跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8e11:74e4:2207:41a8) 您好!臺灣時間:2025/01/15 16:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭萬禎
研究生(外文):Cheng Wan Jen
論文名稱:利用批式發酵生產巴西洋菇菌絲體及胞外多醣之研究
論文名稱(外文):Study of mycelium and exopolysaccharide formation by Agaricus blazei Murill in batch fermentation
指導教授:方繼方繼引用關係
指導教授(外文):Tony J. Fang Ph. D.
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:103
中文關鍵詞:Agaricus blazei Murrillfunctional foodsumberged fermentationexopolysaccharideebiomass
外文關鍵詞:巴西洋菇機能性食品深層發酵胞外多醣生質
相關次數:
  • 被引用被引用:25
  • 點閱點閱:551
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
巴西洋菇(Agaricus blazei Murrill),原產於巴西,即目前在日本等地為人所熟知的 ”姬松茸”,目前廣泛的栽培於日本及中國大陸等地。早在過去,巴西洋菇就因其藥用特性在世界各地被當成食品或機能性食品來使用。
在菇類的深層培養中,有許多種類的胞外多醣被認為具有生理活性。利用深層發酵技術培養巴西洋菇菌絲體可以比栽培其子實體更快速獲得其菌體,還能額外獲得其胞外產物。根據前人的研究,食藥用真菌在深層發酵時,其菌體生長及胞外多醣生成會受到發酵環境因子的影響。因此本研究的目的在於評估發酵條件對巴西洋菇於深層培養時菌體生長及胞外多醣生成造成的影響。
研究結果顯示,利於巴西洋菇菌體量之生成並具顯著差異(p<0.05)的發酵條件因子有:起始pH值在5~6.5之間、載液量為70 ml或90 ml(於250 ml有溝錐形瓶中)、較佳之碳源種類為果糖優於葡萄糖及蔗糖、較佳之氮源種類為peptone、yeast extract及casein。另外將碳氮比調整為15時,可以得到最高之菌量。
而可以獲得高胞外多醣量並具顯著差異(p<0.05)的發酵條件有:起始pH值6、載液量為50 ml(於250 ml有溝錐形瓶中)、最佳的碳源、氮源分別為麥芽糖及酵母萃取物,而碳氮比40最適合胞外多醣生成。
在巴西洋菇的搖瓶培養,最初培養15天僅能獲得1g/L的菌體量,當進行到碳氮源之探討時,發現在8天的培養後可以在碳氮比為15時得到15.2 g/L之最高菌量,相當於最初菌量之15倍。
當將搖瓶試驗探討時對菌體生長的有利因子結合,利用5公升桌上型攪拌式發酵槽進行驗證的小規模放大培養時,發現只要4天即可得到10 g/L的菌體量。
The mushroom Basidiomyceta Agaricus blazei Murrill, a native mushroom in Brazil, is popularly known in Japan as “Himematsutake” or “Kawariharatake”. It has been widely cultivated and studied in Japan. At present, A. blazei is often consumed as food or functional food in different parts of the world, especially because of its imputed medicinal properties.
Several kinds of exo-polysaccharides, produced from submerged culture of mushroom, have been recognized as active ingredients. Submerged fermentation technique was useful to obtain the biomass and products fast than cultivated the fruit body of the A. blazei. According to the present paper, the growth and production of the biomass and exopolysaccharide by edible and medicinal fungi are influenced by the fermentation environmental parameters. The objective of this work was to evaluate the effects of fermentation factors on the submerged fermentation of A. blazei.
Our study showed the factors that can yielded significant higher biomass formation(ρ<0.05) were as follows:initial pH 5~6.5, cultivation volume of 70 ml or 90 ml(in 250 ml flask with baffle). Carbon sources that can supported high biomass were in the following order: fructose > glucose > sucrose. Peptone was found to support the highest biomass formation, followed by casein and yeast extract. When the C/N ratio of the medium was adjusted to 15, the highest biomass was obtained.
The highest exopolysaccharide production was obtained in the following cultivation conditions: initial pH 6.0, cultivation volume of 50 ml (in 250 ml flask with baffle), with maltose and yeast extract as the carbon and nitrogen source, respectively. And the best C/N ratio of medium for condition of exopolysaccharide production ratio of medium was 40.
In shake flask culture of A. blazei Murrill, 1 g/L of biomass was observed after 15 days of incubation. However, 15.2 g/L of biomass, a 15-fold increase, was obtained in C/N ratio of medium was 15 after 8 days submerged culture.
When A. blazei was cultivated in a bench top fermentor with 200 r.p.m. agitation and 2 v.v.m. aeration rate, 10 g/L of biomass formation was obtained after 4 days of grow
壹、前言…………………………………………………………….…………1
貳、文獻整理……………………………………………………….…………2
一、巴西洋菇的簡介……………………………………………………..2
(一)、巴西洋菇的發現與由來………………………………………2
(二)、巴西洋菇的分類與型態特徵…………………………………2
(三)、巴西洋菇的機能性……………………………………………3
(四)、巴西洋菇多醣的介紹………………………………………....6
(五)、巴西洋菇多醣體之相關研究………………………………..12
二、深層發酵食藥用真菌菌絲體及多醣體生產之探討………………14
(一)、接種量與種菌型態………………………………….………17
(二)、碳源種類及濃度…………………………………….………18
(三)、氮源種類及濃度…………………………………….……...20
(四)、碳氮比……………………………………………………….22
(五)、溫度………………………………………………………….22
(六)、起始pH值及pH值控制……………………………………...24
(七)、攪拌與通氣…………………………………………………25
(八)、無機鹽類…………………………………………….……...32
參、材料與方法……………………………………………………………...34
一、實驗材料……………………………………………………………34
(一)、實驗菌株……………………………………………………..34
(二)、基礎培養基…………………………………………………..34
(三)、修飾培養基…………………………………………………..34
(四)、藥品清單……………………………………………………..35
(五)、儀器清單……………………………………………………..36
(六)、電腦套裝軟體………………………………………………..37
二、實驗設計大綱………………………………………………………38
三、實驗方法……………………………………………………………39
(一)、菌種保存……………………………………………………..39
(二)、菌種活化……………………………………………………..39
(三)、繼代培養……………………………………………………..39
(四)、種菌培養……………………………………………………..40
(五)、種菌懸浮液的製作…………………………………………..40
(六)、實驗室小量栽培試驗………………………………………..40
(1).母種培養基………………………………………………40
(2).原種培養基……………………………………….……...42
(3).栽培種培養基……………………………………………42
(4).接菌與栽培………………………………………………42
(七)、批式培養方法與條件………………………………………..43
(1).種菌試驗培養條件……………………………….……...43
(2).搖瓶試驗基礎培養條件…………………………………43
(3).5L桌上型攪拌式發酵槽試驗培養條件………………...44
四、分析方法……………………………………………………………45
(一)、分析方法流程圖…………………………………….………45
(二)、菌體乾重(Dry cell weight)分析…………………….………46
(三)、pH值的測定…………………………………………………46
(四)、胞外多糖(Exopolysaccharide)的萃取與分析………………46
(五)、殘糖分析…………………………………………….………48
(1).DNS法…………………………………………………...48
(2).HPLC殘糖分析法……………………………….………49
(六)、菌體收率(Y x/s)之計算…………………………………….50
肆、結果與討論…………………………………………………….………..51
一、實驗室小量栽培試驗………………………………………………51
二、種菌條件之探討……………………………………………………53
(一)、植物油之添加………………………………………………..53
(二)、生長促進物質的添加………………………………………..56
(三)、種菌之生長曲線……………………………………………..58
三、搖瓶試驗……………………………………………………………61
(一)、起始pH值之探討……………………………………………61
(二)、載液量之探討………………………………………………..65
(三)、碳源種類之探討…………………………………….………68
(四)、最適葡萄糖濃度之探討…………………………….………71
(五)、最適果糖濃度之探討……………………………….………74
(六)、雙碳源培養基之探討………....…………………….………76
(七)、不同雙碳源濃度組合培養基之探討……………………….77
(八)、氮源種類之探討…………………………………….………81
(九)、碳氮比(C/N ratio)的探討…………………………………...84
四、5L桌上型攪拌式發酵槽試驗………………………………87
伍、結論……………………………………………………………………...90
陸、未來展望………………………………………………………………...92
柒、參考文獻………………………………………………………………...94
捌、附錄一………………………………………………………………….103
1. 王伯徹,2000,菇類菌種之保存。大專院校教師微生物菌種培養及保存講義。食品工業發展研究所。
2. 王伯徹,1992,認識食藥用菇。食品工業,24(12):8-15。
3. 王伯徹、邱世浩、黃仁彰,1998,食用菇保健食品專輯。食品工業,30(5):1-36。
4. 王伯徹、陳啟楨、華傑,1998,食藥用菇類的培養與應用。食品工業發展研究所。
5. 王伯徹,2000a,具開發潛力食藥用菇介紹。食品工業,32(5):1-17。
6. 王伯徹,2000b,食藥用菇保健食品之開發。食品工業,32(5):18-27。
7. 王青牡、孫姝媛,1997,我國液體培養藥用蟲草菌絲體的研究進展。食用菌,3:2-3。
8. 王進琦、李聰明、賴敏男,1998,猴頭菇以液態靜置培養產製水溶性多糖類之探討。食品科學,25(6):714-726。
9. 水野卓、川和正允,1997,菇類的化學生化學。國立編譯館。
10. 江枝和、朱丹、楊佩玉,1996,姬松茸生物學特性研究。食用菌學報,3(3):5-12。
11. 江枝和、朱丹、楊佩玉,1997,姬松茸栽培工藝的研究。食用菌學報,4(3):45-50。
12. 江枝和、朱丹、楊佩玉,1999,姬松茸的栽培技術。食用菌學報,6(1):33-38。
13. 李秀、賴滋漢,1976,食品分析與檢驗。精華出版社。
14. 李開本、陳體強、徐洁、何修金、陳福如、江枝和,1999,巴西蘑菇富鎘特性研究初報。食用菌學報,6(1):55-57。
15. 林璧鳳,2001,機性醱酵食品之免疫功能評估。機能性醱酵製品研討會論文集,p.207-216。
16. 周曉燕,許周善,1999,以豆粕為氮源生產蟲草菌絲體的研究。工業微生物,29(1):1-5。
17. 胡琦桂,1994,真菌球狀菌絲體生長之探討。科學與技術,26(9):37-45。
18. 徐錦堂,1996,中國藥用真菌學。北京醫科大學.中國協和醫科大學聯合出版社。
19. 徐敬衡、周柏甫,2000,絲狀微生物之菌絲球粒徑控制生物反應器之新設計。化工技術,10(4):102-118。
20. 陳宏文,2001,以回應曲面法探討樟芝高密度發酵並分析相關的成分與機能性。國立交通大學生物科技研究所碩士論文。
21. 陳勁初,1999,菇類保健食品之開發。經濟部工業局八十九年度應用生物技術人才培訓計畫講義。
22. 游英欽,1996,以搖瓶震盪及小型發酵槽培養,探討培養基組成及物理化學因子,對於靈芝多醣生成及生長型態變化的影響。國立交通大學生物科技研究所碩士論文。
23. 常繼東,2000,食用蕈菌天然食品防腐劑發酵工藝的研究。食用菌學報,7(2):41-46。
24. 莊苓萍,1996,食用菇的營養價值。食品工業,28(9):30-38。
25. 黃鈴娟,2000,樟芝與姬松茸之抗氧化性質及多醣主成分析。國立中興大學食品科學研究所碩士論文。
26. 黃家樑,1997,液態培養生產靈芝菌絲體與靈芝多醣之研究。私立東海大學化學工程研究所碩士論文。
27. 黃麗娜,1996,食用菇菌絲體深層培養在食品工業上的應用。食品工業,28(9):20-26。
28. 楊芳鏘、楊明哲,2001,菌絲狀真菌之深層培養技術。化工技術,9(2):176-189。
29. 楊梅、林琳、張其昌,1997,姬松茸菌絲深層培養及胺基酸分析研究。中國食用菌,16(3):41-42。
30. 楊民和、楊新美、陳立國,2000,松茸的營養生理及培養基的篩選。菌物系統,19(1):272-277。
31. 尤新,2001,機能性醱酵製品。藝軒圖書出版社。
32. 劉勝宇,2001,探討培養溫度對巴西蘑菇液態發酵之影響。國立中央大學化學工程研究所碩士論文。
33. 謝建元,2000,靈芝的功效與栽培方法。生物資源 生物技術,2(2):18-28。
34. 顧芳紅、殷紅,1999,鉀離子濃度對平菇菌絲生長和子實體形成的影響。食用菌,1:7-8。
35. 米山 誠、目黑貞利、河內進策,1997,ヒメマッタケAgaricus blazeiの液體培養。木材學會誌,43(4):349-355。
36. Barnett, C., A. Smith, B. Scanlon and C. J. Israilides. 1999. Pullulan production by Aureobasidium pullulans growing on hydrolysed potato starch waste. Carbohydrate Polymers. 38:203-209.
37. Becerra, M. and M. I. G. Siso, 1996, Yeast β-galactosidase in solid-state fermentations. Enzyme and Microbial Technology. 19:39-44.
38. Bisakowski, B., A. S. Atwal, S. Kermasha. 2000. Characterization of lipoxygenase activity from a partially purified enzymic extract from Morchella esculenta. Process Biochemistry. 36:1-7.
39. Brand D., A. Pandey, S. Roussos and C. R. Soccol. 2000. Biological detoxification of coffee husk by filamentous fungi using a solid state fermentation system. Enzyme and Microbial Technology. 27:127-133.
40. Castilho L. R., C. M. S. Polato, E. A. Baruque, G. L. S. Jr.,D. M. G. Freire. 2000. Economic analysis of lipase production by Penicillium restrictum in solid-state and submerged fermentation. Biochemical Engineering Journal. 4:239-247.
41. Conti, E., M. Stredansky, S. Stredanska, F. Zanetti. 2001. γ-Linolenic acid production by solid-state fermentation of Mucorales strains on cereals. Bioresource Tech. 76:283-286.
42. Dorado, J., G. Almendros, S. Camarero, A. T. Martinez, T. Vares, A. Hatakka. 1999. Transformation of wheat straw in the course of solid-state fermentation by four ligninolytic basidiomycetes. Enzyme and Microbial Technology. 25:605-612.
43. Delmanto, R. D., P. L. A. d. Lima, M. M. Sugui, A. F. d. Eira, D. M. F. Salvadori, G. Speit, L. R. Ribeiro. 2001. Antimutagenic effect of Agaricus blazei Murrill mushroom on the genotoxicity induced by cyclophosphamide. Genetic Toxicology and Environmental Mutagenesis. 496:15-21.
44. Domimgues, F. C., J. A. Queiroz, J. M. S. Cabral, L. P. Fonseca. 2000. The influence of culture conditions on mycelial structure and cellulase production by Trichoderma reesei Rut C-30. Enzyme and Microbial Technology. 26:394-401.
45. Fang, Q.-H. and J.-J. Zhong. 2002. Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites ganoderic acid and polysaccharide. Biochemical Engineering Journal. 10:61-65.
46. Fang, Q.-H. and J.-J Zhong. 2002. Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochemistry. 37:769-774.
47. Fujimiya, Y., Y. Suzuki, K. Oshiman, H. Kobori, K. Moriguchi, H. Nakashima, Y. Matumoto, S. Takahara, T. Ebina and R. Katakura. 1998. Selective tumoricidal effect of soluble proteoglucan extracted from the basidiomycete, Agaricus blazei Murill, mediated via natural killer cell activation and apoptosis. Cancer Immunol Immunother. 46:147-159.
48. Hansson, G. and G. Seifert. 1987. Effects of cultivation techniques and media on yield and morphology of the basidiomycete Armillaria mellea. App. Microcil. Biotechnol. 26:468-473.
49. Ito, H., K. Shimura, H. Itoh and M. Kawade. 1997. Antitumor effects of a new polysaccharide-protein complex(ATOM)prepared from Agaricus blazei (Iwade Strain 101)”Himema- tsutake” and its mechanisms in tumor-bearing mice. Anticancer Research. 17:277-284.
50. Jecu, Luiza. 2000. Solid state fermentation of agricultural wastes for endoglucanase production. Industrial Crops and Products. 11:1-5.
51. Jha, K., S. K. Khare and A. P. Gandhi. 1996. Solid-state fermentation of soy hull for the production of cellulase. Bioresource Tech. 54:321-322.
52. Jecu, Luiza. 2000. Solid state fermentation of agricultural wastes for endoglucanase production. Industrial Crops and Products and International Journal. 11:1-5.
53. Kawagoe, M., K. Kawakami, Y. Nakamura, K. Naoe, K. Miki and H. Noda. 1999. Submerged culture of Tricholoma matsutake mycelium in bubble column fermentors. Journal of Bioscience and Bioengineering. 87(1):116-118.
54. Kawagishi, H., R. Inagaki, T. Kanao, T. Mizuno. 1989. Fractionation and antitumor activity of the water-in-soluble residue of Agaricus blazei fruiting bodies. Carbohydrate Research. 186:267-273.
55. Mattila, P., K. Suonpaa and V. Piironen. 2000. Functional properties of edible mushrooms. Nutrition. 16:694-696.
56. Madi, N., B. Mcneil and L. M. Harvey. 1997. Effect of exogenous calcium on morphological development and biopolymer synthesis in the fungus Aureobasidium pullulans. Enzyme Microb. Technol. 21(1):102-107.
57. Menoli, R. C. R. N., M. S. Mantovani, L. R. Ribeiro, G. Speit, B. Q. Jordao, 2001. Antimutagenic effects of the mushroom Agaricus blazei Murrill extracts on V79 cells. Genetic Toxicology and Environmental Mutagenesis. 496:5-13.
58. Miller, G.L. 1959. Use of dinitrosalicyclic acis reagent for determination of reducing sugar. Anal. Chem. 31:426-428.
59. Mizuno, T., R. Inagaki, T. Kanao, T. Hagiwara, T. Nakamura, H. Iro, K. Shimura, T. Sumiya and A. Asakura. 1990. Antitumer activity and some properties of water-insoluble hetero-glycans from “Himematsutake,” the fruiting body of Agaricus blazei Murill. Agric. Biol. 54(11):2897-2905.
60. Mizuno, T., T. Hagiwara, T. Nakamura, H. Ito, K. Shimura, T. Sumiya and A. Asakura. 1990. Antitumor activity and some properties of water-soluble polysaccharides from “Himematsutake,” the Fruiting Body of Agaricus blazei Murill. Agric. Biol. Chem. 54(11):2889-2896.
61. Mizuno, M., M. Morimoto, K. Minato and H. Tsuchida. 1998. Polysaccharides from Agaricus blazei stimulate lymphocyte T-cell subsets in mice. Biosci. Biotechnol. Biochem. 62(3):434-437.
62. Mizuno, M., K. Minato, H. Ito, M. Kawade, H. Terai and H. Tsuchida. 1999. Anti-tumor polysaccharide from the mycelium of liquid-cultured Agaricus blazei Mill. Biochemistry and Molecular Biology International. 47(4):707-714.
63. Mohammad, F. H. A., S. M. Badr-Eldin, O. M. El-Tayeb and O. A. Abdel-Rahman. 1995. Polysaccharide production by Aureobasidium pullulans III. The influence of initial sucrose concentration on batch kinetics. Biomass and Bioenergy. 8(2):121-129.
64. Ono, K., N. Yasuda and S. Ueda. 1977. Effect of pH on puppupan elaboration by Aureobasidium pullulans S-1. Aga. Biol. Chem. 41(11):2113.
65. Okba, A. K., T. Ogata, H. Matsubara, S. Matsuo, K. Doi and S. Ogata. 1998. Effects of bacitracin and excess Mg2+ on submerged mycelial growth of Streptomyces azureus. Journal of Fermentation and Bioengineering. 86(1):28-33.
66. Papagianni, M., S. E. Nokes, K. Filer. 1999. Production of phytase by Aspergillus niger in submerged and soild-state fermentation. Process Biochemistry. 35:397-402.
67. Park, E. Y., Y. Koike, K. Higashiyama, S. Fujikawa and M. Okabe. 1999. Effect of nitrogen source on mycelial morphology and arachidonic acid production in cultures of Mortierella alpina. J. Bioscience Bioeng. 88:61-67.
68. Paul, G. C., M. A. Pride, C. R. Thomas, 1999. Relationship between morphology and citric acid production in submerged Aspergillus niger fermentations. Biochemical Engineering Journal. 3:121-129.
69. Peters, H. -U., H. Herbst, P. G. M. Hesselink, H. Lunsdorf, A. Schumpe and W. Deckwer. 1989. The influence of agitation rate on xanthan production by Xanthomonas campestris. Biotechnology and Bioengineering. 34:1393-1397.
70. Pirt, S. J. and D. S. Callow. 1959. Continuous-flow culture of the filamentous mould Penicillium chrysogenum and the control of its morphologh. Nature. 184:307-310.
71. Riley, G. L., K. G. Tucker, G. C. Paul, C. R. Thomas. 1999. Effect of biomass concentration and mycelial morphology on fermentation broth rheology. Biotechnology and Bioengineering. 68:160-172.
72. Reeslev, M., B. B. Jorgensen and O. B. Jorgensen, 1996. Exopolysaccharide production and morphology of Aureobasidium pullulans grown in continuous cultivation with varying ammonium-glucose ratio in the growth medium. J. Biotech. 51:131-135.
73. Seviour, R. J. and B. Kristiansen. 1983. Effect of ammonium ion concentration on polysaccharide production by Aureobasidium pullulans in batch culture. European Journal of Applied Microbiology and Biotechnology. 17:178-181.
74. Sinha, J., J. T. Bae, J. P. Park, C. H. Song and J. W. Yun. 2001. Effect of substrate concentration on broth rheology and fungal morphology during exo-biopolymer production by Paecilomyces japonica in a batch culture. Enzyme and Microbial Technology. 29:392-399.
75. Tamura, S., Y. Park, M. Toriyama and M. Okabe. 1997. Change of mycelial morphology in tylosin production by batch culture of Streptomyces fradiae under various shear conditions. Journal Of Fermentation and Bioengineering. 83(6):523-528.
76. Wang, D. I. C., C. L. Cooney, A. L. Demain, P. Dunnill, A. E. Humphrey and M. D. Lilly. 1979. Fermentation and enzyme technology. United States of America.
77. Xia, L., P. Chen. 1998. Cellulase production by soild-state fermentation on lignocellulosic waste from the xylose industry. Process Biochem. 34:909-912.
78. Yang, S.S. 1996. Antibiotics production of cellulosic waste with soild state fermentation by Streptomyces. WREC. 976-979.
79. Yang F. C. and C. B. Liau. 1998. The influence of environmental conditions on polysaccharide formation by Ganoderma lucidum in submerged culture. Process Biochemistry. 33(5):547-553.
80. Yang F. C., Y. F. Ke and S. S. Kuo. 2000. Effect of fatty acids on the mycelial growth and polysaccharide formation by Ganoderma lucidum in shake flask cultures. Enzyme and Microbial Technology. 27:295-301.
81. Youssef, F., T. Roukas and C. G. Biliaderis. 1999. Pullulan production by a non-pigmented strain of Aureobasidium pullulans using batch and fed-batch culture. Process Biochemistry. 34:355-366.
82. Zheng, Z., K. Shetty. 2000. Solid-state production of polygalacturonase by Lentinus edodes using fruit processing wastes. Process Biochem. 35:825-830.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top