第一部分參考文獻
林大鈞。1997。環狀糊精葡萄糖基轉移酶之研究(八)Bacillus macerans之環狀糊精葡萄糖基轉移酶基因在枯草桿菌中的表現。國立中興大學食品科學系碩士論文。Baedeker M. and G. E. Schulz. 1999. Overexpression of a designed 2.2 kb gene of eukaryotic phenylalanine ammonia-lyase in Escherichia coli. FEBS Lett. 457:57-60.
Bron, S., Bolhuis, A., Tjalsma, H., Holsappel, S., Venema, G., and van Dijl, J.M. 1998. Protein secretion and possible roles for multiple signal peptidases for precursor processing in Bacilli. J. Biotechnol. 64: 3-13.
Bruand, C., Chatelier, E.L., Ehrlich, S.D., and Jannière, L. 1993. A fourth class of theta-replicating plasmids: The pAMβ1 family from Gram-positive bacteria. Proc. Natl. Acad. Sci. USA. 90: 11668-11672.
Kreft, J., Bernhare, K., and Goebel, W. 1978. Recombinant plasmids capable of replication in Bacillus subtilis and Escherichia coli. Mol. Gen. Genet. 162: 59.
Machida S., Y. Yu, S. P. Singh, Jong-Deog Kim, K. Hayashi, Y. Kawata. 1998. Overproduction of β-glucosidase in active form by an Escherichia coli system coexpression the chaperonin GroEL/ES. FEMS Microbiol. Lett. 159:41-46.
Pero, J., and Sloma, A.1993. Proteases secretion.In : Sonenshein, A.L., Hoch, J.A., Losick, R.(Ends), Bacillus subtilis and other gram-positive bacteria. Washington, D.C. American Society for Microbiology, pp. 7173-726.
Primrose, S.B. and Ehrlich, S.D. 1981. Isolation of plasmid deletion mutants and study of their instability. Plasmid. 6: 193.
Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. Molecular cloning : a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory press, Cold Spring Harbor, NY.
Simonen, M., and Palva, I. 1993. Protein secretion in Bacillus species. Microbiol. Rev. 57: 107-137.
Thomson, J.A. 1988. Recombinant DNA and bacterial fermentation. In towards an understanding of hybrid plasmid instability in Bacillus subtilis. pp. 23-44. CRC press. Boca Raton, Florida.
Tsai, Y.C., Yamasaki, M., Yamamoto-Suzuki, Y., and Tamura, G. 1983. A new alkaline elastase of an alkalophilic Bacillus. Biochem. Intern. 7:577-583.
Wu, X., Lee, W., Tran, L., and Wong, S.L. 1991. Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases. J. Bacteriol. 173: 4952-4958.
Wu, S.C. and Wong, S.L. 1999. Development of improved pUB110-based vectors for expression and secretion studies in Bacillus subtilis. J. Biotechnol. 72: 185-195.
Wong, S.L. 1989. Development of an inducible and enhancible expression and secretion system in Bacillus subtilis. Gene. 83: 215-223.
Yang, W., Zhang, L., Lu, Z., Tao, W., and Zhai, Z. 2001. A new method for protein coexpression in Escherichia coli using two incompatible plasmids. Protein Express. Purif. 22: 472-478.
Zaghloul, T., I., Abdelaziz, A., Mostafa., H., M., 1994. High level of expression and stability of the cloned alkaline protease(aprA) gene in Bacillus subtilis. Enzyme Microb, Technol. 16: 534-537.
第二部分參考文獻
蘇芳仙。2001。最佳σA啟動子及多重啟動子之構築及其於枯草桿菌中的表現。國立中興大學食品學系碩士論文。Ahmed, A.I., Osuga, D.T., and Feeney, R.E. 1973. Antifreeze glycoprotein from an antarctic fish. J. Biol. Chem. 248: 8524-8527.
Aranov, A.V., Lipking, G.M., and Kocherkov, N.K. 1982. Conformational analysis of antifreeze glycoproteins. Bioorg. Khim. 8:616-621.
Birnboim, H.C. and Doly, J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic. Acids. Res. 7:1513.
Bolhuis, A., Sorokin, A., Azevedo, V., Ehrlich, S.D., Braun, P.G., de Jong, A.,Venema, G., Bron, S., and van Dijl, J.M. 1996. Bacillus subtilis can modulate its capacity and specifiety for protein secretion through temporally controlled expression of the sipS gene for signal peptidase I. Mol. Microtiol. 22: 605-618.
Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. and Prasher, D.C. 1994. Green fluorescent protein as a maker for gene expression. Science. 263: 802-805.
Chalfie, M., and Kain, S. 1998. Green fluorescent protein. John Wiley press. USA
Chao, H., Hodges, R.S., Kay, C.M., Gauthier,S.Y., and Davies, P.L. 1996. A natural variant of Type I antifreeze protein with four ice-binding repeats is a particularly potent antifreeze. Protein. Sci. 5:1150-1156.
Chou, K.C. 1992. Energy-optimized structure of antifreeze protein and its binding mechanism. J. Mol. Biol. 223:509-517.
Cody, C.W., Prasher, D.C., Westler, W.M., Prendergast, F.G., and Ward, W.W. 1993. Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry. 32: 1212-1218.
Cormack, B.P., Bertram, F., and Egerton, M. 1996. FACS-optimized mutants of the green fluorescent protein. Gene. 177: 33-38.
Crameri, A., Whitehorn, E.A., Tate, E., Stemmer, W.P.C. 1996. Improved green fluorescent protein by molecular evolution using DNA shiffling. Nature Biotechnol. 14: 315-319.
Deneg, G., Andrews, D.W., Laursen, R.A.1997. Amino acid sequence of a new type of antifreeze protein, from the longhorn sculpin Myoxocephalus octodecimspinosis. FEBS Lett. 402:17-20.
DeVires, A.L. and Wohlschlag, D.E. 1969. Freezing resistance in some Antarctic fishes. Science. 163:1074-1075.
DeVries, A.L. and Lin, Y. 1977. The role of glycoprotein antifreezes in the survival of antarctic fishes. In Adaptations within antarctic ecosystems. pp. 439-458. Gulf Publishing Company, Texas, Houston.
Ewart, K.V., Rubinsky, B., and Fletcher, G.L. 1992. Structure and functional similarity between fish antifreeze proteins and calcium-dependent lectins. Biochem. Biophys. Res. Commun. 185:335-340.
Ewart, K.V., Yang, D.S., Ananthanarayanan, V.S., Flecher, G.L., and Hew, C.L. 1996. Ca2+-dependent antifreeze proteins: modulation of conformation and activity by divalent metal ions. J. Biol. Chem. 271: 16627-16632.
Fahnestock, S.R., and Fisher, K.E. 1986. Expression of the staphylococcal protein A gene in Bacillus subtilis by gene fusions utilizing the promoter from a Bacillus amyloliquefaciens α-amylase gene . J. Bacteriol. 165: 796-804.
Feeney, R.E., and Yeh, Y. 1998. Antifreeze proteins: current status and possible food uses. Trends in food Science & Technology. 9: 102-106.
Harwood, C.R. and Cutting, S.M. 1990. In Molecular Biological Methods for Bacillus. pp. 392, John Wiley press. New York, USA.
Harding, M.M., Ward, L.G., and Haymet, A.D.J. 1999. Type I antifreeze proteins: Structure-activity studies and mechanism of ice growth inhibition. Eur. J. Biochem. 264:653-665.
Heim, R. and Tsien R.Y. 1996. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6: 178-182.
Jia,Z., DeLuca, C.I., Chao, H., and Davies, P.L.1996. Structural basis for the binding of a globular antifreeze protein to ice. Nature. 384: 285-288.
Knight, C.A., Driggers, E., and DeVries, A.L. 1993. Adsorption to ice of fish antifreeze glycopeptides 7 and 8. Biophys. J. 64: 252-259.
Kobayashi, G., Toida, J., Akamatsu, T., Yamanoto, H., Shida, T., and Sekiguchi, J. 2000. Accumulation of an artificial cell wall-binding lipase by Bacillus subtilis wprA and/or sigD mutants. FEMS Microbiol. Lett.. 188: 165-169.
Kontinen, V.P., and Sarvas, M. 1993. The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secrection. Mol. Microbiol. 8: 727-737.
Kunst, F., Ogasawara, N., Moszer, I., Albertini, A.M., Alloni, G., Azevedo, V., Bertero, M.G., Bessieres, P., Bolotin, A., Borehert, S., et al. 1997. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 309: 249-256.
Miller, J.F. 1994. Bacterial transformation by electroporation. Methods. Enzymol. 235:373-385.
Mitra, R.D., Siva, C.M., and Youvan, D.C. 1996. Fluorescence resonance energy transfer between blue-emitting and red-shifed excitation derivatives of the green fluorescent protein. Gene. 173: 13-17.
Nagarajan, V. 1993. Protein secretion. p. 713-726. In A.L. Sonenshein, J.A., Hoch, and R. Losick (ed.), Bacillus subtilis and other gram-positive bacteria. American Society for Microbiology, Washington, D.C.
Ng, N.F.L. and Hew, C.L. 1992. Structure of an antifreeze polypeptide from the sea raven: disulfide bonds and similarity to lectin-binding protein. J. Biol. Chem. 267:16069-16075.
Palva, I. 1982. Molecular cloning of α-amylase gene from Bacillus amyloliquefacients and its expression in B. subtilis. Gene. 19: 81-87.
Patterson, G.H., and Knobel, S.M. 1997. Use of the green fluorescentprotein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73: 2782-2790.
Payne, S.R., and Young, O.A. 1995. Effects of pre-slaughter administration of antifreeze proteins on frozen meat quality. Meat Sci. 41: 147-155.
Prasher, D.C., Eckenrode, V.K., Ward, W.W.,Prendergast, F.G., and Cormier, M.J. 1992. Primary structure of the Aequorea victoria green-fluorescent protein. Gene.111: 229-233.
Saunders, C.W., Schmidt, B.J., Mallonee, R.L., and Guyer, M.S. 1987. Secretion of human serum albumin from Bacillus subtilis. J. Bacteriol. 169: 2917-2925.
Scholandedr, P.F., van Dam, L., Kanwisher, J.W., Hammel, H.T., and Gordon, M.S. 1957. Supercooling and osmoregulation in Arctic fish. Cell. Comp. Physiol. 49:5-24.
Shimomura, O. and Johnson, F.H. 1969. Properties of the bioluminescent protein aequorin. Biochemistry. 8: 3991-3997.
Shimomura, O. and Johnson, F.H. 1972. Structure of the light-emitting moiety of aequorin. Biochemistry. 11: 1602-1608.
Shimomura, O. and Johnson, F.H. 1973. Chemical nature of light emitter in bioluminescence of aequorin. Tetrahedron Lett. 2963-2966.
Shimomura, O. and Johnson, F.H. 1975. Regeneration of the photoprotein aequorin. Nature (London) 256: 223-239.
Simonen, M. and Palva, I. 1993. Protein secretion in Bacillus subtilis. Microbiol. Rev. 57: 109-137.
Stephenson, K. and Harwood, C. 1998. Influence of a cell-wall-associated of production of α-amylase by Bacillus subtilis. Appl. Environ. Microbio. 64: 2875-2881.
van Dijl, J.M., de Jong, A., Vehmaanpera, J., Venema, G., and Bron, S. 1992. Signal peptidase I of Bacillus subtilis: patterns of conserved amino acids in prokaryotic and eukaryotic type I signal peptidases. EMBO J. 11: 2819-2828.
Warren, C.J., Mueller, G.M., and McKown, R.L. 1992. Ice crystal growth suppression polypeptides and methods of preparation. US Patent. 118: 792.
Warren, G.J., Hauge, C.M., Corotto, L.V., and Mueller, G.M. 1993. Properties of engineered antifreeze peptides. FEBS Lett. 321: 116-120.
Webb, C.D., Decatur, A. Teleman, A., and Losick, R. 1995. Use of green fluorescent protein for visualization of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. J. Bacteriol. 177: 5906-5911.
Wely, K.H.M., Swaving, J., Freusl, R., Droessen, A.J.M. 2001. Trasnlocation of proteins across the cell envelope of Gram-postive bacteria. FEMS Microbiol. Revi. 25: 437-454.
Wu, C.K., Liu, Z.J., Rose, J.P., Inouye, S., Tsuji, F., Tsien, T.Y.,Remington, S.J., and Wang, B.C. 1997. The three-dimentional structure of green fluorescent protein resembles a lantern. In Bioluminescence and Chemoluminescence. Hastings, J.W., Kricka, L.J., and Stanley, P.E., Eds.,Wiley, Chichester, UK. pp. 399-402.
Wu, S.C., Ye, R., Wu, X.C., Ng, S.C., and Wong, S.L. 1998. Enhanced secretory production of a single-chain antibody fragment from Bacillus subtilis by coproduction of molecular chaperones. J. Bacteriol. 180: 2830-2835.
Wu, Y., Banoub, J., Goddard, S.V., Kao, M.H., and Fletcher, G.L. 2001. Antifreeze glycoproteins: relationship between molecular weight, thermal hysteresis and the inhibition of leakage from liposomes during thermotropic phase transition. Comp. Biochem. Physiol. B. 128: 265-273.
Yang, F., Moss, L.G., and Philips, G.N. 1996. The molecular structure of green fluorescent protein. Nature Biotechnol. 14: 1246-1251.