跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/06 21:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁雅婷
研究生(外文):Ya-Ting Liang
論文名稱:枸杞之抗氧化與抗致突變性質及其多醣組成分析
論文名稱(外文):Antioxidant and Antimutagenic Properties and Polysaccharide Composition Analysis of Lyciuum chinense
指導教授:毛正倫毛正倫引用關係
指導教授(外文):Jeng-Leun Mau, Ph. D.
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:182
中文關鍵詞:枸杞抗氧化性質抗致突變性質多醣結構分析
外文關鍵詞:Lycium chinenseantioxidant propertiesantimutagenic propertiespolysaccharidestructural analysis
相關次數:
  • 被引用被引用:24
  • 點閱點閱:838
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究以枸杞作為樣品,對其抗氧化及抗突變性質進行評估,並萃取枸杞之多醣,探討其多醣組成與結構特性。研究所用之樣品枸杞果實含有26.94%水分,其乾物成分中主要以碳水化合物及粗纖維為主,亦含有高量之粗蛋白(13.15%)。
抗氧化性質測定方面,枸杞甲醇萃取物具有較佳的抗氧化性質,不論是在抗氧化力(共軛雙烯法)、還原力、捕捉1,1-二苯基-2-苦味基團、羥自由基及螯合亞鐵離子之能力會隨著其濃度增加而增強;枸杞水萃取物方面具有相同結果,但其效果不如枸杞甲醇萃取物顯著。在天然抗氧化成分方面,枸杞甲醇萃取物中含有抗壞血酸、生育醇、b-胡蘿蔔素和總酚類化合物,但枸杞水萃取物中並沒有發現到生育醇和b-胡蘿蔔素。枸杞甲醇、冷水、熱水和加熱萃取物之總抗氧化成分含量分別為6.29、4.04、6.58和7.57 mg/g。
以安氏試驗法測試枸杞甲醇及水萃取物之毒性、致突變性以及對直接致突變劑N-甲基-N’-硝基-N-亞硝胍、4-硝基-N-氧化物和間接致突變劑苯并[a]之抗突變性。結果顯示在此系統中枸杞水萃取物對鼠傷寒沙門氏桿菌變異株TA97、TA98、TA100及TA102,無論添加或未添加S9鼠肝混合物,都不具毒性及致突變性,而甲醇萃取物在濃度5.0 mg/plate則具有毒性。於抗致突變性測試方面以甲醇萃取物之表現較水萃取物佳。
以2、5小時加熱及熱鹼萃取之枸杞多醣的總醣含量約在43.87~62.83%,其單醣組成以葡萄糖、甘露糖及核糖為主。以膠體過濾層析分離枸杞多醣後得知其分子量在一萬Da以下。在枸杞多醣結構方面,利用X-光繞射儀分析、示差掃描熱分析(DSC)及核磁共振光譜分析(NMR)得知,枸杞多醣之結晶構形以熱鹼萃取者比熱水萃取者排列緊密且規則。
由DSC與NMR分析圖中發現2小時加熱萃取之多醣所含的糖類官能基較5小時熱水萃取物及熱鹼萃取之多醣少,但其吸收峰表現卻較為顯著,DSC結果中也顯示出2小時加熱萃取之枸杞多醣具有較大的放熱反應,推測2小時加熱萃取之多醣較為不純,因此對於多醣構形之明確機制尚待更進一步的純化後再加以探討。
綜合本研究之結果可知枸杞中主要之成分為碳水化合物、粗纖維及粗蛋白,且其甲醇萃取物較水萃取物有良好的抗氧化性而水萃取物不具毒性及致突變性。加熱及熱鹼萃取兩種多醣皆含有小分子之多醣,且單糖組成相似。
關鍵字:枸杞、抗氧化性質、抗致突變性質、多醣、結構分析
The objectives of this research were to study the antioxidant, antimutagenic properties of methanolic and water extracts from L. chinense Mill. , the monosaccharide constituents, and structural analysis of polysaccharides. Their structures were elucidated by spectroscopic analysis and comparison with known compounds. Fruit of L. chinense contained 26.94% of moisture. In dry matter, fibers and carbohydrates were major components, and crude protein (13.15%).
Methanolic extracts from L. chinense showed very high antioxidant properties. Antioxidant activity using conjugated diene method, the reducing power, the scavenging effect on 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH) and the chelating effect on ferrous ions of methanolic and water extracts from L. chinense increased with the increased concentration, but water extracts was not as good as expected. Naturally occurring antioxidant compounds, including ascorbic acid, b-carotene, tocopherols, and total phenols were found in methanolic extracts from L. chinense. However b-carotene and tocopherols were not found in water extracts. Total antioxidant components were 6.29, 4.04, 6.58 and 7.57 mg/g for methanolic, cold water, boiling water, heating water to boiling extracts, respectively.
The concentration of water extracts from L. chinense used in this study was neither toxicity nor mutagenic to the Salmonella typhimurium TA97, TA98, TA100 and TA102. Methanolic extracts of L. chinense contained antimutagens capable of inhibiting the mutagenicity of direct-acting such as MNNG, NQNO the indirect-acting mutagen, B[a]P.
The total sugar contents of boiling alkaline extracts from L. chinense were higher than boiling water extracts. The compositions of neutral monosaccharide in boiling water extracts were ribose, mannose and glucose. Glucose was the major monosaccharide in boiling water and alkaline extracts of polysaccharides from L. chinense. Polysaccharides of L. chinense were separated using gel filtration, and showed a molecular of about 104 Da. X-ray, DSC and NMR elucidated their structure. In DSC and 1H, 13C-NMR spectral comparism showed the polysaccharides crystal of boiling alkaline extracts were more tight and regulation. The DSC and NMR spectrum showed functional group of sugar from water extracts of heating to boiling for 2 hours polysaccharides was lowest, but the absorbance peak markedly. The exothermic behaviors of water extracts of heating to boiling for 2 hours polysaccharides were examined by DSC, so supposition it impure. It could be study their physiological activities, advance analysis. For the application in healthy food, further research on the mechanism of polysaccharide properties is in progress.
Considering these studies, the major components in L. chinense were carbohydrates and fibers; methanolic extracts from L. chinense in the antioxidant activity better than water extracts. No toxicity or mutagenicity in S. typhimurium TA97, TA98, TA100 and TA 102. Both boiling water and alkaline extracts contain small molecular polysaccharide, and similar monosaccharide components.
Keyword: Lycium chinense, antioxidant properties, antimutagenic properties, polysaccharides, structural analysis
目 錄
表次…………………………………………………………………………x
圖次…………………………………………………………………………xiii
前言…………………………………………………………………………1
文獻整理……………………………………………………………………3
一、枸杞的介紹……………………………………………………………3
二、抗氧化性質……………………………………………………………7
三、膳食與癌症的相關性…………………………………………………39
材料與方法…………………………………………………………………45
一、實驗材料………………………………………………………………45
1.枸杞………………………………………………………………………45
2.試藥………………………………………………………………………45
3.鼠肝混合物………………………………………………………………46
4.標準致突變劑……………………………………………………………46
5.安氏試驗用之培養基……………………………………………………46
6.試驗菌株…………………………………………………………………46
二、實驗方法………………………………………………………………47
(一)枸杞樣品之製備……………………………………………………47
1.枸杞甲醇萃取物之製備…………………………………………………47
2.枸杞水萃取物之製備……………………………………………………47
3.實驗流程…………………………………………………………………48
(二)枸杞之一般成分分析………………………………………………49
1.水分之測定………………………………………………………………49
2.灰分之測定………………………………………………………………49
3.還原糖之測定……………………………………………………………49
4.粗脂肪之測定……………………………………………………………50
5.蛋白質之測定……………………………………………………………50
6.粗纖維之測定……………………………………………………………51
(三)枸杞萃取物之抗氧化性質分析……………………………………51
1.抗氧化能力之測定
共軛雙烯(Conjugated diene)法之測定………………………………51
2.還原力之測定……………………………………………………………52
3.捕捉1,1-二苯基-2-苦味 基團能力之測定……………………………53
4.捕捉羥自由基能力之測定………………………………………………53
5.螯合亞鐵離子能力之測定………………………………………………53
6.螯合銅離子能力之測定…………………………………………………53
(四)常見天然存在抗氧化成分分析……………………………………54
1.a-生育醇測定……………………………………………………………54
2.b-胡蘿蔔素測定…………………………………………………………55
3.抗壞血酸含量測定………………………………………………………55
4.總酚類化合物……………………………………………………………56
(五)枸杞萃取物之抗突變性質分析……………………………………56
1.細菌生長曲線之測試……………………………………………………56
2.毒性試驗…………………………………………………………………56
3.致突變性分析……………………………………………………………57
4.抗致突變性驗……………………………………………………………57
(1) 標準致突變劑溶液之製備……………………………………………57
(2) 抗突變試驗方法………………………………………………………58
(六)枸杞多醣組成份之分析……………………………………………58
1.枸杞多醣之製備…………………………………………………………58
2.枸杞多醣組成分之分析…………………………………………………59
(1) 水分之測定……………………………………………………………59
(2) 灰分之測定……………………………………………………………59
(3) 總醣之測定……………………………………………………………59
(4) 還原糖之測定…………………………………………………………60
(5) 粗纖維之測定…………………………………………………………60
(6) 蛋白質之測定…………………………………………………………60
(7) 粗脂肪之測定…………………………………………………………60
(8) 醛醣酸含量之測定……………………………………………………60
(9) 中性單糖組成之測定…………………………………………………60
(10)元素分析………………………………………………………………61
(七)枸杞多醣結構之分析………………………………………………61
1.分子量之測定……………………………………………………………61
2.結構分析…………………………………………………………………62
a.核磁共振-氫光譜(1H-NMR)之分析………………………………… 62
b.核磁共振-碳光譜(13C-NMR)之分析…………………………………62
c.X光繞射(X-ray)之分析………………………………………………63
d.示差掃描熱分析…………………………………………………………63
(八)統計分析……………………………………………………………63
結果與討論…………………………………………………………………64
一、枸杞之一般成分分析…………………………………………………64
二、枸杞甲醇及水萃取物之抗氧化性質…………………………………64
1.枸杞甲醇及水萃取物之萃取率…………………………………………64
2.枸杞甲醇及水萃取物之抗氧化力………………………………………67
3.枸杞甲醇及水萃取物之還原力…………………………………………70
4.枸杞甲醇及水萃取物捕捉1,1-二苯基-2-苦味基團之能力……… …73
5.枸杞甲醇及水萃取物捕捉羥自由基之能力……………………………74
6.枸杞甲醇及水萃取物螯合亞鐵離子之能力……………………………84
7.枸杞甲醇及水萃取物螯合銅離子之能力………………………………85
8.枸杞甲醇及水萃取物其抗氧化相關活性之結果彙整…………………90
三、枸杞甲醇及水萃取物之抗氧化成分分析……………………………91
四、不同萃取方式枸杞萃取物之毒性、致突變性及抗致突變性質……96
(一)枸杞甲醇萃取物之毒性、致突變性及抗致突變性質……………96
1.枸杞甲醇萃取物之毒性…………………………………………………96
2.枸杞甲醇萃取物之致突變性……………………………………………99
3.枸杞甲醇萃取物之抗致突變性…………………………………………99
(二)枸杞水萃取物之毒性、致突變性及抗致突變性質………………110
1.枸杞水萃取物之毒性……………………………………………………110
2.枸杞水萃取物之致突變性………………………………………………110
3.枸杞水萃取物之抗致突變性……………………………………………117
五、枸杞多醣組成份之分析………………………………………………143
1.枸杞多醣之萃取率………………………………………………………143
2.枸杞多醣之成分分析……………………………………………………143
3.枸杞多醣之元素分析……………………………………………………146
4.枸杞多醣中性單糖組成分分析…………………………………………146
六、枸杞多醣分子量測定及其結構分析…………………………………147
1.分子量測定………………………………………………………………147
2.結構分析…………………………………………………………………156
結論…………………………………………………………………………168
參考文獻……………………………………………………………………170
表 次
表一、枸杞果實之一般成…………………………………………………65
表二、枸杞甲醇及水萃取物之萃取率……………………………………66
表三、枸杞甲醇及水萃取物之抗氧化能力(共軛雙烯法)……………68
表四、枸杞甲醇及水萃取物之還原力……………………………………71
表五、枸杞甲醇及水萃取物捕捉1,1-二苯基-2-苦味基團之能力… …75
表六、枸杞甲醇及水萃取物捕捉羥自由基之能力………………………78
表七、枸杞甲醇及水萃取物螯合亞鐵離子之能力………………………86
表八、枸杞甲醇及水萃取物螯合銅離子之能力…………………………88
表九、枸杞甲醇及水萃取物(ME)其抗氧化相關活性之結果彙整……93
表十、枸杞甲醇及水萃取物(MF)其抗氧化相關活性之結果彙整……94
表十一、枸杞果實、甲醇及水萃取物中抗壞血酸、b-胡蘿蔔素
、生育醇和總酚類之含量…………………………………………………95
表十二、枸杞甲醇萃取物對鼠傷寒沙門桿菌TA 97、TA 98、
TA 100及TA 102菌株之毒性試驗…………………………………………97
表十三、枸杞甲醇萃取物對鼠傷寒沙門桿菌TA 97、TA 98、
TA 100及TA 102菌株之致突變性試驗……………………………………102
表十四、枸杞甲醇萃取物對苯并[a]在鼠傷寒沙門桿菌TA 97、
TA 98、TA 100及TA 102菌株致突變性之影響………………………… 104
表十五、枸杞甲醇萃取物對N-甲基-N’-硝基-N-亞硝胍在鼠傷寒沙門
桿菌TA 97、TA 98、TA 100及TA 102菌株致突變性之影響……………106
表十六、枸杞甲醇萃取物對4-硝基-N-氧化物在鼠傷寒沙門桿菌
TA 97、TA 98、TA 100及TA 102菌株致突變性之影響…………………108
表十七、枸杞冷水萃取物對鼠傷寒沙門桿菌TA 97、TA 98、
TA 100及TA 102菌株之毒性試驗…………………………………………111
表十八、枸杞熱水萃取物對鼠傷寒沙門桿菌TA 97、TA 98、
TA 100及TA 102菌株之毒性試驗…………………………………………113
表十九、枸杞加熱萃取物對鼠傷寒沙門桿菌TA 97、TA 98、
TA 100及TA 102菌株之毒性試驗…………………………………………115
表二十、枸杞冷水萃取物對鼠傷寒沙門桿菌TA 97、TA 98、
TA 100及TA 102菌株之致突變性試驗……………………………………119
表二十一、枸杞熱水萃取物對鼠傷寒沙門桿菌TA 97、TA 98、
TA 100及TA 102菌株之致突變性試驗……………………………………121
表二十二、枸杞加熱萃取物對鼠傷寒沙門桿菌TA 97、TA 98、
TA 100及TA 102菌株之致突變性試驗……………………………………123
表二十三、枸杞冷水萃取物對苯并[a]在鼠傷寒沙門桿菌TA 97、
TA 98、TA 100及TA 102菌株致突變性之影響………………………… 125
表二十四、枸杞熱水萃取物對苯并[a]在鼠傷寒沙門桿菌TA 97、
TA 98、TA 100及TA 102菌株致突變性之影響………………………… 127
表二十五、枸杞加熱萃取物對苯并[a]在鼠傷寒沙門桿菌TA 97、
TA 98、TA 100及TA 102菌株致突變性之影響………………………… 129
表二十六、枸杞冷水萃取物對N-甲基-N’-硝基-N-亞硝胍在鼠傷寒沙門
桿菌TA 97、TA 98、TA 100及TA 102菌株致突變性之影響……………131
表二十七、枸杞熱水萃取物對N-甲基-N’-硝基-N-亞硝胍在鼠傷寒沙門
桿菌TA97、TA 98、TA 100及TA 102菌株致突變性之影響…………… 133
表二十八、枸杞加熱萃取物對N-甲基-N’-硝基-N-亞硝胍在鼠傷寒沙門
桿菌TA 97、TA 98、TA 100及TA 102菌株致突變性之影響……………135
表二十九、枸杞冷水萃取物對4-硝基-N-氧化物在鼠傷寒沙門桿菌
TA 97、TA 98、TA 100及TA 102菌株致突變性之影響…………………137
表三十、枸杞熱水萃取物對4-硝基-N-氧化物在鼠傷寒沙門桿菌
TA 97、TA 98、TA 100及TA 102菌株致突變性之影響…………………139
表三十一、枸杞加熱萃取物對4-硝基-N-氧化物在鼠傷寒沙門桿菌
TA 97、TA 98、TA 100及TA 102菌株致突變性之影響…………………141
表三十二、枸杞多醣萃取物之一般組成…………………………………144
表三十三、枸杞多醣萃取物之萃取率……………………………………145
表三十四、枸杞多醣萃取物之元素分析…………………………………148
表三十五、枸杞多醣萃取物之單糖組成…………………………………149
圖 次
圖一、枸杞甲醇及水萃取物之抗氧化能力(共軛雙烯法)……………69
圖二、枸杞甲醇及水萃取物之還原力……………………………………72
圖三、枸杞甲醇及水萃取物捕捉1,1-二苯基-2-苦味基團之能力…… 76
圖四、枸杞甲醇及水萃取物捕捉羥自由基之能力………………………79
圖五、枸杞甲醇萃取物捕捉DMPO-OH複合物之電子順磁共振譜……… 80
圖六、枸杞冷水萃取物捕捉DMPO-OH複合物之電子順磁共振光譜…… 81
圖七、枸杞熱水萃取物捕捉DMPO-OH複合物之電子順磁共振光譜…… 82
圖八、枸杞加熱萃取物捕捉DMPO-OH複合物之電子順磁共振光譜…… 83
圖九、枸杞甲醇及水萃取物螯合亞鐵離子之能力………………………87
圖十、枸杞甲醇及水萃取物螯合銅離子之能力…………………………89
圖十一、枸杞甲醇萃取物對鼠傷寒沙門桿菌TA 97、TA 98、
TA 100及TA 102菌株之毒性試驗…………………………………………98
圖十二、枸杞甲醇萃取物對鼠傷寒沙門桿菌TA 97、TA 98、
TA 100及TA 102菌株之致突變性試驗……………………………………103
圖十三、枸杞甲醇萃取物對苯并[a]在鼠傷寒沙門桿菌TA 97、
TA 98、TA 100及TA 102菌株致突變性之影響………………………… 105
圖十四、枸杞甲醇萃取物對N-甲基-N’-硝基-N-亞硝胍在鼠傷寒沙門
桿菌TA 97、TA 98、TA 100及TA 102菌株致突變性之影響……………107
圖十五、枸杞甲醇萃取物對4-硝基-N-氧化物在鼠傷寒沙門桿菌
TA 97、TA 98、TA 100及TA 102菌株致突變性之影響…………………109
圖十六、枸杞冷水萃取物對鼠傷寒沙門桿菌TA 97、TA 98、
TA 100及TA 102菌株之毒性試驗.……………………………………… 112
圖十七、枸杞熱水萃取物對鼠傷寒沙門桿菌TA 97、TA 98、
TA 100及TA 102菌株之毒性試驗.……………………………………… 114
圖十八、枸杞加熱萃取物對鼠傷寒沙門桿菌TA 97、TA 98、
TA 100及TA 102菌株之毒性試驗.……………………………………… 116
圖十九、枸杞冷水萃取物對鼠傷寒沙門桿菌TA 97、TA 98、
TA 100及TA 102菌株之致突變性試驗……………………………………120
圖二十、枸杞熱水萃取物對鼠傷寒沙門桿菌TA 97、TA 98、
TA 100及TA 102菌株之致突變性試驗……………………………………122
圖二十一、枸杞加熱萃取物對鼠傷寒沙門桿菌TA 97、TA 98、
TA 100及TA 102菌株之致突變性試驗……………………………………124
圖二十二、枸杞冷水萃取物對苯并[a]在鼠傷寒沙門桿菌TA 97、
TA 98、TA 100及TA 102菌株致突變性之影響………………………… 126
圖二十三、枸杞熱水萃取物對苯并[a]在鼠傷寒沙門桿菌TA 97、
TA 98、TA 100及TA 102菌株致突變性之影響………………………… 128
圖二十四、枸杞加熱萃取物對苯并[a]在鼠傷寒沙門桿菌TA 97、
TA 98、TA 100及TA 102菌株致突變性之影響………………………… 130
圖二十五、枸杞冷水萃取物對N-甲基-N’-硝基-N-亞硝胍在鼠傷寒沙門
桿菌TA 97、TA 98、TA 100及TA 102菌株致突變性之影響……………132
圖二十六、枸杞熱水萃取物對N-甲基-N’-硝基-N-亞硝胍在鼠傷寒沙門
桿菌TA 97、TA 98、TA 100及TA 102菌株致突變性之影響……………134
圖二十七、枸杞加熱萃取物對N-甲基-N’-硝基-N-亞硝胍在鼠傷寒沙門
桿菌TA 97、TA 98、TA 100及TA 102菌株致突變性之影響……………136
圖二十八、枸杞冷水萃取物對4-硝基-N-氧化物在鼠傷寒沙門桿菌
TA 97、TA 98、TA 100及TA 102菌株致突變性之影響…………………138
圖二十九、枸杞熱水萃取物對4-硝基-N-氧化物在鼠傷寒沙門桿菌
TA 97、TA 98、TA 100及TA 102菌株致突變性之影響…………………140
圖三十、枸杞加熱萃取物對4-硝基-N-氧化物在鼠傷寒沙門桿菌
TA 97、TA 98、TA 100及TA 102菌株致突變性之影響…………………142
圖三十一、膠體過濾層析之糊精標準品曲線……………………………151
圖三十二、枸杞加熱萃取2小時多醣之Sephadex G-50 層析圖……… 152
圖三十三、枸杞加熱萃取5小時多醣之Sephadex G-50 層析圖……… 153
圖三十四、枸杞熱鹼萃取2小時多醣之Sephadex G-50 層析圖……… 154
圖三十五、枸杞熱鹼萃取5小時多醣之Sephadex G-50 層析圖……… 155
圖三十六、枸杞加熱2、5小時萃取多醣之1H-NMR 層析圖…………… 160
圖三十七、枸杞熱鹼2、5小時萃取多醣之1H-NMR 層析圖…………… 161
圖三十八、枸杞加熱萃取2、5小時多醣之13C-NMR 層析圖……………162
圖三十九、枸杞熱鹼萃取2、5小時多醣之13C-NMR 層析圖……………163
圖四十、 枸杞加熱萃取2、5小時多醣之X光繞射圖……………………164
圖四十一、枸杞熱鹼萃取2、5小時多醣之X光繞射圖………………… 165
圖四十二、枸杞加熱萃取2、5小時多醣粉末之示差掃描熱分析圖……166
圖四十三、枸杞熱鹼萃取2、5小時多醣粉末之示差掃描熱分析圖……167
附 表
附表一、枸杞中存在之化學成分……………………………………………6
附表二、氧所衍生之自由基對人體所可能造成之傷害……………………8
附表三、一般由氧所衍生而成之自由基……………………………………15
附表四、天然抗氧化物質……………………………………………………24
附表五、食物中的化學防護劑之種類………………………………………33
附表六、次哺乳類檢測系統…………………………………………………35
附表七、用來偵測致突變性的鼠傷寒桿菌系統之基因型態………………37
附表八、多醣類在水中的溶解性……………………………………………42
附表九、多醣類之工業應用…………………………………………………43
附表十、水膠體類別…………………………………………………………44
附 圖
附圖一、乾燥之枸杞果實……………………………………………………4
附圖二、脂質自氧化反應途徑及其產物……………………………………9
附圖三、鐵高量累積下產生氧化和引起細胞傷害及死亡之途徑…………16
附圖四、脂質的光增感氧化反應途徑………………………………………17
附圖五、脂加氧酶之促氧化反應……………………………………………18
附圖六、脂加氧酶促氧化反應之作用模式…………………………………19
附圖七、IQ型和非IQ型之異環胺類結構圖…………………………………28
附圖八、多環芳香烴之結構圖………………………………………………29
附圖九、致突變過程中致突變物與抗致突變物之交互作用………………34
參考文獻
王伯徹、陳啟禎、華傑。1998。食藥用菇類的培養與應用。食品工業發展研究所。P56-57。
白壽雄、羅道蘊。1994。生物性多糖體及其應用。生物產業5: 167-173。
呂鋒洲。1994。抗氧化酵素之介紹。自由基生物學及醫學。創刊號p. 1-7。
吳淳美。1979。食品中之氧化還原系統及食品抗氧化劑。食品工業。11:5。42-49。
吳宛勳。2000。枸杞之組織細胞培養研究。碩士論文。國立台灣大學藥學研究所。台北。
東丈夫、賴榮祥。1993。枸杞之知識。生藥資訊1:1-7。
食品分析方法手冊。1990。食品工業發展研究所。新竹,台灣。
章靈華、蕭培根。1992。藥用真菌中生物活性多醣的研究進展。中草藥23:95-99。
張為憲。1995。食品化學。華香園出版社。台北,台灣。
張蕙玲。2001。紅麴薏仁之呈味品質、抗氧化性質及其貯藏安定性。碩士論文。國立中興大學食品科學研究所。台中。
康泰祥。1986。多醣物之工業應用。化工技術。p13-29。
黃中洋。1996。自由基與自由基排除劑。藥學雜誌12:30-38。
黃鈴娟。2000。樟芝與姬松茸之抗氧化性及其多醣組成分析。國立中興大學食品科學系碩士論文。台中,台灣。
賀孝雍。1986。儀器分析。曉園出版社有限公司。台灣。
趙瑞益。1995。鎘誘發中國倉鼠卵巢細胞的分子致突變機制:含氧自由基的參與。國立清華大學生物醫學研究所碩士論文。新竹,台灣。
莊淑娟。1996。台灣市售生藥枸杞之抗炎、保肝與抗氧化活性評估。碩士論文。高雄醫學院天然藥物研究所。高雄。
鄭博人。1986。化工技術。多醣物之醫藥應用。10:36-50。
陳惠英。1996。茶葉萃取物抗致突變性及抗氧化特性之研究。博士論文。國立中興大學食品科學研究所。台中。
陳鴻文。1996。決明子抗氧化特性之研究。碩士論文。國立中興大學食品科學研究所。台中。
陳建州。2001。黃莪朮之抗氧化性質及抗致突變性質。碩士論文。國立中興大學食品科學所。台中。
蘇惠如。2000。蓮子萃取物抗氧化性之研究。碩士論文。國立中興大學食品科學研究所。台中。
劉伯康。1997。數種傳統食用植物抗氧化性之研究。國立中興大學食品科學系碩士論文。台中,台灣。
賴慶亮譯。水野卓,川合正允原著。1997。菇類的化學,生化學。
國立編譯館。台北,台灣。
蔡佳宏。2000。十種台灣本產植物之抗致突變性研究。碩士論文。國立屏東科技大學。屏東。
續光清。1992。食品化學。徐氏基金會出版。台灣。
Acker, S. B. E., Balen, G. P., Berg, D. J., Bast, A. and Vijgh, W. J. F. 1998. Influence of iron chelation on the antioxidant activity of flavonids. Biochem. Pharmacol. 56:935-943.
Ahmad, N. and Mukhtar H. 1999. Green tea polyphenols and cancer: biologic mechanisms and practical implications. Nutr. Rev. 56 (3) : 78-83.
Ajlouni, S. O., Beelman, R. B., Thompson, D. B., and Mau, J. L. 1995. Change in soluble sugars in various tissues of cultivated mushroom, Agaricus bisporus, during postharvest storage. In “Food Flavors”, pp. 1865-1880. G. Charalambous, Ed., Elservier Sci. Publ., Amsterdam, The Netherlands.
Ames, B. N. 1983. Dietary carcinogenesis and antocarcinogens. Science. 221 : 1256-1264.
Ames, B. N., McCann, J. and Yamasaki, E. 1975. Mehtod for detecting carcinogens and mutagens with the Salmomella / mammalian - microsome mutagenicity test. Mutate. Res. 31 :347-364.
Angelo, A. J. S. 1996. Lipid oxidation in food. Crit. Rev. Food Sci. Nutr. 36 (3) :175-224.
Bailey, G. S. and Scanlan, R. A., Selivonchick, D. P. and Williams, D. E. 1991. Food toxicology. in “Encylopedia of Human Biology” , ed. By R. Dulbecco, Vol. 3, pp. 671-681. Academic Press, New York.
Bast, A., Haenen, G. R. M. M., Doelman, C. J. A. 1991. Oxidants and antioxidants : state of art. Am. J. Med. 91 : 2S-13S.
Blois, M. S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181 : 1199-1200.
Brand-Williams, W., Cuveliver, M. E. and Berset, C. 1995.Use of a free radical method to evaluate antioxidant activity. Lebensm-Wiss. U. Technol. 28 :25-30.
Branen, A. L. 1975. Toxicology and biochemistry of butylated hydroxy anisole and butylated hydroxytoluene. J. Am. Oil Chem. Soc. 52: 59-63.
Burton, G. W. 1989. Antioxidant action of carotenoids. J. Nutr. 119: 109-111.
Casciano, D. A., 1982. Mutagenesis assay methods. Food Tech. 36: 48.
Castelluccio, C., Paganga, G., Melikian, N., Bolwell, G., Pridham, J., Sampson, J. and Rice-Evans, C. A. 1995. Antioxidant potential of intermediates in phenylpropanoid metabolism in higher plant. FEBS Lett. 368 : 188-192.
Carpenter, A. P. 1979. Determination of tocopherols in vegetable oils. J.
Am. Oil Chem. Soc. 56: 668-672.
Chen, Q., Shi, H., and Ho, C. T. 1992. Effects of rosemary extracts and major constituents on lipid oxidation and soybean lipoxygenase activity. J. Am. Oil Chem. Soc. 69: 999-1002.
Cuvelier, M. E., Richard, H., and Berset, C. 1992. Comparison of the antioxidant activity of some acid-phenols: Structure-activity relationship. Biosci. Biotech. Biochem. 56: 324-325.
Dashwood R. and Guo D. 1994. Antimutagenic potency of chlorophyllin in the Salmonella assay and its correlation with binding constants of mutagen-inhibitor complex. Environmental and Molecular Mutagenesis, 22:164-171.
Dipple, A., Cheng, S. C. and Bigger, C. A. H. 1990. Polycyclic aromatic hydrocarbon carcinogens. In “Mutagens and Carcinogens in the Diet” , ed. By M. W. Pariza, J. S. Felton, H. U. Aeschbacher, and S. Sato, pp. 109-127. Wiely-Liss Inc., New York.
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356.
Dziezak, J. D. 1986. Preservatives: Antioxidants. Food Technol. 40: 94-102.
Empson, K.L. Labuza, T.P. and Graf, E. 1991. Phytic acid as a food
antioxidant. J Food Sci. 56: 560-563.
Fennema, O. R. 1996. Lipids in “Food Chemistry” 3rd ed. New York.
Ferguson L. R. 1994. Antimutagens as cancer chemopreventive agents in the diet. Mutation Res., 307:395-410.
Frankel, E. N. 1984. Lipid oxidation: mechanism, products and biological
significance. J. Am. Oil Chem. Soc. 61: 1908-1916.
Gordon, M. H. 1990. The mechanism of antioxidant action in vitro. Ch. 1, in Food Antioxidants, B. J. F. Hudson (Ed.), p.1-18. Elsevier Applied Science, London and New York.
Gunstone, F. D. 1984. Reaction of oxygen and unsaturated fatty acids. J. Am. Oil Chem. Soc. 61: 441-447.
Gutteridge, J. M. C. and Halliwell, B. (Ed.). 1994. Antioxidants in Nutrition, Health, and Disease, Oxford University Press, Oxford.
Halliwell, B. 1991. Reactive oxygen species in living systems : source, biochemistry and role in human disease. Am. J. Med. 91 : 14S-22S.
Halliwell, B., and Chirico, S. 1993. Lipid peroxidation: its mechanism, measure and significance. Am. J. Clin. Nutr. 57: 715-725.
Halliwell, B. 1994. Free radicals and antioxidants: a personal view. Nutr.
Rev. 52: 253-265.
Halliwell, B. Murcia, M. A. Chirico, S. and Aruoma, O. I. 1995. Free radicals and antioxidants in food and in vivo: what they do and how they work. Crit. Rev. Food. Sci. Nutr. 35:7-20.
Halliwell, B. and Gutteridge, J. M. C. 1998. “Free Radical in Biology and Medicine”, ed. By B. Halliwell and J. M. C. Gutteridge. Clarendon Press, Oxford.
Hardy, M. R., Townsend, R. R., and Lee, Y. C. 1988. Monosaccharide analysis of glycoconjugates by anion exchange chromatography with pulsed amperometric detection. Analytical Biochemistry 170: 54-62.
Hatanaka, H., Yoshida, T., Uryu, T., Yoshido, O., Nakashima, H., Yamamato, N., Mimura, T. and Kaneko, Y. 1989. Synthesis of an inhibitor of human immunodeficiency virus infection. Jpn. J. Cancer Res. 80: 95-98.
Hossain, M. Z., Wilkens, L. R., Methta, P. P., Loewenstein, W. and Bertram, J. S. 1989. Enhancement of gap junctional communication by retinoids correlates with their ability to inhibibit neoplastic transformation. Carcinogenesis 10: 1743-1748.
Ikekawa, T., Maruyama, H. and Miyano, T. 1985. Jpn. J. Cancer Res. 76: 130.
Imada, K. Fukushima, S. Shivai, T. Ohtani, M. Nakanishi, K. and Ito, N.
1983. Promoting activities of butylated hydroxyanisole and butylated
hydroxytoluene on 2-stage urinary bladder carcinogenesis and
inhibition of g-glutamyl transpeptidase-positive foci development in
the liver of rats. Carcinogenesis 4: 885-889.
Jacob, R. A. 1994. Nutrition, health and antioxidants. INFORAM 5: 1271-1275.
Jacobson, E. S., Hove, E. and Emery, H. S. 1995. Antioxidant function of
melanin in black fungi. Infect. Immun. 63: 4944-4945.
Jagerstad, M., Olsson, K., Grivas, S., Negishi, C., Wakabayashi, K., Tsuda, M., Sato, S. and Sugimura, T. 1984. Formation of 2-amino-3, 8-dimethylimidazo [4,5-f]quinoxaline in a model system by heating creatinine, glycine and glucose. Mutat. Res. 126: 239-244.
James, C.S. 1995. Analytical Chemistry of Foods. Chapman & Hall,
London.
Kada, T. 1983. Environmental and biological factors suppressing induction of mutations (in Japanese). Toxicol. Forum 6: 580-589.
Kada, T., Inoue, T., Otha, T. and Shirasu, Y. 1986. In ”Antimutagensis and Anticarcinogensis Mechanisms. “ eds. By D. M. Shankel, P. E. Hartman, T. Kada. And A. Hollaender, pp. 181-196. Plenum, New York.
Kawagishi, H. Katsumi, R., Sazawa, T., Mizuno, T., Hagiwara, T. and Nakamura, T. 1989. Cytotoxic steroids from the mushroom Agaricus blazei. Phytochemistry 27: 2777-2779.
Kitada, Y. Tamase, K. Sasaki, M. Yamazoe, Y. Maeda, Y. Yamamoto, M. and Yonetani, T. 1989. Determination of L-ascorbic acid, tocopherol, carotene and chlorophyll in various teas. Nippon Shokuhin Kogyo Gakkaishi. 36 : 927-933.
Klein, B. P. and Perry, A. K. 1982. Ascorbic acid and vitamin A activity
in selected vegetables from different geographical areas of the united
states. J. Food Sci. 47: 941-945, 948.
Kono, Y., Kashine, S., Yoneyama, T., Sakamoto, Y., Matsui, Y. and Shibata, H. 1998. Iron chelation by chlorogenic acid as a natural antioxidant. Biosci. Biotechnol. Biochem. 62 (1) : 22-27.
Labuza, T. P. 1971. Kinetics of lipid oxidation in food. Crit. Rev. Food Technol. 355-396.
Larson, R.A. 1988. The antioxidants of higher plants. Phytochemistry 27:
969-978.
Leung, M. Y. K., Fung, K. P., and Choy, Y. M. 1997. The isolation and characterization of immunomodulatory and antitumor polysaccharide preparation from Flammulina Velutipes. Immunopharmacology 35: 255-263.
Liebler, D. C. 1993. Antioxidant reactions of carotenoids. Ann. New York. Acad. Of Sci. 691: 20-31.
Lijinsky, W. 1991. The formation and occurrence of polynuclear aromatic hydrocarbons associated with food. Mutat. Res. 259: 251-261.
Lingnert, H., Vallentin, K., and Eriksson, C. E. 1979. Measurement of antioxidant effect in model system. J. Food Proc. Presv. 3: 87-103.
Liu, F., Ool, V. E. C. and Fung, M. C. 1990. Analysis of immunomodulating cytokine mRNAs in the mouse induced by mushroom polysaccharides. Life Science. 64: 1005-1011.
Lotito, S. B. and Fraga, C. G. 1998. (+)-Catechin prevents human plasma oxidation. Free Radic. Biol. Med. 24 :435-441.
Maron, D. M. and Ames, B. N. 1983. Revised methods for the Salmonella mutagenicity test. Mutat Res. 113 :b173-215.
McCord, J. M. 1994. Free radicals and prooxidants in health and nutrition. Food Technology 48(5): 106-111.
Meir, S., Kanner, J., Akiri, B. and Philosoph-H, S. 1995. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various sencescing leaves. J. Agric. Food Chem. 43 (7) : 1813-1819.
Meyer, A. S., and Isaksen, A. 1995. Application of enzymes as food antioxidants. Trends in Food Sci. & Tech. 6: 300-304.
Murray, R. K., Granner, C. G., Mayes, P. A., and Rodwell, V. W. 1990. Harper’s Biochemistry. Appleton and Lange, New York. p. 156-158.
Namiki, M. 1990. Antioxidants/antimutagens in foods. Crit. Rev. Food
Sci. Nutr. 29: 273-300.
Olson, J. A. 1989. Biological actions of Carotenoids. J. Nutr. 119: 94-95.
Oyaizu, M. 1986. Antioxidative activity of browning products of
glucosamine fractionated by organic solvent and thin-layer
chromatography. Nippon Shokuhin Kogyo Gakkaishi 35: 771-775.
Packer, L. 1991. Protective role of vitamin E in biological systems. A M. j. Clin. Nutr. 53: 1050s-1055s.
Phillip, B. J., Carroll P. A., Tee, A. C. and Anderson, D. 1989. Microsome-mediated clastogenicity of butylat ed hydroxyanisole (BHA) in cultured Chinese hamster ovary cell: The possible role of reactive oxygen species. Mutat. Res. 214: 105-114.
Philosoph-Hadas, S., Meir, S., Akiri, B. and Kanner, J. 1994. Oxidative defense systems in leaves of three edible herb species in relation to their senescence rates. J. Agric. Food Chem. 42: 2376-2381.
Pitotti, A., Elizalde, B. E. and Anese, M. 1995. Effect of caramelization and mailard reaction products on peroxidase activity. J. Food Biochem. 18(6): 445-457.
Ramarathnam, N. Osawa, T. Namiku, M. and Kawakishi, S. 1988.
Chemical studies on novel rice hull antioxidants. I. Isolation,
fractionation, and partial characterization. J. Agric. Food Chem. 36:
732-737.
Ramarathnam, N. Osawa, T. Ochi, H. and Kawakishi, S. 1995. The
contribution of plant food antioxidants to human health. Trends in
Food Sci. Technol. 6: 75-82.
Ramel C., Alekeorov U. L., Ames B.N., Kada T. and Wattenberg L. W. 1986.Inhibitors of mutagenesis and their relevance to carcinogenesis. Mutat. Res., 168:47-65.
Ramesh, H. P. and Tharanathan, R. N. 1999. Water-extracted polysaccharides of selected cereals and influence of temperature on the extractability of polysaccharides in sorghum. Food Chem. 64: 345-350.
Rice-Evans, C. A., Miller, N. J., and Paganga, G. 1996. Structure antioxidant activity relationships of flavonoid and phenolic acids. Free Radical Biol. Med. 20: 933-956.
Russell, D. L. and Juliano, B. O., 1983. Differential scanning calorimetry of rice starches. Starch/Stärke. 35: 382.
Shi, X. and Dalal, N. S. 1991. Antioxidant behaviour of caffeine: efficient scavenging of hydroxyl radicals. Food Chem. Toxic. 29: 1-6.
Shahidi, F. and Wanasundara, P. K. J. P. D. 1992. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 32: 67-103.
Shimada, K. Fujikawa, K. Yahara, K. and Nakamura, T. 1992.
Antioxidative properties of xanthan on the autoxidation of soybean
oil in cyclodextrin emulsion. J. Agric. Food Chem. 40: 945-948.
Sies, H. 1991. Oxidative stress : from basic research to clinical application. Am. J. Med. 91 : 31S-38S.
Stadler, R. H., and Fay, L. B. 1995. Antioxidative reactions of caffeine: Formation of 8-oxocaffeine (1,3,7-trimethyiuric acid) in coffee subjected to oxidative stress. J. Agric. Food Chem. 43: 1332-1338.
Stavric, B. 1994. Antimutagens and anticarcinogens in foods. Food Chem. Toxic. 32: 79-90.
Sugimura, T. and Sato, S. 1983. Mutagens-carcinogens in foods. Cancer Res. 43: 3415-3421.
Sugimura, T. and Wakabayashi, K. 1990. Mutagens and Carcinogens in food. In “ Mutagens and Carcinogens in the Diet” , ed. By M. W. Pariza,, J. S. Felton, H. U. Aeschbacher and S. Sato, pp. 1-18. Wieley-Liss Inc., New York.
Sun, R. C., Fang, J. M., Goodwin, A., Lawther, J. M. and Bolton, A. J. 1998. Fractionation and characterization of polysaccharides from abaca gibre. Carbohydrate Polymers. 37: 351-359.
Taga, M. S. Miller, E. E. and Pratt, D. E. 1984. Chia seeds as a source of
natural lipid antioxidants. J. Am. Oil Chem. Soc. 61: 928-931.
Takayama, S., Nokatsuru, Y. and Sato, S. 1987. Carcinogenic effect of simultaneous administration of five heterocyclic amines to F344 rats. Japanese J. Cancer Res. (Gann) 78: 1068-1072.
Tochikura, T. S., Nakshima, H., Kaneko, Y., Kobayashi, N., Yamamoto, N. 1987. Suppression of hamatopoietic cell lin in vitro: augmentation of the effect by lentinan. Jpn. J. Cancer Res. (Gann) 78: 583.
Tomoda, M., Shimizu, N., Gonda, R., Kanari, M., Yamada, H., and Hikino, H. 1990. Anti-complementary and hypoglycemic activies of the glycans from the seeds of Malva verticillata. Planta Medica 56: 168-170.
Torel, J., Cillard, J. and Cillard, P. 1986. Antioxidant activity of flavonoids and reactivity with peroxy radicals. Phytochem. 25: (2)383-385.
Trock, B., Lanza, E. and Greenwald, P. 1990. Dietary fiber, vegetables, and colon cancer: Critical review and metaanalyses of the epidemiologic evidence. J. Natl. Cancer Inst. 82: 650-661.
Wada, S., and Fang, X.1992. The synergistic antioxidant effect of rosemary extract and alpha-tocopherol in sardine oil model system and crushed fish meat. J. Food Proc. Preserv. 16:263-274.
Waleh, N. S., Rapport, S. J. Mortelmans, K. E.1982. Development of a toxicity test to be coupled to the Ames Salmonella assay and the method of construction of the required strains. Mutat. Res. 97: 247-256.
Wardi, A. H., Allen, W. S., and Varma, R. 1974. A simple method for the detection and quantitative determination of hexuronic acid and pentose. Anal. Biochem. 57: 268-273.
Waters M., Brady A. L., Stack H. F. and Brockman H. E. 1990. Antimutagenicity profiles for some model compounds. Mutat. Res., 238:57-85.
Witting, L. A. 1975. Vitamin E as a food additive. J. Amer. Oil Chem. Soci. 52: 64-68.
Yamaguchi, N. and Okada, Y. 1968. Browning reaction products
produced by the reaction between sugars and amino acids. VII.
Decomposition of lipid hydroperoxide by the browning products.
Nippon Shokuhin Kogyo Gakkaishi 15: 187-191.
Yamaguchi, R., Tatsumi, M. A., Kato, K. and Yoshimitsu, U. 1988. Effect of metal salts and fructose on the authoxidation of methyl linoleate in emulsions. Agric. Biol. Chem. 52 : 849-850.
Yoshioka, Y., Sano, T., and Ikekawa, T. 1973. Chem. Pharm. Bull. 21:125.
Zastawny, T. H., Dabrowska, M., Jaskolski, T., Klimarczyk, M., Kulinski, L., Koszela, A., Szczeniewicz, M., Sliwinska, M., Witkowski, P. and Olinski, R. 1998. Comparison of oxidative base damage in mitochondrial and nuclear DNA. Free Radic Biol. Med. 24 : 722-725.
Zentz, F., Verchere, J. F. and Muller, G., 1992. Thermal Denaturation and Degradation of Schizophyllan. Carbohydr. Polym. 17: 289-297.
Zobel, H. F. 1964. X-ray analysis of starch granules. In “Method in Carbohydrate Chemistry”. p. 109. Vol. Ⅳ. ed. Whistler, R. L. Academic Press, New York.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top