跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2025/01/25 18:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂韋辰
研究生(外文):Wei-Chen Lu
論文名稱:黑豆之蒸煮與機械製麴之研究
論文名稱(外文):Studies on the Cooking Conditions and Mechanical Koji-making of Black Beans
指導教授:柯文慶柯文慶引用關係
指導教授(外文):Wen-Ching Ko
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:104
中文關鍵詞:黑豆蒸煮機械製麴蔭油
外文關鍵詞:black beansblack soybeansmechanical koji-makingInyukoji
相關次數:
  • 被引用被引用:7
  • 點閱點閱:1022
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
蔭油為台灣之傳統發酵製品,以黑豆為原料,經浸豆、製麴、洗麴、保溫、拌鹽下缸、密封及日曬發酵熟成而製得。蔭油具有較醬油更佳之風味及品質,但其市場佔有率遠不及豆麥醬油,主要在於豆麥醬油之生產皆已採用由日本引進之微電腦控制自動化設備及技術,但蔭油卻仍停滯於傳統之人工製麴方式,不只無法大量生產,所負擔之人工成本更高。本研究利用反應曲面法(RSM)之實驗設計,探討黑豆在不同浸漬時間(2, 4, 6 hr)、蒸煮溫度(116, 124, 132℃)及蒸煮時間(15, 23, 31min)處理下物化特性之變化,尋求黑豆最適蒸煮條件;並於不同豆麴厚度(6, 12, 18 cm)下評估黑豆機械化製麴之可行性,擬將蔭油製程導向自動化大規模生產,以提升蔭油市場佔有率,重新發揚真正屬於本省的傳統發酵製品,所得結果如下:
1. 利用RSM圖形找出酵素感受性及酵素活性之最佳反應值,來推測最適蒸煮條件,結果顯示於浸漬時間4∼6 hr、蒸煮溫度132℃、蒸煮時間23 min之條件下,可獲取較佳製麴用黑豆。於此條件下蒸煮後黑豆之水分含量約50.7∼52.9%、硬度為61.6∼65.6 g,適於機械製麴時麴菌之生長;且黑豆蛋白質達適當之變性程度,利於麴菌產生之蛋白酶進行分解,有助於提高蛋白質利用率。
2. 以上述條件蒸煮後之黑豆,進行強制通風機械製麴,結果顯示6 cm豆麴厚度下水份散失過快,易導致麴菌生長不佳且酵素活性偏低,不利於蔭油釀造。12及18 cm之豆麴厚度,於機械製麴期間之最大酵素活性與傳統製麴比較,前者之最大酸性、中性、鹼性蛋白酶及澱粉酶活性分別為423.32, 542.85, 525.31及1127.33 units/g dry koji,後者則分別為486.81, 525.60, 498.22及1021.77 units/g dry koji,機械製麴之酵素活性平均較傳統製麴為高,且達最大酵素活性所需時間(24∼48 hr)較傳統製麴為短。觀察麴菌生長情形,以機械製麴者其菌絲皆有伸入至子葉部份,傳統製麴則無發現;另外機械製麴下麴菌生長亦較傳統製麴為快。
3. 黑豆採機械製麴應為可行,不只有利於麴菌生長,更具有較高之酵素活性,且達最大活性所需時間較傳統製麴為短,另外亦可提高單位面積之製麴量,節省人力成本,有利於蔭油之大規模生產。

Inyu is a traditionally fermented food product in Taiwan. It is made from black bean through soaking, steam cooking, fungus inoculating, koji-making by traditionally artificial method, koji-washing, incubating, salt adding, vating, and outdoor fermenting. Though Inyu has special properties in flavors and qualities, its market share is lower than soy sauce made from soybean with wheat by automatic koji-making method due to limitation in production scale and labor cost. In this study, the physical and chemical properties of the cooked black bean designedly treated at different soaking time (2, 4, 6 hr), cooking temperature (116, 124, 132℃), and cooking time (15, 23, 31 min) by using response surface methodology (RSM) was determined to obtain the optimum cooking conditions. Furthermore, mechanically koji-making method in different thickness of the cooked beans (6, 12, 18 cm) was investigated to evaluate the feasibility of koji-making method for Inyu. The results were as follows.
1. According to superimposed plots of enzyme susceptibility and enzyme activity, cooking at 132℃ for 23 min after soaking in enough water at room temperature for 4-6 hr was the optimum cooking conditions of black beans for making Inyu. The water content and hardness of the cooked black beans were 50.7~52.9% and 61.6~65.6 g, respectively. We inferred from the results that proper water content and protein denaturation were required for growth of koji mold and protein hydrolysis by enzymes produced during koji making.
2. The thickness of black beans related to water loss during mechanical koji-making. Water content of the koji that thickness controlled at 6 cm was too low to be available for koji mold and only low enzyme activities were obtained. On the other hand, enzyme activities for the koji thickness controlled at 12-18 cm were higher than that from traditionally koji-making method and only short time (24~48 hr) to reach that. The activity of acid-, neutral-, alkaline protease and amylase was about 423, 543, 525, and 1127 units/g dry koji for the koji controlled at 12cm, while 486, 526, 498 and 1022 units/g dry koji for that of 18cm, respectively. Faster growth and the mycelium stretched to cotyledon of the black beans were observed for the koji mold by mechanical koji-making method than that of traditionally koji-making method.
3. Koji-making through an automatic process by mechanized facilities was feasible in manufacturing of Inyu. Not only high enzyme activities of koji were obtained, short cultivation time and labor force saving were profitable to increase the market of Inyu.

中文摘要………………………………………………………………..Ⅰ
英文摘要………………………………………………………………..Ⅲ
圖表索引………………………………………………………………..Ⅸ
壹、前言 1
一、研究動機及目的 1
二、文獻整理 3
(一)醬油之簡介 3
1.醬油之歷史 3
2.醬油之種類 4
3.醬油產業現況 7
(二)醬油之釀造 8
1.原料及其處理 8
2.製麴 10
3.下缸及醬醪發酵熟成 11
4.壓榨 13
5.調和 13
(三)醬油釀造過程之生物化學變化 14
1.麴菌、乳酸菌、酵母菌 15
2.固態麴、液態醪 16
3.色澤、風味、香氣 19
(四)蔭油 20
1.黑豆 21
2.製程 21
3.蔭油之香氣及風味 25
貳、材料與方法 28
一、實驗流程設計 28
二、實驗材料 30
三、實驗試藥 30
四、實驗方法 33
1.大豆之基本成分分析 33
2.組織硬度之測定 34
3.酵素感受性(Enzyme susceptibility, ES) 34
4.酵素活性之測定 35
5.豆麴pH值之測定 39
6.游離胺基酸 39
7.豆麴內部構造及麴菌生長之觀察 41
8.總氮之測定 41
9.甲醛態氮(formalin-nitrogen) 42
10.氨態氮 42
11.胺基態氮(amino-nitrogen)之測定 43
12.酸度之測定 43
13.鹽濃度之測定 43
14.還原糖之測定 43
15.統計分析 43
參、結果與討論 46
一、黑豆最適蒸煮條件之探討 46
(一)原料之成份分析 46
(二)反應曲面模式分析 46
(三)反應曲面方程式 47
(四)蒸煮後黑豆之水分 56
(五)蒸煮後黑豆之硬度 58
(六)酵素感受性 58
1.蛋白酶感受性 58
2.澱粉酶感受性 61
(七)製麴之酵素活性 62
1.蛋白酶活性 62
2.澱粉酶活性 63
(八)最適蒸煮條件 69
二、黑豆機械製麴可行性之評估 71
(一)製麴期間麴堆品溫之變化 71
(二)製麴期間麴堆水分含量之變化 71
(三)製麴期間麴堆pH值之變化 72
(四)製麴期間蛋白酶活性之變化 76
(五)製麴期間澱粉酶活性之變化 77
(六)製麴期間麴堆游離胺基酸之變化 77
(七)麴菌之生長情形 83
(八)機械及傳統製麴所得蔭油成品之比較 84
肆、結論 93
伍、參考文獻 94

A.O.A.C. 1984. “Official Method of Analysis”. 14th ed. Association of Official Analytical Chemists, Washington, D. C., U.S.A.
Aiba, T. 1982. Modernized heat treatment of wheat kernels used for brewing. Proc. 14th Symp. Brew. Soc. Japan. pp:20.
Aspinall, G.O. 1988. Chemistry of soybean carbohydrates. In Proceeding of Soybean Utilization Alternatives, L. McCann (Ed.), pp.117-129. University of Minnesota, St, Paul, MN. Feb. 16-18.
Bo, T. A. 1982a. Origin of chiang and chian-yu and their production technology(Ⅰ). Brew Soc. Japan. 77:365-371.
Bo, T. A. 1982b. Origin of chiang and chian-yu and their production technology(Ⅱ). Brew Soc. Japan. 77:365-371.
Bo, T. A. 1984a. Origin of tao-shi and its production technology(Ⅰ). Brew Soc. Japan. 79:221-223.
Bo, T. A. 1984b. Origin of tao-shi and its production technology(Ⅰ). Brew Soc. Japan. 79:395-402.
Box, G.E.P., and Behnken, D.W. 1960. Some new three level design for the study of quantitative variables. Technometrics. 2:455-475.
Eguchi, U., 1977. HTST cooking of soybeans utilizing NK-cooker. J. Brew. Soc. Japan 72:250-255.
Fardiaze, D., and Markakis, P. 1979. Amines in fermentated fish paste. J. Food Sci. 44:1562-1563.
Fujita, A., and Kishi, K. 1975. Characteristic of Koji Mugi (granular substances for soy sauce use). J. Japan Soy Sauce Res. Inst. 1:28-30.
Fukushima, D. 1968. Internal structure of 7s and 11s globulin molecules in soybean proteins. Cereal Chem. 45:203-224.
Fukushima, D. 1979a. Fermented vegetable (soybean) protein and related foods of Japan and China, J. Am. Oil Chem. Soc. 56:357.
Fukushima, D. 1979b.Additional comments on traditional fermented foods, J. Am. Oil Chem. Soc. 56:379.
Fukushima, D. 1981. Soy proteins for foods centering around soy sauce and tofu, J. Am. Oil Chem. Soc. 58:346.
Fukushima, D. 1985. Fermented vegetable protein and related foods of Japan and China. Food Review International. 1:149-209.
Fumiyosi, M., Hideyuki, Y., Hideki, N., and Enjiro, K. 1990. Influence of soybean-wheat ratio and water content in koji on the quality of matured koji and its soy-mash. J. Japan. Soy Sauce Res. Inst. 16:133-137.
Gomez, M. H., and Agurilera, J. M. 1983. Changes in the starch fraction during extrusion-cooking of corn. J. Food Sci. 48:378-381.
Hashimoto, H., and Yokotsuka, T. 1976. Mechanisms of sediment formation during heating of raw shoyu. J. Brew. Soc. Japan. 71:496-499.
Henika, R.G. . 1972. Simple and effective system for use with response surface methodology. Cereal Science Today. 17:309-312.
Hyun, H.H., and Zekius, J.G. 1985. Biochemical characterization of thermostable extracellular β-amylase from Clostridium theromsulfurogenes. Appl Environ Microbiol. 49:1162-1167.
Jose, H., Ysukada, Y., and Sugimori, T. 1976. Fermentation of lactic acid in soy sauce. J. Japan Soy sauce Res. Inst. 2:172-176.
Keshun, L. 1999. Soybean: chemistry, technology, and utilization. pp. 237-259. Chapman & Hall, New York.
Kikuchi, T. 1975. Effect of the acidic polysaccharide in soy sauce on viscosity of soy sauce. J. Agric. Chem. Soc. Japan. 49:231-232.
Kikuchi, T. 1976. Changes of soybean cell wall polysaccharide during soy sauce fermentation. J. Agric. Chem. Soc. Japan. 50:273-277.
Kikuchi, T. 1977. Behavior and role of soybean polysaccharides on soy sauce fermentation. J. Japan Soy Sauce Res. Inst. 3:154-159.
Kikuchi, T., Sugimoto, H., and Yokotsuka, T. 1976. Polysaccharides in pressed cake and their effects on difficulty in press filtration of fermented soy sauce mash. J Agric. Chem. Soc. Japan. 50:279-286.
Kirimura, J., Shimizu, A., Ninomiya, T., and Katsuya, N. 1969. The contribution of peptides and amino acid to the taste of foodstuffs. J. Agric. Food Chem. 17:689-685.
Komatsu, Y. 1968. Changes of some enzyme activities in shoyu brewing. 1. Changs of the constituents and enzymes activities in shoyu fermentation after low-temperature mashing. Seasoning Sci. 15:10-20.
Ling, M.Y., and Chou, C.C. 1996. Biochemical changes during the preparation of soy sauce koji with extruded and traditional raw materials. International Journal of Food Science and Technology. 31:511-517.
Miaunuma, M. 1984. Microbiology of soy sauce fermentation (1). J. Brew. Soc. Japan. 80:265-269.
Migauchi, K., Inamori, K., and Vchida, K. 1981a. Studies in environmental factors in fermentation of shoyu mash (Ⅱ). Effects of aeration on growth of shoyu yeast (1). J. Japan Soy Sauce Res. Int. 7:13-18.
Migauchi, K., Inamori, K., and Vchida, K. 1981b. Studies in environmental factors in fermentation of shoyu mash (Ⅱ). Effects of aeration on growth of shoyu yeast (2). J. Japan Soy Sauce Res. Int. 7:54-58.
Misaki, T., Yomada, M., Okazaki, T., and Sawada, J. 1970. Studies on the protease constitution of Aspergillus oryzae. Part Ⅰ. Systematic separation and purification of protease. Agr. Biol. Chem. 34:1383-1392.
Montgomery, D.C. 1984. Response surface methods and designs. In “Design and Analysis of Experiments”, pp.521-551. Johi Wiley, New York.
Moriguchi, S., and Nishiyama, T. 1960. Roasting degree of the wheat used for Usukuchi shoyu. J. Ferment. Technol. 38:274-276.
Nakadai, T., Nasuno, S., and Iguchi, N. 1972. The action of peptidase from Aspergillus oryzae in digestion of soybean protein. Agric. Biol. Chem. 36:261-268.
Narahara, H., Koyama, Y., Yoshida, T., Pichangkura, S., Ueda, R., and Taguchi, H. 1982. Growth and enzyme production in a solid state culture of Aspeergillus oryzae. J. Ferment. Technol. 60:311-319.
Noda, Y., Inoye, H., and Kakano, N. 1981. Studies on the control of the fermentation of soy sauce mash. (Ⅲ) estimation of fermentation state by measuring oxygen density in brewing tank. J. Japan Soysauce Res. Inst. 7:173-178.
Node, Y., and Nakano, M. 1985. Fermentation of soy sauce moromi. J. Japan Soysauce Res. Inst. 11:115-124.
Nunomura, N.N., Sasaki, M., and Yokotsuka, T. 1980. Shoyu (soy sauce) flavor component: acetic fractions and the characteristic flavor component. Agric. Biol. Chem. 44:339.
Nunomura, N.N., Sasaki, M., Asao, Y., and Yokotsuka, T. 1976. Identification of volatile components in shoyu (soy sauce) by gas chromatography. Agric. Biol. Chem. 40:485-490.
Osaki, K., Okamoto, Y., Akao, T., Nagata, S., and Takamatus, H. 1985. Fermentation of soy sauce with immobilized whole cells. J. Food Sci. 50:1289-1292.
Sakaguchi, Kinichiro. 1981. Searching for the route of shoyu. SEKAI. 398:252-266.
Sarikaya, E., Higasa, T., Adachi, M., and Mikami, B. 2000. Comparison of degradation abilities of α- and β-amylases on raw starch granules. Process biochem. 35:711-715.
Shikata, H., Omori, K., Okuno, T., and Moriguchi, S. 1971a. Color of Usukuchi soy sauce. Ⅰ. Browning reaction by reducing sugars and amino acids. Season. Sci. 18:28-39.
Shikata, H., Omori, K., Okuno, T., and Moriguchi, S. 1971b. Color of Usukuchi soy sauce. Ⅱ. Browning reaction of soy sauce mash.. Season. Sci. 18:149-162.
Tateno, M., and Umeda, I. 1955. Cooking method of soybeans and soybean cake as raw material for brewing. Japanese patent 204,858.
Thompson, D. 1982. Response surface experimentation. J. Food Process. Preserv. 6:155-188.
Tomita, K., Ito, M. Yano, T., Kumagai, H., and Tochikura, T. 1988a. γ-Glutamyl transpeptidase activity and the properties of the extracellular glutaminase from Aspergillus oryzae. Agr. Biol. Chem. 52:1159-1163.
Tomita, K., Yano, T., Kitagata, T., and Kumaga, H. 1989a. Action of glutaminase in a model system of soy sauce fermentation. Agr. Biol. Chem. 53:1873-1878.
Tomita, K., Yano, T., Kitagata, T., Kumagai, H., and Tochikura, T. 1989b. Formation of γ-glutamyl peptides by glutaminase of Aspergillus oryzae. Agr. Biol. Chem. 53:1995-1996.
Tomita, K., Yano, T., Kumagai, H., and Tochikura, T. 1988b. Formation of γ-glutamyl glycyglycine by extracellular glutaminase of Aspergillus oryzae. J. Ferment. Technol. 66:299-304.
Ushijima, S., Nakadai, T., and Uchida, K. 1987. Improvement of enzyme productivities through mutation or haploidization of heterozygous diploid obtained by protoplast-fusion of Aspergillus sojae. Agr. Biol. Chem. 51:2781-2786.
Ushijima, S., Nakadai, T., and Uchida, K. 1990. Breeding of new koji-molds through interspecific hybridization between Aspergillus oryzae and Aspergillus sojae by protoplast-fusion. Agr. Biol. Chem. 54:1667-1676.
Watanabe, T., and Kishi, A. 1984. Nature’s Miracle protein: the Book of Soybeans. Japanese Publications, Tokyo.
Yasuda. A., Arai. A., Tsukada. N., Mogi, K., Aonuma, T., and Yokotsuka, T. 1973b. Studies on the cooking method of proteinous materials forproteinous materials for soy sauce brewing. Part 2. Brewing test of soy sauce. Season. Sci. 20:25-27.
Yasuda. A., Mogi, K., and Yokotsuka, T. 1973a. Studies on the cooking method of proteinous materials forproteinous materials for soy sauce brewing. Part 1. High temperature and short time cooking method. Season. Sci. 20:20-24.
Yokotsuka, T. 1960. Aroma and flavor of Japanese soy sauce. Adv. Food Res. 10:75.
Yokotsuka, T. 1986. Soy sauce biochemistry. Adv. Food Res. 30:195-329.
Yokotsuka, T., Mogi, K., Fukushima, D., and Yasuda, A. 1966. Dealing method of proteinous raw materials for brewing. Japanses patent 929910. Kikkoman Shoyu Co., Ltd.
Yokotsuka, T., Takimoto, K., and Izuka, S. 1955. Studies on the analytical method of total nitrogen in soy sauce by Kjedahl method. Seasoning Sci. 13:9.
Yong, F.M., and Wood, B.J.B. 1976. Microbial succession in experimental soy sauce fermentation. J. Food Technol. 11:525-536.
Yong, F.M., and Wood, B.J.B. 1977. Biochemical changes in experimental soy sauce koji. J. Food Technol. 12:163-175.
Yong, F.M., Lee, K.H., and Wong, H.A. 1981. The production of ethyl acetate by soy yeast (Saccharomyces rouxii Y-1096). J. Food Technol. 16:177.
山田浩一. 1974. 微生物利用概論. Pp. 304-308. 地球社. 東京.
中台忠信. 1977. 醤油麹菌の自己消化(第4報)醤油麹菌の培養条件(Ⅱ)培地水分. 醬研(日文). 3:16-19.
中台忠信. 1985. 醤油麹菌の生産する各種酵素の役割. 醬研(日文). 11:67-69.
中台忠信. 2002. 麴在發酵食品之應用研討會講習資料.
王美人. 1989. Aspergillus oryzae原生質體形成、再生及其融合之研究. 國立臺灣大學農業化學研究所碩士論文. 台北. 台灣.
王義雄、陳樹功、許文輝. 1980. 蔭油釀造之研究(一):釀造過程之微生物族群及生化變化. 食研報告第154號.
宋剛、伊藤寬、曹小紅. 1991. 中國の醬油事情について. 日本釀造協會誌. 86:506-511.
李秀、賴滋漢、柯文慶. 2000. 食品分析與檢驗(二增定版). 富林出版社. 台中. 台灣.
李福臨、華傑. 1982. 蔭油釀造之研究(三):生產方法之改進與影響發酵因子之探討. 食研報告第236號.
沈明來. 1999. 試驗設計學. 九州圖書文物有限公司出版. 台北.
林麗雲. 1998. 蔭油製造的研究. 國立台灣大學農業化學研究所博士論文. 台北. 台灣.
邱健人. 1977. 醬油大豆之高溫短時間蒸煮法. 食品科學文摘5(1):17-20.
邱健人. 1980a. 醬油製造技術之展望-原料處理. 食品工業12(7):24-28.
邱健人. 1980b. 醬油製造技術之展望-製麴. 食品工業12(8):27-31.
邱健人. 1980c. 醬油製造技術之展望-醪之管理. 食品工業12(9):21-23.
邱健人. 1981. 醬油製造技術之展望-壓榨. 食品工業13(1):31-34.
門脇清. 1996. 日本醬油現況及菌種之篩選. (呂淑芬、李福臨譯) 食品工業 28(3):39-46.
凌美月、周正俊. 1995. Aspergillus oryzae 在不同擠壓醬油發酵基質上之生長及酵素生產. 中國農業化學會誌. 33:521-532.
凌美月. 1994. 利用擠壓處理原料基質進行醬油之發酵. 國立台灣大學食品科技研究所博士論文. 台北. 台灣.
高馥君. 1992. 反應曲面法在食品開發上的應用. 食品工業24(3):32-41.
張伊倫. 1997. 古老的發酵食品-醬油. 食品工業29(4):65-72.
張為憲、陳麗莉. 1996. 蘿蔔在烹煮過程中質地變化與化學成分之關係. 中國農業化學會誌. 34:497-507.
莊朝凱. 2001. 添加鮪魚蒸煮汁試製魚醬油可行性之評估. 國立中興大學食品科學研究所. 台中. 台灣.
許鼎輝、陳欽明. 1975. 甲醛用量對醬油中Formal nitrogen檢出之影響. 食品科學2:39-42.
連大進. 1995. 台灣黑豆的利用與生產展望. 農藥世界. 147:39-42.
連大進. 2000. 國產蔭油加工用黑豆新品種-台南5號. 台南區農業專訊. 31:2-4.
郭錦富. 1986. 醬油在釀造過程中香味之變化及不同成品之比較. 國立臺灣大學農業化學研究所碩士論文. 台北. 台灣.
陳自珍、沈介仁. 1975. 食品添加物. p. 72. 文源書局有限公司. 台灣.
陳桐榮、危貴金. 1996. 臺灣南部地區生蔭油品質及揮發性成分之研究. 中華生質能源學會會誌15:47-54.
陳桐榮、邱義源. 1996. 蔭油醬醪於不同溫度條件進行發酵其微生物及化學組成變化之探討. 中國農業化學會誌. 34:157-164.
陳素月. 1992. 游離胺基酸和胜肽在食物呈味中所扮演的角色. 食品工業24:28-34.
陳勝和. 1975. 醬油. 天然出版社. 台北. 台灣.
華傑、陳樹功、許文輝. 1981. 蔭油釀造之研究(二):生產方法之改進. 食研報告第175號.
黃志強. 1998. 粕漬吳郭魚之品質分析及酒粕酵素之貢獻. 國立中興大學食品科學研究所碩士論文. 台中. 台灣.
楊世民、林讚峰. 1994. 簡介利用反應曲面決定工業微生物的最佳培養. 製酒科技專論彙編. 16:135-150.
楊培、陳世爵. 1979. 醬油製造專輯. 美國黃豆協會. 台北. 台灣.
經濟部. 1996. 醬油產業現況及發展趨勢分析. 調查報告第85-080號. 台灣.
經濟部中央標準局. 1994. 中國國家標準(CNS 423 N5006). 台灣.
福島 男兒. 1977. 大豆蛋白質の変性とその利用―大豆蛋白食品に対する分子構造面からのアプローチ. 日本醤油研究所雑誌. 3:22-31.
劉廷英. 1984. 豆豉油及其抗氧化性. 中國農業化學會誌 22:240-256.
橫塚保. 1985. 醬油之品質:香味、營養及安全性(上). (鄭水淋譯) 食品工業 17(5):45-54.
橫塚保. 1989a. 醬油製造之原料蒸煮、製麴及醬醪醱酵(上). (李政宏譯) 食品工業21(4):24-37.
橫塚保. 1989b. 醬油製造之原料蒸煮、製麴及醬醪醱酵(下). (李政宏譯) 食品工業21(5):32-40.
檀上 睦夫、村上、高取、木村.1976. 脱脂加工大豆の処理(第2報)撒水吸水と蒸煮の関係. 日本醤油研究所雑誌. 2:209-218.
薛聰賢. 2000. 台灣蔬果實用百科1. 普綠出版社. 彰化. 台灣.
闕文仁、鄧世正. 1977. 實用醬油釀造學. 環宇出版社. 台北. 台灣.
顏國欽. 1987. 食品中生物胺之研究3.蔭油釀造過程中生物胺生成之探討. 中國農業化學會誌. 25:60-68.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 邱健人. 1977. 醬油大豆之高溫短時間蒸煮法. 食品科學文摘5(1):17-20.
2. 高馥君. 1992. 反應曲面法在食品開發上的應用. 食品工業24(3):32-41.
3. 門脇清. 1996. 日本醬油現況及菌種之篩選. (呂淑芬、李福臨譯) 食品工業 28(3):39-46.
4. 邱健人. 1981. 醬油製造技術之展望-壓榨. 食品工業13(1):31-34.
5. 邱健人. 1980c. 醬油製造技術之展望-醪之管理. 食品工業12(9):21-23.
6. 邱健人. 1980b. 醬油製造技術之展望-製麴. 食品工業12(8):27-31.
7. 邱健人. 1980a. 醬油製造技術之展望-原料處理. 食品工業12(7):24-28.
8. 張伊倫. 1997. 古老的發酵食品-醬油. 食品工業29(4):65-72.
9. 張為憲、陳麗莉. 1996. 蘿蔔在烹煮過程中質地變化與化學成分之關係. 中國農業化學會誌. 34:497-507.
10. 許鼎輝、陳欽明. 1975. 甲醛用量對醬油中Formal nitrogen檢出之影響. 食品科學2:39-42.
11. 連大進. 1995. 台灣黑豆的利用與生產展望. 農藥世界. 147:39-42.
12. 陳桐榮、危貴金. 1996. 臺灣南部地區生蔭油品質及揮發性成分之研究. 中華生質能源學會會誌15:47-54.
13. 陳桐榮、邱義源. 1996. 蔭油醬醪於不同溫度條件進行發酵其微生物及化學組成變化之探討. 中國農業化學會誌. 34:157-164.
14. 陳素月. 1992. 游離胺基酸和胜肽在食物呈味中所扮演的角色. 食品工業24:28-34.
15. 劉廷英. 1984. 豆豉油及其抗氧化性. 中國農業化學會誌 22:240-256.