跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/15 04:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林佳玲
研究生(外文):Chia-Ling Lin
論文名稱:稻米不同品種系其澱粉微細結構與米質品質之相關性研究
論文名稱(外文):Studies on the correlation between starch fine structure and textural quality from different rice varieties and mutants
指導教授:盧訓盧訓引用關係
指導教授(外文):Shin Lu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:稻米澱粉理化特性流變性質微細結構
外文關鍵詞:ricestarchphysicochemical propertyrheological propertyfine structure
相關次數:
  • 被引用被引用:6
  • 點閱點閱:481
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究以台農67號及其六種直鏈澱粉含量不同之稻米突變品種系為試驗材料。包括高直鏈二種(高1、高2)、中直鏈二種(中1、中2)及低直鏈二種(低1、低2)。觀察米粒外觀及結構,並進一步分離出米澱粉之後,進行澱粉顆粒、理化特性、流變性質及微細結構之研究,並將所有性質進行相關性分析之探討。
結果顯示七種稻米品種的米粒白堊質胚乳比例不盡相同,且與米粒硬度有關,當白堊質所佔比例越多米粒硬度越小。在澱粉顆粒外觀上,顆粒直徑介於2∼10μm,結晶型態為A-type,突變品種系之澱粉顆粒表面具有孔洞,且部分顆粒有破碎及轉圓的情形。
理化特性方面,整體來看,直鏈澱粉含量與溶解度、成糊溫度、回昇黏度、最終黏度及動態流變性質呈現顯著的正相關性,與膨潤力及凝膠延展性呈現負相關性。在流變性質方面,高直鏈品種形成彈性較高的澱粉凝膠,但凝膠較不穩定,回凝現象明顯,且回凝速度快,低直鏈品種所形成凝膠黏性較大,偏向於流體性質,回凝速度比較慢,顯示直鏈澱粉含量是影響澱粉糊化及回凝性質的主要因子。而就高1與高2之理化特性及流變性質來看,兩者有很大差異,推測高1之澱粉顆粒穩定度低,且澱粉分子結晶強度弱,導致其糊化溫度低,膨潤程度大。
澱粉微細結構方面,推測台農67號、高2及中1此三種品種的澱粉中佔有較多的中間分子,台農67號澱粉存在有較低分子量之支鏈澱粉分子。同時,低直鏈品種聚合度較高直鏈品種高,可能存在具有較大分支鏈的支鏈澱粉,可見不同品種的支鏈澱粉微細結構有差異,需要更進一步探討支鏈澱粉的微細結構。
本實驗發現,台農67號及其六種不同突變品種系米澱粉因直鏈澱粉含量的差異而表現不同的理化特性及流變性質,可將其運用在不同的米食加工產品上。
In this study, Tainung 67(TNG67) and its six variety mutant’s rice (two kinds of high amylose, two kinds of medium amylose and two kinds of low amylose) were used as test samples. The hardness of rice kernel, the physicochemical properties and fine structure of starches were determined. Moreover, the relationship between the physicochemical properties and the fine structure of starches were also elucidated.
The resulted indicated the transparency of rice kernel of seven varieties were different and showed a significant correlation to the hardness of rice kernel. The particle diameter was about 2~ 10μm and the X-ray diffraction were an A-type crystal that was common seems in native rice starches. The sharp of starch granules were polygonal, spherical compound granules. Whereas, the starch granule surface of mutant varieties were consisted some pores and abrasion.
In the physicochemical properties, the swelling power, solubility, gel consistency, gelatinization properties (pasting temperature, setback viscosity, and final viscosity) and rheological modulus (G’ and G”) showed the significant correlation with amylose content of rice starches.
The rheological modulus of rice starches showed that G’ was higher than G”, and the solution tended to behave between strong gel and concentration solution. The viscoelasticity of rice starches increased with the increase of the amylose content. The starch gel of high amylose content showed the paste characteristics as strong gel, and starch gel of low amylose content tended to concentration solution. These might indicate the stronger relationship between the pasting characteristics and the amylose content. But, the pasting characteristics of two high amylose content varieties (M4 and M6) had large difference. The factors showed that M4 had lower gelatinization temperature and higher extent of swelling. So, I considered that M4 had weaker hardness of starch particles, as well as the state of entanglement, and the weaker crystalline pattern of starch.
The gel permeation profile of rice starch indicated that TNG67, M6 and W2 might consist intermediate molecular. Then, the low amylose content varieties had higher degree of polymerization, which may due to the more branched molecular of amylopectin and the different fine structure of amylopectin. The fine structure of amylopectin was worthy of more in-depth description.
Accordingly, it seemed that the physicochemical properties and rheological properties of rice starch were mainly controlled by the amylose content of rice starches. Moreover, the cooling and eating quality of rice products might be improved by applying those characteristics in rice-based food products.
中文摘要………………………………………………………………1
英文摘要………………………………………………………………3
壹、前言…………………………………………………..…………5
貳、文獻整理……………………………………………..…………6
一、稻米的分類與結構………………………………..……..…..6
二、稻米品質及米質硬度指標之建立………………...………9
三、澱粉顆粒及其組成結構………………………..…………12
四、凝膠機制……………………………………………………22
五、影響澱粉凝膠流變性質之因子……………………………24
六、流變性質之測定……………………………………………26
參、實驗架構………………………………………….……………31
肆、材料與方法………………………………………….…………32
一、材料…………………………………………………………...32
二、方法…………………………………………………………...32
(一)米澱粉之分離..………..….….…………………………32
(二)澱粉顆粒外觀及粒徑分佈………………………………..32
1. 掃瞄式電子顯微鏡之觀察….…………………...…………..32
2. 粒徑分析…..….…………………………….………………..33
3. X-ray繞射………….…………………………….…………...33
(三)理化特性分析……..….…………………………………..33
1. 粗蛋白質含量………………………………………………....33
2. 直鏈澱粉含量.………………………………………………...33
3. 澱粉液化活性…….………………………………………...33
4. 米粒硬度……..………………………..……………………..34
5. 凝膠延展性…………………..……………..………….…….34
6. 膨潤力與溶解度………..……………………………………..34
7. 連續糊化黏度………..………………………………….…...35
8. 示差掃瞄熱分析……..……………………………….….....35
9. 動態流變性質………………………………………………....35
(四)微細結構分析……….……………………….…..……….36
1. 澱粉分子結構分析…………………………………………....36
2. 藍價…………………………………………………………....37
(五)統計分析…………….……………………….…..……….37
伍、結果與討論…………………………………………………….38
一、澱粉顆粒外觀及粒徑分佈……………………………….…..38
1. 掃瞄式電子顯微鏡之觀察….………………………….......38
2. 粒徑分析…..….…………………………….…………......38
3. X-ray繞射………….……………………………………......39
二、理化特性分析……..….……………………………………..39
1. 直鏈澱粉含量.………………………………………………...39
2. 澱粉液化活性…….………………………………………...45
3. 粗蛋白含量…………………………………………………....45
4. 米粒硬度……..…………………………………………......45
5. 凝膠延展性…………………..……………..………….…….46
6. 膨潤力與溶解度………..…………………………………....50
7. 連續糊化黏度………..………………………………….…...51
8. 示差掃瞄熱分析……..……………………………….….....55
9. 動態流變性質………………………………………………....58
三、微細結構分析……….……………………….…..………….67
陸、結論………………………….…………………………………78
柒、參考文獻…………………….…………………………………80
中央標準局。CNS13446。
宋勳。1986。稻米品質分級與改良。四十年來台灣稻作生產改進專輯。
宋勳,劉瑋婷。1996。稻米品質的影響因素與分級。p.133.稻作生產改進策略研討會專刊。台灣農業試驗所特刊第59號。
林雅欣。2001。添加小麥胚芽之糙米產品開發及其營養評估。中興大學食品科學研究所碩士論文。
何欣憓。2001。不同品種山藥澱粉之支鏈澱粉微細結構。中興大學食品科學研究所碩士論文。
林意清。2000。不同品種山藥澱粉之理化特性探討。中興大學食品科學研究所碩士論文。
陳季洲、盧訓。1998。糯性品種稻米澱粉理化特性分析。中國農化會誌。36:311-322。
陳季洲。1998。稻米硬度與研磨對米榖粉粒徑分布及理化特性之影響。國立中興大學食品科學研究所博士論文。
楊啟春,賴惠民,呂政義。1984。米澱粉分離法之改進。食品科學11:158-162。
廖杏綺。1988。糯品種米澱粉之微細結構與理化特性之研究。中興大學食品科學研究所碩士論文
盧訓,林明三,呂政義。1989。台灣稻米硬度之測定。食品科學16(4):338-346。
盧訓,方文助,呂政義。1994。探討不同濕熱處理對糯米及非糯性米理化特性之影響。中國農化會誌。32:372-383。
盧訓,林子清。1995。傳統米食加工手冊。行政院農業委員會,台灣省政府農林廳,中華農藝學會 贊助。
涉谷直人、鈴木信隆、宕崎哲也。1983。精白米的酵素活性大小對於黏度的影響。澱粉科學。30:284-290。
American Association of cereal Chemists. 1983. Approved Methods of the AACC. 8th ed. The Association of Cereal Chemists : St. Paul, MN.
Alexander, A. L., Mestres, C. and Faure, J. 1991. Measurement of endosperm vitreousness of corn:A quantitative method and its application to African cultivars. Cereal Chem. 68:614-617.
Bravber, S. 1972. Milled rice and changes during aging. In:Rice Chemistry and Tecnology, Houston, D. F. Ed. p.215-263, The American Association of Cereal Chemistry., St. Paul, MN.
Bernfeld, P. 1955. Amylase, a and b:Methods in Enzymology vol. 1. Academic Press, New York. p. 149.
Biliaderis, C. G., Page, C. M., Maurice, J. M. and Juliano, B. O. 1986. Thermal characterization of rice starches: A polymeric approach to phase transitions of granular starch. J. Agric. Food Chem. 34:6-14.
Biliaderis, C. G. and Zawistowski, J. 1990. Viscoelastic behavior of aging starch gels :effects of concentration, temperature, and starch hydrolyzates on network properties. Cereal Chem. 67:240.
Biliaderis, C. G. 1992. Characterization of starch networks by small strain dynamic rheometry. p.87 in “Development in carbohydrate chemistry “ Alexander, R.J., and Zobel, H. F. eds. Am. Assoc. Cereal Chem., St. Paul, MN.
Blakeney, A. B., Welsh, L. A. and Bannon, D. R. 1991. Rapid viscometric analysis of rice flour. IRC Newsletter 16:11-12.
Cagampang, G. B., Perez, C. M. and Juliano, B. O. 1973. A gel consistency test for eating quality of rice. J. Sci. Fd. Agric. 24:1589-1594.
Chrastil, J. 1990. Influence of storage on enzymes in rice grains. J. Agric. Food Chem. 38:1198-1202
Clark, A. H., Gidley, M. J., Richardson, R. K. and Rose-Morphy, S. B. 1989. Rheological studies of aqueous amylose gels: the effects of chain length and concentration on gel modulus. Macromolecules 22:346.
Collison, R. 1968. In starch and its derivations. p.168 Radley, J. A. ed. London, Chapman and Hall.
Cooke, D. and Gidley, M. J. 1992. Loss of crystalline and molecular order during starch gelatinization:Origin of enthalpic transition. Carbohydr. Res. 227:103-112.
Donavan, J. W. 1979. Phase transition of the starch-wateer system. Biopolymer 18:263-275.
Doublier, J. L. and Choplin, L. 1989. A rheological description of amylose gelation. Carbohydr. Res. 193:215.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top