ho, J. L., Shands, K. N., Friedland, G., Eckind, P. and Fraser, D. W. 1986. An outbreak of type 4b Listeria monocytogenes infection involving patients from eight Boston hospitals. Arch. Intern. Med. 146:520-524.
Hollingshead, S. K. and Vapnek, D. 1985. Nucleotide sequence analysis of a gene encoding a streptomycin/spectinomycin adenyltransferase. Plasmid. 13:17-30.
Hormaeche, C. E., Brock, J. and Pettifor, P. 1980. Natural resistance to mouse typhoid: possible role for the macrophage, In Genetic Control of Natural Resistance to Infection and Malignancy. E. Skamene, P. A. L. Kongshavn, and M. Landy, eds. Academic Press, New York, p.121.
Hudault, S., V. Lievin, M.-F. Bernet-Camard and A. L. Servin. 1997. Antagonistic activity exerted in vitro and in vivo by Lactobacillus casei (strain GG) against Salmonella typhimurium C5 infection. Appl. Environ. Microbiol. 63:513-518.
Hueck, C, J. 1998. Type III protein secretion system in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev.62: 379-433.
Huovinen, P. and Jacoby, G. A. 1991. Sequence of PSE-1 beta-lactamase gene. Antimicrob. Agents Chemother. 35: 2428-2430.
Ibrahim, G. F., Lyons, M. J., Walker, R. A. and Fleet, G. H. 1985. Rapid detection of Salmonellae by immunoassays with titanous hydroxide as the solid phase. Appl. Environ. Microbiol. 50:670-675.
ICMSF. 1994. Choice of sampling plan and criteria for Listeria monocytogenes. Int. J. Food Microbiol. 22:83-96.
Jacobsen, C. N., Nielsen, R. V., Hayford, A. E., Møller, P. L., Michaelsen, K. F., Erregaard, M. A., Sandstrom, B., Tvede, M. and Jakobsen, M. 1999. Screening of probiotic actibities of forty-seven strains of Lactobacillus spp. By in vitro techniques and evaluation of the colonization ability of five selectec strains in human . Appl. Environ. Microbiol. 65: 4949-4956.
John, G. W., Rabert, D. .K., Svinarich, D. M., Whitfideld. H. J. 1982 Association of adhesive, invasive, and virulence phenotypes of Salmonella typhimurium with autonomous 60-megadalton plasmid. Infect. Immun. 38:476-486.
Johnston, A. M. 1998. Use of antimicrobial drugs in veterinary practice. BMJ 17: 665-667.
Johnston, C., Pugues, D. A., Hueck, C. J., Lee, C. A. and Miller, S. I. 1996. Transcriptional activation of Salmonella typhimurium invasion genes by a member of the phosphorylated response-regulator superfamily. Mol. Microbiol. 22: 715-727.
Jones, D. D., Law, R. and Bej, A. K.1993. Detection of Salmonella spp. in oysters using polymerase chain reaction (PCR) and gene probes. J. Food Sci. 58:1191-1197.
Kado, C. I. and Liu, S. T. 1981. Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol. 145:1365-1373.
Kasturi, K. P., Panigrahi, K. D., Ganguly, N. K., Nayak, N., Ayyagaru, A., and Khuller, M. 1991. Enterotoxin production & mouse virulence of clinical isolates of Salmonella typhimurium strains. Indian J. Med. Res. 93:166-170.
Kauffmann, F. 1966. The bacteriology of Enterobacteriaceae. Munksgaard, Copenhagen, Denmark.
Khakhria, R., Woodward, D., Johnson, W. M. and Poppe, C. 1997. Salmonella isolated from human, animals and other sources in Canada, 1983-1992. Epidemiol. Infect. 119: 15-23.
Khan, A. A., Nawaz, M. S., Khan, S. A. and Cerniglia, C. E. 2000. Detection of multidrug-resistant Salmonella typhimurium DT104 by multiplex polymerase chain reaction. FEMS Microbiol. Lett. 182:355-360.
Khan, M. I and Nguyen A. V. 1995. A Salmonella-specific DNA probe and its use in southern hybridization for differentiation of Salmonella enteritidis. Avian. Dis. 39: 368-374
Khan, M. I and Nguyen A. V. 1995. A Salmonella-specific DNA probe and its use in southern hybridization for differentiation of Salmonella enteritidis. Avian. Dis. 39: 368-374
Khan, S. A., Everest, P., Servos, S., Foxwell, N., Zahringer, U., Brade, H., Rietschel, E. T., Dougan, G., Charles, I. G. and Maskell, D. J. 1998. A lethal role for lipid A in Salmonella infections. Mol. Microbiol. 29: 571-579.
Klein, P. G. and Juneja, V. K.1997. Sensitive detection of viable Listeria monocytogenes by reverse transcription-PCR. Appl. Environ. Microbiol. 63:4441-4448.
Kociubinski, G., Pérez, P., Añón, M. and De Antoni, G. 1996. A method of screening of highly inhibitory lactic acid bacteria. J. Food Prot. 59:1-8.
Kong, R. Y. C., Dung, W. F., Vrijmoed, L. L. P. and Wu, R. S. S. 1995. Co-detection of three species of water-borne bacteria by multiplex PCR. Marine Pollution Bulletin. 31:317-324.
Koupal, L. R. and Deibel, R. H.1975. Assay, characterization, and localization of an enterotoxin produced by Salmonella. Infect Immun. 11:14-22.
Kozak, J., Balmer, T., Byrne, R. and Fisher, K.1996. Prevalence of Listeria monocytogenes in foods: incidence in dairy products. Food control 7:215-221.
Krieg, N. R. and Holt, J. G. 1984. Bergey’s manual of systematic bacteriology. VI, p. 427-458. Williams &Willkins, MD. USA.
Kroemer, G. P., Petit, N., Zamzami, N., Vayssiere, J. L. and Mignotte, B. 1995. The biochemistry of programmed cell death. FASEB. J. 9: 1277-1287.
Krysinski, E. P. and Heimsch, R. C. 1977. Use of enzyme-labeled antibodies to detect Salmonella in foods. Appl. Environ. Microbiol. 33: 947-954.
Kubori, T., Matsushima, Y., Nakamura, D., Uralil, J., Lara-Tejero, M., Sukhan, A., Galan, J. E. and Aizawa, S. I.1998. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. 280:602-605.
Lampel, K. A., Keasler, S. P. and Hanes, D. E. 1996. Specific detection of Salmonella enterica serotype Enteritidis using the polymerase chain reaction. Epidemiol. Infect. 116: 137-145.
Lee, C. A. and Falkow, S. 1990. The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc. Natl. Acad. Sci. USA 87: 4304-4308.
Lee, H. A., Wyatt, G. M., Bramham, S. and Morgan, M. R. A. 1990. Enzyme-linked immuno-sorbent assay for Salmonella typhimurium in food: Feasibility of 1-day Salmonella detection. Appl. Environ. Microbiol. 56:1541-1546.
Lee, L. A., Puhr, N.D., Maloney, E. K., Bean, N. H. and Tauxe, R. V. 1994. Increase in antimicrobial-resistant Salmonella infections in the United States. J. Infect. Dis. 170: 28-134.
Lee, V. T. and Schneewind, O. 1999. Type III secretion machines and the pathogenesis of enteric infections caused by Yersinia and Salmonella spp.
Immunol. Rev. 168:241-55.
Lehner, A., Loncarevic, S., Wanger, M., Kreike, J. and Brandl, E. 1999. A rapid differentiation of Listeria monocytogenes by use of PCR-SSCP in the listeriolysin O (hlyA) locus. J. Microbiol. Methods. 34:165-171.
Leung, K.Y. and Finlay, B.B. 1991. Intracellular replication is essential for the virulence of Salmonella typhimurium. Proc. Natl. Acad. Sci. USA. 88:11470-11474.
Li, X., Boudjellab, N. and Zhao, X. 2000. Combined PCR and slot blot assay for detection of Salmonella and Listeria monocytogenes. Int. J. Food Microbiol. 56:167-177.
Lillard, H. S. 1986. Role of fimbriae and flagella in the attachment of Salmonella typhimurium to poultry skin. J. Food Sci. 51:54-56.
Lin, C. K. and Tsen, H. Y. 1996. Use of two 16S DNA targeted oligonucleotides as PCR primers for the specific detection of Salmonella in foods. J. Appl. Bacter. 80:659-666.
Lindgren S. W., Stojiljkovic, I. and Heffron, F. 1996. Macrophage killing is an essential virulence mechanism of Salmonella typhimurium. Proc. Natl. Acac. Sci. 93:4197-4201.
Liu, J. L., Benson, C. E., Munro, D.S. and Wolf, B. 2001. Sensitive and rapid immunoassays for Salmonella enteritidis. J. Clin. Lab. Anal. 15:165-170.
Lostroh, C. P., Bajaj, V., and Lee, C. A. 2000. The cis requirements for transcriptional activation by HilA, a virulence determinant encoded onSPI-1. Mol. Microbiol. 37:300-315.
Lovett, J. 1989. Listeria monocytogenes. P.284-311. In M. P. Doyle (ed). Foodborne bacterial pathogens. Marcel Dekker Inc, New York.
Lorca, G., Torino, M. I., Font, de Valdez G. and Ljungh, A. A. 2002. Lactobacilli express cell surface proteins which mediate binding of immobilized collagen and fibronectin. FEMS Microbiol. Lett. 206:31-37.
Lu, S., Manges, A. R., Xu, Y., Fang, F. C. and Riley, L. W. 1999. Analysis of virulence of clinical isolates of Salmonella enteritidis in vivo and in vitro. Infect. Immun. 67:5651-5657.
Lundberg, B., Wolf, JR. R. E., Dinauer, M. C., Xu, Y. 1999. Glucose 6-phosphate dehydrogenase is required for Salmonella typhimurium virulence and resistance to reactive oxygen and nitrogen intermediates. Infect. Immun. 67:436-438.
MacClain, D. and Lee, W. H. 1988. Development of USDA-FSIS method for isolation of Listeria monocytogenes from raw meat and poultry. J. A. O. A. C. 71:660-664.
Mackie, J. T., Lightfoot, D., Adamson, M. and Wishart, M. 1996. Antibiotic resistant phage types of Salmonella typhimurium in dairy cattle. Austral. Vet. J. 73: 194-195.
Mahon, J. and Lax, A. J. 1993. A quantitative polymerase chain reaction method for the detection in avian faeces pf salmonellas carrying the spv R gene. Epidemiol. Infect. 111: 455-464.
Manzano, M., Cocolin, L., Ferroni, P., Gasparini, V., Narduzzi, D., Cantoni, C. and Comi, G.1996. Identification of Listeria species by a semi-nested polymerase chain reaction. Res. Microbiol. 147: 637-640.
Marcus, S. L., Brumell, J. H., Pfeifer,, C. G. and Finlay, B. B. 2000. Salmonella pathogenicity islands: big virulence in small packages. Microbes. Infect. 2: 145-156.
Markogiannakis, A., Tassios, P. T., Lambiri, M., Ward, L. R., Kourea-Kremastinou, J. and Legakis, N. J. 2000. Multiple clones within multidrug-resistant Salmonella enterica serotype Typhimurium phage type DT104. J. Clin. Microbiol. 38 (3): 1269-1271.
Marteau, P., M. Minekus, R. Havenaar and J. H. J. Huis In’t Veld. (1997). Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: validation and the effects of bile. J. Dairy Sci. 80: 1031-1037.
Marteau, P. and Rambaud, J. C. 1993. Potential of using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiol. Rev. 12:207-220.
Mastroeni, P., Villarreal-Ramos, B and Hormaeche, C. E. 1993. Effect of late administration of anti-TNFa antibodies on a Salmonella infection in the mouse model. Microbial. Pathogen. 14: 473-480.
Matches, J. R. and Liston, J. 1968. Low temperature growth of Salmonella. J. Food Sci. 33:641-645.
Matsui, H., Abe, A., Suzuki, s., Kijima, M., Tamura, Y., Nakamura, M., Kawahara, K., and Danbara, H. 1993. Molecular mechanism of the regulation of expression of plasmid-encodedmouse bacteremia (mba) genes in Salmonella serovar choleraesuis. Mol. Gen. Genet. 236:219-226.
Mattingly, J. A. and Gehle, W. D. 1984. An improved enzyme immunoassay for the detection of Salmonella. J. Food Sci. 49:807-809.
McLauchlin J. 1987. Listeria monocytogenes, recent advances in the taxonomy and epidemiology of Listeriosis in humans. J Appl Bacteriol. 63:1-11.
McLauchlin, J. 1996. The relationship between Listeria and Listeriosis. Food Control 7:187-193.
Meng, J. and Doyle, M. P. 1998. Emerging and evolving microbial foodborne pathogens. Bull. Inst. Pasteur 96:151-164.
Miller. M. A. 1997. Widespread emergence in the United States of multiple drug-resistant type of Salmonella typhimurium. FDA Vet. 12: 5-6.
Minnich, S. A., Hartman, P. A. and Heimsch, R. C. 1982. Enzyme immunoassay for detection of salmonellae in foods. Appl. Environ. Micriobiol. 43:877-883.
Mitsui-Yamaguchi, t., Abe, A., Danbara, H. and Kawahara, k. 1997. Induction of TNF-a mRNA in murine macrophages by virulent and avirulent strains of Salmonella choleraesuis serovar Typhimurium and serovar Choleraesuis. Microb. Pathogen. 22:59-66.
Misra, A. K., and Kuila, R. K. (1992). Use of Bididobacterium bifidum in the manufacture of bifidus milk and its antibacterial activity. Lait. 72:213-220.
Monack, D. M., Raupach, B., Hromockyh, A. E. and Falkow, S. 1996. Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc. Natl. Acad. Sci. 93:9833-9838.
Murray, E. G., Webb, D. R., and Swann, M. B. R. 1926. A disease of rabbits characterized by large mononuclear leucocytosis caused by a hitherto undescribed bacillus Bacterium monocytogenes (n. sp). J. Pathol. Bacteriol. 29: 407-439.
Nakamura, M., Sato, S., Ohya, T., Suzuki, S. and Ikeda, S. 1985. Possible relationship of a 36-megadalton Salmonella enteritidis plasmid to virulence in mice. Infect. Immun. 47:831-833.
Nakano, M., Onozuka, K., Yamasu, H., Zhong, W. F. and Nakano, Y. 1992. Protective effects of cytokines in murine Salmonella. Adv Exp Med Biol. 319:89-95.
National Committee for Clinical Laboratory Standards: Performance Standards for Antimicrobial Disk Susceptibility Test. 1998. Approved standard M2-A6. NCCLS, Villanova, PA, U.S.A.
Nauciel, C. and Espinasse-Maes, F., 1992. Role of gamma interferon and tumor necrosis factor alpha in resistance to Salmonella typhimurium infection. Infect. Immun. 60; 450-454.
Niederhauser, C., Candrian, U., Höfelein, C. , Jermini, M., Bühler, H. P.,and Lüthy, J.1992. Use of polymerase chain reaction for detection of Listeria monocytogenes in food. Appl. Environ. Microbiol. 58:1564-1568.
Nord, C. E. and Edlund, C. 1990. Impact of antimicrobial agents on human intestinal microflora. J. Chemother. 2: 218-237.
Olsen, J. E., Aabo, S., Rasmussen, O. F. and Rossen, L. 1995. Oligonucleotide probes specific for the genus Salmonella and for Salm. typhimurium. Lett. Appl. Microbiol. 20: 160-163.
Pan, T-M., Wang, T. K., Lee, C. H., Chien, S. W. and Horng, C. B. 1997. Food-borne disease outbreaks due to bacteria in Taiwan, 1986 to 1995. J. Clin. Microbiol. 35: 1260-1262.
Pedersen, K. and Tannock, G. W. 1989. Colonization of the porcine gastro-intestinal tract by lactobacilli. Appl. Environ. Microbiol. 55:279-283.
Perdigon, G., Fuller, R. and Raya, R.2001. Lactic acid bacteria and their effect on the immune system.Curr. Issues Intest. Microbiol.2: 27-42.
Perdigon, G., Nader, de Macias M. E., Alvarez, S., Oliver, G. and Pesce, de Ruiz Holgado A. A. 1990. Prevention of gastrointestinal infection using immunobiological methods with milk fermented with Lactobacillus casei and Lactobacillus acidophilus. J. Dairy Res. 57:255-264.
Peterkin, P. I., Idziak, E. S. and Sharpe, A. N.1991. Detection of Listeria monocytogenes by direct colony hybridization on hydrophobic grid-membrane filters by using a chromogen-labeled DNA probe. Appl. Environ. Microbiol. 57:586-591.
Pfeifer, C. G., Marcus, S. L., Steele-Mortimer, O., Knodler, L. A. and Finlay, B. B. 1999. Salmonella typhimurium virulence genes are induced upon bacterial invasion into phagocytic and nonphagocytic cells. Infect. Immun. 67: 5690-5698.
Piddock, L. J. V. 1998. Fluoroquinolone resistance. BMJ. 317: 1029-1030.
Pinto, M., S. Robine-Leon, M. D. Kedinger, M. Triadou, N. Dussaulx, E. Lacroix, B. Simon-Assmann, P. Haffen, J. Fogh and A. Zweibaum. (1983). Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biology of the Cell. 47:323-330.
Popoff, M. Y., Bockemühl, J. and Brenner. F. W. 2000. Supplement 1998 (no. 42) to the Kauffmann-White scheme. Res. Microbiol. 151: 63-65.
Poppe, C., Smart, N., Khakjria, R., Johnson, W., Spika, J. and Prescott,J. 1998. Salmonella typhimurium DT 104: A virulent and drug-resistant pathogen. Can. Vet. 39: 559-565.
Prager, R., Fruth, A. and Tschäpe H. 1995. Salmonella enterotoxin (stn) gene is prevalent among strains of Salmonella enterica, but not among Salmonella bongori and other Enterobacteriaceae. FEMS Immun. Med. Microbiol. 12:47-50.
Prasad, R., Chopra, A. K., Peterson, J. W,, Pericas, R. and Houston, C. W. 1990. Biological and immunological characterization of a cloned cholera toxin-like enterotoxin from Salmonella typhimurium. Microb Pathog. 1990. 9:315-329.
Rabsch, W., Tschape, H. and Baumler, A. J. 2001. Non-typhoidal Salmonellosis: emerging problems. Microbes Infect. 3: 237-247.
Rahman, H. 1999. Prevalence of enterotosin gene (stn) among different serovars of Salmonella. Indian. J. Res. 110: 43-46.
Rahn, K., De Grandis, S. A., Clarke, R. C., McEwen, S. A., Galan, J.E., Ginocchio, C., Curtiss, R. 3rd, Gyles , C. L. 1992. Amplification of an invA gene sequence of Salmonella Typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol. Cell Probes 6:271-279.
Recchia, G. D., and Hall, R. M. 1995. Gene cassettes: a new class of mobile element. Microbiology 141:3015-3027.
Riikonen, P., Makela, P. H., Saarilahti, H., Sukupolvi, S., Taira, S. and Rhen, M. 1992. The virulence plasmid does not contribute to growth of Salmonella in cultured murine macrophages. Microb. Pathog. 13: 281-291.
Rijpens, N., Herman, L., Vereecken, F., Jannes, G., Smedt, J. D. and Zutter, L. D. 1999. Rapid detection of stressed Salmonella spp. in dairy and egg products using immunomagnetic separation and PCR. Int. J. Food Microbiol. 46:37-44.
Rijpens, N. P., Jannes, G., Van Asbroeck, M., Herman, L. M., Rossau, R.1995. Simultaneous detection of Listeria spp. and Listeria monocytogenes by reverse hybridization with 16S-23S rRNA spacer probes.
Mol Cell Probes.. 9:423-32.
Rocourt, J. and Bille, J. 1997. Foodborne Listeriosis. World Health Stat Q. 50:67-73.
Rossen, L., Norskow, P., Holmstrom, K. and Rasmussen, O. F. 1992. Inhibition of PCR by components of food sample, microbial diagnostic assays and DNA-extraction solutions. Int. J. Food Microbiol. 17:37-45.
Rotger, R. and Casadesus, J. 1999. The virulence plasmids of Salmonella. Intl Microbiol. 2 :177-184.
Rumeu, M. T., Suárez, M. A., Morales, S. and Rotger, R. 1997. Enterotoxin and cytotoxin production by Salmonella enteritidis strains isolated from gastroenteritis outbreaks. J. Appl. Microbiol. 82:19-31.
Salyers A. A. and Whitt, D. D.1994. Bacterial pathogenesis. p.233. Salmonella infections, ASM Press, Washington, D. C.
Sandefur, P. D. and Peterson, J. W. 1977. Neutralization of Salmonella toxin-induced elongation of Chinese hamster ovary cells by cholera antitoxin. Infect. Immun. 15:988-992.
Sandvang, D., Aarestrup, F. M. and Jensen, L. B. 1998. Characterization of integrons and antibiotic resistance genes in Danish multiresistant Salmonella enterica Typhimurium DT104. FEMS Microbiol. Lett. 160:37-41.
Sarem, F., Sarem-Damerdji, L. D., and Nicolas, J. P. 1996. Comparison of the adherence of three Lactobacillus strains to Caco-2 and Int-407 human intestinal cell lines. Lett. Appl. Microbiol. 22:439-442.
Savage, D. C. 1983. Mechanisms by which indigenous micro-organisms colonize gastrointestinal epithelial surfaces. Prog. Food. Nutr. Sci. 7:65-75.
Schiffrin, E. J., Brassart, D., Servin, A. L., Rochat, F. and Donnet-Hughes, A. 1997. Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection. 66:515S-520S.
Schlosser, W., Hogue, A., Ebel, E., Rose, B., Umholtz, R., Ferris, K. and James, W. 2000. Analysis of Salmonella serotypes from selected carcasses and raw ground products sampled prior to implementation of the pathogen reduction; hazard analysis and critical control point final rule in the US. Int. J. Food Microbiol. 30:107-111.
Schoeni, J. L., Glass, K. A., McDermott, J. L. and Wong, A. C. 1995. Growth and perneration of Salmonella enteritidis, Salmonella heidelberg and Salmonella typhimuirum in eggs. Int. J. Food Microbiol. 24:385-396.
Seyfarth, A. M., Wegener, H. C. and Frimodt-Moller, N. 1997. Antimicrobial resistance in Salmonella enterica. subsp. Enterica serovar Typhimurium from human and production animals. J. Antimicrob. Chemother. 40 : 67-75.
Sharp, J. C. M. 1990. Salmonellosis. Brit. Food J. 92:6-12.
Shaw, S. J., Blais, B. W. and Nundy, D. C. 1998. Performance of the Dynabeads anti-Salmonella system in the detection of Salmonella species in foods, animal feeds, and environmental samples. J. Food Prot. 61:1507-1510.
Skjerve, E. and Olsvik, O. 1991. Immunomagnetic separation of Salmonella from foods. Int. J. Food Microbiol. 14:11-17.
Solano, C., Sesma, B., Alvarez, M., Humphrey, T. J., Thorns, C. J. and Ganazo, C. 1998. Discrimination of strains of Salmonella enteritidis with differing levels of virulence by an in vitro Glass adherence Test. J. Clin. Microbiol. 36:674-678.
Song, J. H., Cho, H., Park, M., Na, D. S., Moon, H. B. and Pai, C. H. 1993. Detection of Salmonella typhi in the blood of patients with typhoid fever by polymerase chain reaction. J. Clin. Microbiol. 31: 1439-1443.
Stokes, H. W. and Hall. R. M. 1993. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol. Microbiol. 3: 1669-1683.
Stone, G. G., Oberst, R. D., Hays, M. P., McVey, S., and Chengappa, M. M. 1994. Detection of Salmonella serovars from clinical samples by enrichment broth cultivation-PCR procedure. J. Clin. Microbiol. 32 (7): 1742-1749.
Taege, A. J. 1999. Listeriosis: recognizing it, treating it, preventing it. Cleve. Clin. J. Med. 66:375-380.
Tanaka, H., Doesburg, K., Iwasaki T. and Mierau, I. 1999. Screening of lactic acid bacteria for bile salt hydrolase activity. J Dairy Sci. 82: 2530-2535.
Terakado, N., Sekizaki, T., Hashimoto, K. and Naitoh, S.1983. Correlation between the presence of a fifty-megadalton plasmid in Salmonella dublin and virulence for mice. Infect Immun.41:443-444.
Thomas, E. J. G., King, R. K., Burchak, J. and Gannon, V. P. J. 1991. Sensitive and specific detection of Listeria monocytogenes in milk and ground beef with the polymerase chain reaction. Appl. Environ. Microbiol. 57:2576-2580.
Thong, K. L., Ngeow, Y. F., Altwegg, M., Navaratnam, P. and Pang T. 1995. Molecular analysis of Salmonella enteritidis by pulsed-field gel electrophoresis and ribotyping. J. Clin. Microbiol. 33: 1070-1074.
Toit, M., Franz, C. M. A. P., Dicks, L. M. T., Schillinger, U., Haberer, P., Warlies, B., Ahrens, F., Holzafel, W. H. 1998. Characterization and selection of probiotic lactobacilli for a preliminary minipig feeding trial and their effect on serum cholesterol levels, faeces pH and faeces moisture content. Intl. J. Food Microbiol. 40:93-104.
Tosini, F., Visca, P., Luzzi, I., Dionisi, M., Pezzella, C., Petrucca, A., and Carattoli, A. 1998. Class 1 integron-borne multiple-antibiotic resistance carried by IncFI and IncL/M plasmids in Salmonella enterica serotype Typhimurium. Antimicrob. Agents Chemother. 42 (12): 3053-3058.
Trelfall, E. J., Frost, J. A., Ward, L. R. and Rowe, B. 1996. Increasing spectrum of resistance in multiresistant Salmonella . Lancet. 347: 1052-1053.
Tremolieres, F. 1996. Food poisoning-infections in metropolitan France. Rev. Prat. 46: 158-165.
Tuomola, E. M., Ouwehandm A. C. and Salminen, S. J.1999. The effect of probiotic bacteria on the adhesion of pathogens to human intestinal mucus. FEMS Immunol. Med. Microbiol. 26:137-142.
Tsen, H. Y., Hu, H. H., Lin, J. S., Huang , C. H. and Wang, T. K. 2000. Analysis of the Salmonella typhimurium isolated from food poisoning cases by molecular subtyping methods. Food Microbiol. 17: 143-152.
Tsen, H. Y., Chen, M. H., Shieh, J. S., Wang, S. J. and Hu, N. T. 1989. Possible use of a 1.8 kb DNA fragment for the specific detection of Salmonella in foods. Journal of Fermentation and Bioengineering. 68:1-8.
Tsen, H. Y., Liou, J. W. and Lin, C. K. 1994. Possible use of a polymerase chain reaction method for specific detection of Salmonella in beef. Journal of Fermentation and Bioengineering. 77:137-143.
Tsen, H. Y., Wang, S. J. and Green, S. S. 1991. Salmonella detection in meat and fish by membrane hybridization with chromogenic / phosphatase / biotin DNA probe. J. Food Sci. 56:1519-1523.
Van Dissel, J. T., Leijh, P. C. J. and van Furth, R. 1985. Differences in initial rate of intracellular killing of Salmonella typhimurium by resident peritoneal macrophages from various mouse strains. J. Immunol. 134:3404.
Van Netten, P., Perales, I., van de Moosdijk, A., Curtis, G. D. and Mossel, D. A. 1989. Liquid and solid selective differential media for the detection and enumeration of L. monocytogenes and other Listeria spp. Int. J. Food Microbiol. 8:299-316.
Wang, R. F., Cao, W. W. and Johnson, M. G. 1992. 16S rRNA-based probes and polymerase chain reaction method to detect Listeria monocytogenes cells added to foods. Appl. Environ. Microbiol. 58:2827-2831.
Wang, T. K., Tseng, T. C., Lee, J. H., Wang, W. T., Tsai, J. L., Ho, S. I. and Pan, T. M. 1994. Analysis of Salmonella serovars in Taiwan by the phase induction method. Chinese J. Microbiol. Immunol. (Taipei) 27: 13-24.
Ward, L. R., Threlfall, E. J. and Rowe, B. 1990. Multiple drug resistance in salmonellae in England and Wales: a comparison between 1981 and 1988. J. Clin. Pathol. 43: 563-566.
Way, J. S., Josephson, K. L., Pillai, S. D., Abbaszadegan, M., Gerba, C. P. and Pepper, I. L. 1993. Specific detection of Salmonella spp. by multiplex polymerase chain reaction. Appl. Environ. Microbiol. 59:1473-1479.
Welshimer, H. J. 1960. Survival of Listeria monocytogenes in soil. J. Bacteriol. 80: 316-320.
Weis, J. and Seeliger, H. P. R. 1975. Incidence of Listeria monocytogenes in nature. Appl. Microbiool. 30:29-32.
Wernars, K., Heuvelman, C. J., Chakraborty, T. and Notermans, S. H. W.1991. Use of the polymerase chain reaction for direct detection of Listeria monocytogenes in soft cheese. J. Appl. Bacteriol. 70:121-126.
Widjojoatmodjo, M.N., Fluit, A. C., Torensma, R., Verdonk, G. P. and Verhodf, J. 1992. The magnetic immuno polymerase chain reaction assay for direct detection of Salmonellae in fecal samples. J. Clin. Micrbiol. 30:3195-3199.
Williamson, C. M., Pullinger, G.D. and Lax, A. J. 1988. Identification of an essential virulence region on Salmonella plasmids. Microb Pathog. 5: 469-473.
Wilmes-Riesenbergh, M. R., Bearson, B., Foster, J. W. and Curtiss III, R. 1996. Role of the acid tolerance response in virulence of Salmonella Typhimurium. Infect. Immun. 64: 1085-1092.
Wilson, I. G. 1997. Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 63: 3741-3751.
Wilson, K. H., Blitchington, R. B. and Greene, R. C. 1990. Amplification of acterial 16S ribosomal DNAa with polymerase chain reaction. J. Clin. Microbiol. 28:1942-1946.
Wilson, M., Seymour, R. and Henderson, B. 1998. Bacterial perturbation of cytokine networks. Infect. Immun. 66: 2401-2409.
Winsstanley, C.and Hart, C. A. 2001. Type III secretion systems and pathogenicity islands, J. Med. Microbiol. 50:116-126.
Yang, Y. L., Liu, C. C., Wang, S. M., Wu, J. J., Huang, A. H.and Cheng, C.P. 1998. High rates of antimicrobial resistance among clinical isolates of nontyphoidal Salmonella in Taiwan. Eur. J. Clin. Microbiol. Infect. Dis. 17:880-883.
Zhu, Q., Lim, C. K. and Chan, Y. N. 1996. Detection of Salmonella typhi by polymerase chain reaction. J. Appl. Bacteriol. 80: 244-251.
Zweibaum, A., M. Laburthe, E. Grasset and D. Louvard. (1991). Use of cultured cell lines in studies of intestinal cell differentiation and function. In Handbook of Physiology. The Gastrointestinal System, vol. IV:223-255.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊