跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/09 02:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳美樺
論文名稱:異源蛋白於枯草桿菌宿主之表現研究:一、枯草桿菌共同表現之初步探討;二、抗凍蛋白、綠螢光蛋白之組胺酸標幟對其於枯草桿菌表現分泌之影響
論文名稱(外文):Studies on the heterologous proteins expressed in bacillus subtilis
指導教授:葉娟美
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:99
中文關鍵詞:共同表現組胺酸標幟枯草桿菌分泌系統抗凍蛋白綠螢光蛋白
相關次數:
  • 被引用被引用:1
  • 點閱點閱:448
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要 (第一部分)
枯草桿菌 ( Bacillus subtilis )具有能夠分泌大量的酵素至培養液的特性,可以簡化純化的繁瑣過程,並利於大量酵素生產,因此常被應用於工業上。此外由於Bacillus subtilis具有分泌系統,也常被作為生產外源蛋白的宿主。
外源蛋白於宿主中之表現有時候必須於一宿主中進行多個基因之表現,例如: 為了得到由兩個次單元所構成而具有功能之重組蛋白,或是所欲表現之蛋白進行表現時,必須配合幫助其正確摺疊使其具有活性之因子,此外共同表現轉錄調控相關因子,可研究轉錄機制或提高外源蛋白的產量。
以質體進行基因之共同表現一般有兩種方式,一為使用單一個質體,將所要表現之基因置於同一質體上;另一方法為使用兩個質體進行,將欲表現之基因分別置於兩個不同質體上。本研究中所使用方法是後者,以兩個質體進行共同表現。
本研究中所用的質體主要為pME、pHG及pEX5B。pME是源自於枯草桿菌及大腸桿菌之穿梭載體pMK4,於其上嵌入鹼性彈性蛋白酶subtilisin YaB之結構基因而成;而pHG及pEX5B是於枯草桿菌及大腸桿菌之穿梭載體pHY300PLK上分別嵌入環狀糊精葡萄糖基轉移酶及鹼性彈性蛋白酶subtilisin YaB之結構基因而成。將pME與pEX5B或是pME與pHG同時以電轉方式送入Bacillus subtilis DB104宿主中,以研究pHY300PLK及pMK4為來源的質體,共同表現之可行性。結果顯示以pHY300PLK及pMK4為來源的質體進行共同表現,於兩質體上之基因都可各自表現,且此兩質體之質體穩定度及結構穩定度良好。因此,以pHY300PLK及pMK4為來源的質體於Bacillus subtilis DB104宿主中進行共同表現是可行的。之後可以此兩質體進行其他相關基因之研究。
中文摘要(第二部分)
枯草桿菌最廣為熟知的特性即在其具有很好的胞外分泌系統,可以分泌大量蛋白酶至胞外。然而以枯草桿菌作為分泌表現系統固然有其優點,但往往實際進行外源蛋白於枯草桿菌表現後難以達到預期的結果。
本研究中探討組胺酸標幟對外源蛋白在枯草桿菌的表現及分泌的過程是否會造成影響。本實驗室之前於枯草桿菌中進行抗凍蛋白之分泌表現,將抗凍蛋白與鹼性蛋白酶之訊息融合,鹼性蛋白酶之訊息已證實可於枯草桿菌中有效分泌,但實驗結果難以觀察抗凍蛋白之表現量,之後又更換最佳化之σA型強力啟動子進行表現,實驗結果可測得抗凍蛋白之表現量但發現無法分泌至胞外。由於抗凍蛋白之 C端融合有純化用之組胺酸標幟,帶有多個正電荷,可能對分泌造成影響。本研究以綠色螢光蛋白質及抗凍蛋白為研究對象,研究his-tag對綠螢光蛋白質及抗凍蛋白於Bacillus subtilis中表現及分泌之影響。實驗結果抗凍蛋白於Bacillus subtilis DB430中之表現量難以以SDS-PAGE觀察,而西方轉漬偵測抗凍蛋白結果對於小分子量之抗凍蛋白無法產生抗體免疫反應。而綠螢光蛋白質表現結果存在於胞內成分,且具有his-tag之綠螢光蛋白質表現量較高,之後藉由外加蛋白酶方式對綠螢光蛋白進行穩定度測試,結果發現帶有histidine-tag之綠螢光蛋白對外加之蛋白酶稍有較高之抗性。關於histidine-tag之存在對綠螢光蛋白於B. subtilis DB430中之分泌表現並非影響分泌之主要因素,帶有及不帶有histidine-tag之綠螢光蛋白在鹼性彈性蛋白酶之訊息之協助之下都無法分泌至培養液中。
Abstract (part I)
Bacillus subtilis can secrete the enzymes into the supernatant in large amounts and has been used in the production of industrial enzymes for a long time. It is also as excellent host for the secretory production of heterologous proteins.
Coexpression of two structure genes in one host is necessary in some cases. One is to get a functional recombinant protein which is consisted of two subunits. Others such as the protein of interest must be coproduced with accessory factors such as molecular chaperones and transcription activation factors to enhanced the yield of active heterologous proteins.
There are mainly two strategies to coexpress heterologous proteins. One is to use a bicistronic vector, which is generated by cloning two target genes into one plasmid. The other strategy is to use two plasmids in which foreign genes are cloned in two different vectors. In this study, we use two plasmid coexpression system to ease the control of heterologous protein production.
Plasmids used in this study included pME, pHG and pEX5B. The plasmid pME came from the shuttle vector pMK4 with part of subtilisin YaB gene, ale E inserted into it. pEX5B and pHG came from the shuttle vector pHY300PLK, with subtilisin YaB gene and CGTase gene inserted into it separately. pHG or pEX5B was transformed into Bacillus subtilis DB104 with pME. Our goal is to study the possibility of coexpression with pHY300PLK-based vector and pMK4-based vector in Bacillus subtilis.
The results suggested that pHY300PLK-based vector and pMK4-based vector can coexpress heterologous proteins in Bacillus subtilis DB104. The segregation and structure stability are high. Based on this coexpression system, other coexpression system can be developed in the future.
Abstract ( part II )
Bacillus subtilis can secrete proteins directly into the growth medium, this ability makes Bacillus subtilis an attractive host for expression of heterologous recombinant proteins. Although Bacillus subtilis has this advantage over other host such as Escherichia coli, its secretion of heterologous proteins is not so efficient in many cases.
In this study, we aimed to study the effects of histidine-tag to the expression and secretion of heterologous proteins in Bacillus subtilis. In our prior studies, the signal peptide of Subtilisin YaB was fused to the N terminus of the type I antifreeze protein. Although the signal peptide can lead Subtilisin YaB to cell membrane for processing during secretion in Bacillus subtilis. The expression level of antifreeze protein was difficult to observe. Then, we replaced the original promoter with a strong σA type promoter. We found that the expression of the antifreeze protein elevated but located in the cell membrane and insoluble fraction. In this study, we questioned the effect of histidine-tag in the C-terminal regions of antifreeze protein and green fluorescent protein in Bacillus subtilis on their secretion. The results show that the antifreeze protein is difficult to be detected by SDS-PAGE, and it is difficult to detect low molecular weight type I AFP by western blotting. The green fluorescent protein expressed in high amount in the total cell lysate of Bacillus subtilis. And the expression level of the green fluorescent protein with histidine-tag is higher. In vitro protease assay shows that the green fluorescent protein with histidine-tag is more resistant to protease than the GFP without histidine-tag. Histidine-tag is not the main factor to block green fluorescent protein secretiion in Bacillus subtilis DB430.
第一部分
枯草桿菌共同表現之初步探討
目錄 頁次
中文摘要 ……………………………………………………………………… i
英文摘要 ……………………………………………………………………... iii
壹、前言 …………………………………………………………………….. 1
一、Bacillus subtilis之簡介…………………………………………………... 1
二、共同表現系統 ………………………………………………………….. 2
三、質體之不穩定 ………………………………………………………….. 3
四、質體的複製機制 …………………………………………………….. 4
五、質體之不相容 ……………………………………………………… 5
六、載體pME、pEX5B及pHG之簡介 ………………………………….. 6
貳、研究目的 ……………………………………………………………..... 7
參、材料與方法…………………………………………………………... 8
一、菌種及質體………………………………………………………….. 9
二、質體抽取……………………………………………………………… 9
三、枯草桿菌電轉形法…………………………………………………… 11
四、DNA分子電泳 ……………………………………………………… 12
五、DNA分子之剪切……………………………………………………. 12
六、質體穩定度及結構穩定度之測定…………………………………. 13
七、生長曲線測定………………………………………………………. 14
八、Alkaline protease活性測定…………………………………………. 14
九、CGTase活性測定……………………………………………………. 14
肆、結果與討論 …………………………………………………….......... 15
一、雙質體於宿主Bacillus subtilis DB104之電轉形…………………. 15
二、以DNA電泳觀察共同表現之兩個質體………………………….. 16
三、共同表現之質體穩定度及結構穩定度……………………………. 17
四、共同表現之蛋白酶或是CGTase活性之測定…………………….. 18
伍、結論 ………………………………………………………………….. 20
陸、參考文獻……………………………………………………………….. 27
附錄一 ……………………………………………………………………. I
附錄二 ……………………………………………………………………. VIII
圖次
圖一、質體pHG、pME及pEX5B ……………………………………… 21
圖二、由Bacillus subtilis DB104抽出之質體電泳結果…………………... 22
圖三、質體穩定度測定結果 ………………………………………………. 23
圖四、於Bacillus subtilis DB104共同表現pME及pEX5B之
生長曲線及蛋白酶活性 …………………………………………... 24
圖五、於Bacillus subtilis DB104共同表現pME及pHG之
生長曲線及蛋白酶活性 …………………………………………... 25
圖六、於Bacillus subtilis DB104共同表現pME及pHG之
生長曲線及CGTase活性 ………………………………………… 26
第二部分
抗凍蛋白、綠螢光蛋白之組胺酸標幟對其於枯草桿菌表現分泌之影響
目錄 頁次
中文摘要 ………………………………………………………………… i
英文摘要 ………………………………………………………………… ii
壹、前言 ………………………………………………………………... 1
一、枯草桿菌之蛋白質分泌過程 ………………………………………. 1
二、枯草桿菌之分泌瓶頸………………………………………………... 2
三、抗凍蛋白簡介 ……………………………………………………..... 3
四、綠螢光蛋白簡介 ……………………………………………………. 9
貳、實驗目的 …………………………………………………………..... 15
參、材料與方法…………………………………………………………... 16
一、菌種及質體…………………………………………………………... 16
二、質體抽取……………………………………………………………... 18
三、電轉形………………………………………………………………... 20
四、DNA分子之電泳、剪切、回收及黏合…………………………….. 21
五、以聚合酶連鎖反應合成抗凍蛋白及綠螢光蛋白基因…………….. 23
六、枯草桿菌表現載體之構築…………………………………………… 23
七、抗凍蛋白及綠螢光蛋白於枯草桿菌中之表現偵測………………… 24
八、綠螢光蛋白穩定度測定…………………………………………… ... 26
九、以西方轉漬法偵測抗凍蛋白 ……………………………………….
肆、結果與討論…………………………………………………………... 27
一、抗凍蛋白及綠螢光蛋白之基因設計………………………………... 27
二、枯草桿菌之載體構築………………………………………………... 29
三、抗凍蛋白及綠螢光蛋白於枯草桿菌中之偵測................................... 32
四、綠螢光蛋白穩定度測定 ……………………………..……………... 34
五、西方轉漬法偵測抗凍蛋白…………………………………………..
伍、結論…………………………………………………………………. 36
陸、參考文獻……………………………………………………………... 62
附錄一 …………………………………………………………………..... I
附錄二 …………………………………………………………………... VII
表次 頁次
表一、以聚合酶連鎖反應合成不帶有6個histidine之抗凍蛋白
基因組成份 ……………………………………………………... 37
表二、以聚合酶連鎖反應合成帶有及不帶有6個histidine標幟
之綠螢光蛋白基因組成份……………………………………….. 38
圖次
圖七、Bacillus subtilis之分泌蛋白進行轉位之過程…………………… 39
圖八、GFP之構造 ……………………………………………………… 40
圖九、以PCR方式合成不帶有6個histidine之抗凍蛋白
基因之流程 ……………………………………………………… 41
圖十、聚合酶連鎖反應進行不帶有6個histidine之抗凍蛋白
基因合成之DNA電泳結果……………………………………… 42
圖十一、以PCR方式合成帶有及不帶有6個histidine之
綠色螢光蛋白基因之流程……………………………………….. 43
圖十二、聚合酶連鎖反應進行綠色螢光蛋白基因
合成之DNA電泳結果………………………………………… 44
圖十三、質體pRPA之構築流程………………………………………. 45
圖十四、質體pRPA之限制酶剪切電泳圖……………………………. 46
圖十五、pRPA定序結果 ……………………………………………… 47
圖十六、表現載體pRPA-AFPNH之構築流程………………………. 48
圖十七、質體pRPA-AFPNH之限制酵素剪切電泳圖………………. 49
圖十八、人工合成σA啟動子之結構…………………………………
圖十九、GFPuv結構基因及蛋白質胺基酸序列…………………….. 50
圖二十、表現載體pRPA-GFP及pRPA-GFPH之構築流程……….... 51
圖二十一、質體pRPA-GFP之限制酵素剪切電泳圖………………….. 52
圖二十二、質體pRPA-GFPH之限制酵素剪切電泳結果…………. 53
圖二十三、以primer p300 之pRPA-GFP定序結果………………. 54
圖二十四、以primer pSeq-gfp 之pRPA-GFP定序結果…………… 55 .
圖二十五、以primer p300 之pRPA-GFPH定序結果……………. . 56
圖二十六、以primer p300 之pRPA-GFPH定序結果…………… 57
圖二十七、以Tricine-SDS PAGE觀察菌體表現抗
凍蛋白之上清液濃縮…………………………………………. 58
圖二十八、以Glycine-SDS PAGE觀察綠螢光蛋白於
Bacillus subtilis DB430菌體及上清中之表現………………… 59
圖二十九、綠螢光蛋白穩定度測定結果.……………………………… 60
圖三十、西方轉漬法偵測抗凍蛋白於B. subtilis DB430
中之表現 ……………………………………………………… 61
第一部分參考文獻
林大鈞。1997。環狀糊精葡萄糖基轉移酶之研究(八)Bacillus macerans之環狀糊精葡萄糖基轉移酶基因在枯草桿菌中的表現。國立中興大學食品科學系碩士論文。
Baedeker M. and G. E. Schulz. 1999. Overexpression of a designed 2.2 kb gene of eukaryotic phenylalanine ammonia-lyase in Escherichia coli. FEBS Lett. 457:57-60.
Bron, S., Bolhuis, A., Tjalsma, H., Holsappel, S., Venema, G., and van Dijl, J.M. 1998. Protein secretion and possible roles for multiple signal peptidases for precursor processing in Bacilli. J. Biotechnol. 64: 3-13.
Bruand, C., Chatelier, E.L., Ehrlich, S.D., and Jannière, L. 1993. A fourth class of theta-replicating plasmids: The pAMβ1 family from Gram-positive bacteria. Proc. Natl. Acad. Sci. USA. 90: 11668-11672.
Kreft, J., Bernhare, K., and Goebel, W. 1978. Recombinant plasmids capable of replication in Bacillus subtilis and Escherichia coli. Mol. Gen. Genet. 162: 59.
Machida S., Y. Yu, S. P. Singh, Jong-Deog Kim, K. Hayashi, Y. Kawata. 1998. Overproduction of β-glucosidase in active form by an Escherichia coli system coexpression the chaperonin GroEL/ES. FEMS Microbiol. Lett. 159:41-46.
Pero, J., and Sloma, A.1993. Proteases secretion.In : Sonenshein, A.L., Hoch, J.A., Losick, R.(Ends), Bacillus subtilis and other gram-positive bacteria. Washington, D.C. American Society for Microbiology, pp. 7173-726.
Primrose, S.B. and Ehrlich, S.D. 1981. Isolation of plasmid deletion mutants and study of their instability. Plasmid. 6: 193.
Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. Molecular cloning : a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory press, Cold Spring Harbor, NY.
Simonen, M., and Palva, I. 1993. Protein secretion in Bacillus species. Microbiol. Rev. 57: 107-137.
Thomson, J.A. 1988. Recombinant DNA and bacterial fermentation. In towards an understanding of hybrid plasmid instability in Bacillus subtilis. pp. 23-44. CRC press. Boca Raton, Florida.
Tsai, Y.C., Yamasaki, M., Yamamoto-Suzuki, Y., and Tamura, G. 1983. A new alkaline elastase of an alkalophilic Bacillus. Biochem. Intern. 7:577-583.
Wu, X., Lee, W., Tran, L., and Wong, S.L. 1991. Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases. J. Bacteriol. 173: 4952-4958.
Wu, S.C. and Wong, S.L. 1999. Development of improved pUB110-based vectors for expression and secretion studies in Bacillus subtilis. J. Biotechnol. 72: 185-195.
Wong, S.L. 1989. Development of an inducible and enhancible expression and secretion system in Bacillus subtilis. Gene. 83: 215-223.
Yang, W., Zhang, L., Lu, Z., Tao, W., and Zhai, Z. 2001. A new method for protein coexpression in Escherichia coli using two incompatible plasmids. Protein Express. Purif. 22: 472-478.
Zaghloul, T., I., Abdelaziz, A., Mostafa., H., M., 1994. High level of expression and stability of the cloned alkaline protease(aprA) gene in Bacillus subtilis. Enzyme Microb, Technol. 16: 534-537.
第二部分參考文獻
蘇芳仙。2001。最佳σA啟動子及多重啟動子之構築及其於枯草桿菌中的表現。國立中興大學食品學系碩士論文。
Ahmed, A.I., Osuga, D.T., and Feeney, R.E. 1973. Antifreeze glycoprotein from an antarctic fish. J. Biol. Chem. 248: 8524-8527.
Aranov, A.V., Lipking, G.M., and Kocherkov, N.K. 1982. Conformational analysis of antifreeze glycoproteins. Bioorg. Khim. 8:616-621.
Birnboim, H.C. and Doly, J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic. Acids. Res. 7:1513.
Bolhuis, A., Sorokin, A., Azevedo, V., Ehrlich, S.D., Braun, P.G., de Jong, A.,Venema, G., Bron, S., and van Dijl, J.M. 1996. Bacillus subtilis can modulate its capacity and specifiety for protein secretion through temporally controlled expression of the sipS gene for signal peptidase I. Mol. Microtiol. 22: 605-618.
Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. and Prasher, D.C. 1994. Green fluorescent protein as a maker for gene expression. Science. 263: 802-805.
Chalfie, M., and Kain, S. 1998. Green fluorescent protein. John Wiley press. USA
Chao, H., Hodges, R.S., Kay, C.M., Gauthier,S.Y., and Davies, P.L. 1996. A natural variant of Type I antifreeze protein with four ice-binding repeats is a particularly potent antifreeze. Protein. Sci. 5:1150-1156.
Chou, K.C. 1992. Energy-optimized structure of antifreeze protein and its binding mechanism. J. Mol. Biol. 223:509-517.
Cody, C.W., Prasher, D.C., Westler, W.M., Prendergast, F.G., and Ward, W.W. 1993. Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry. 32: 1212-1218.
Cormack, B.P., Bertram, F., and Egerton, M. 1996. FACS-optimized mutants of the green fluorescent protein. Gene. 177: 33-38.
Crameri, A., Whitehorn, E.A., Tate, E., Stemmer, W.P.C. 1996. Improved green fluorescent protein by molecular evolution using DNA shiffling. Nature Biotechnol. 14: 315-319.
Deneg, G., Andrews, D.W., Laursen, R.A.1997. Amino acid sequence of a new type of antifreeze protein, from the longhorn sculpin Myoxocephalus octodecimspinosis. FEBS Lett. 402:17-20.
DeVires, A.L. and Wohlschlag, D.E. 1969. Freezing resistance in some Antarctic fishes. Science. 163:1074-1075.
DeVries, A.L. and Lin, Y. 1977. The role of glycoprotein antifreezes in the survival of antarctic fishes. In Adaptations within antarctic ecosystems. pp. 439-458. Gulf Publishing Company, Texas, Houston.
Ewart, K.V., Rubinsky, B., and Fletcher, G.L. 1992. Structure and functional similarity between fish antifreeze proteins and calcium-dependent lectins. Biochem. Biophys. Res. Commun. 185:335-340.
Ewart, K.V., Yang, D.S., Ananthanarayanan, V.S., Flecher, G.L., and Hew, C.L. 1996. Ca2+-dependent antifreeze proteins: modulation of conformation and activity by divalent metal ions. J. Biol. Chem. 271: 16627-16632.
Fahnestock, S.R., and Fisher, K.E. 1986. Expression of the staphylococcal protein A gene in Bacillus subtilis by gene fusions utilizing the promoter from a Bacillus amyloliquefaciens α-amylase gene . J. Bacteriol. 165: 796-804.
Feeney, R.E., and Yeh, Y. 1998. Antifreeze proteins: current status and possible food uses. Trends in food Science & Technology. 9: 102-106.
Harwood, C.R. and Cutting, S.M. 1990. In Molecular Biological Methods for Bacillus. pp. 392, John Wiley press. New York, USA.
Harding, M.M., Ward, L.G., and Haymet, A.D.J. 1999. Type I antifreeze proteins: Structure-activity studies and mechanism of ice growth inhibition. Eur. J. Biochem. 264:653-665.
Heim, R. and Tsien R.Y. 1996. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6: 178-182.
Jia,Z., DeLuca, C.I., Chao, H., and Davies, P.L.1996. Structural basis for the binding of a globular antifreeze protein to ice. Nature. 384: 285-288.
Knight, C.A., Driggers, E., and DeVries, A.L. 1993. Adsorption to ice of fish antifreeze glycopeptides 7 and 8. Biophys. J. 64: 252-259.
Kobayashi, G., Toida, J., Akamatsu, T., Yamanoto, H., Shida, T., and Sekiguchi, J. 2000. Accumulation of an artificial cell wall-binding lipase by Bacillus subtilis wprA and/or sigD mutants. FEMS Microbiol. Lett.. 188: 165-169.
Kontinen, V.P., and Sarvas, M. 1993. The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secrection. Mol. Microbiol. 8: 727-737.
Kunst, F., Ogasawara, N., Moszer, I., Albertini, A.M., Alloni, G., Azevedo, V., Bertero, M.G., Bessieres, P., Bolotin, A., Borehert, S., et al. 1997. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 309: 249-256.
Miller, J.F. 1994. Bacterial transformation by electroporation. Methods. Enzymol. 235:373-385.
Mitra, R.D., Siva, C.M., and Youvan, D.C. 1996. Fluorescence resonance energy transfer between blue-emitting and red-shifed excitation derivatives of the green fluorescent protein. Gene. 173: 13-17.
Nagarajan, V. 1993. Protein secretion. p. 713-726. In A.L. Sonenshein, J.A., Hoch, and R. Losick (ed.), Bacillus subtilis and other gram-positive bacteria. American Society for Microbiology, Washington, D.C.
Ng, N.F.L. and Hew, C.L. 1992. Structure of an antifreeze polypeptide from the sea raven: disulfide bonds and similarity to lectin-binding protein. J. Biol. Chem. 267:16069-16075.
Palva, I. 1982. Molecular cloning of α-amylase gene from Bacillus amyloliquefacients and its expression in B. subtilis. Gene. 19: 81-87.
Patterson, G.H., and Knobel, S.M. 1997. Use of the green fluorescentprotein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73: 2782-2790.
Payne, S.R., and Young, O.A. 1995. Effects of pre-slaughter administration of antifreeze proteins on frozen meat quality. Meat Sci. 41: 147-155.
Prasher, D.C., Eckenrode, V.K., Ward, W.W.,Prendergast, F.G., and Cormier, M.J. 1992. Primary structure of the Aequorea victoria green-fluorescent protein. Gene.111: 229-233.
Saunders, C.W., Schmidt, B.J., Mallonee, R.L., and Guyer, M.S. 1987. Secretion of human serum albumin from Bacillus subtilis. J. Bacteriol. 169: 2917-2925.
Scholandedr, P.F., van Dam, L., Kanwisher, J.W., Hammel, H.T., and Gordon, M.S. 1957. Supercooling and osmoregulation in Arctic fish. Cell. Comp. Physiol. 49:5-24.
Shimomura, O. and Johnson, F.H. 1969. Properties of the bioluminescent protein aequorin. Biochemistry. 8: 3991-3997.
Shimomura, O. and Johnson, F.H. 1972. Structure of the light-emitting moiety of aequorin. Biochemistry. 11: 1602-1608.
Shimomura, O. and Johnson, F.H. 1973. Chemical nature of light emitter in bioluminescence of aequorin. Tetrahedron Lett. 2963-2966.
Shimomura, O. and Johnson, F.H. 1975. Regeneration of the photoprotein aequorin. Nature (London) 256: 223-239.
Simonen, M. and Palva, I. 1993. Protein secretion in Bacillus subtilis. Microbiol. Rev. 57: 109-137.
Stephenson, K. and Harwood, C. 1998. Influence of a cell-wall-associated of production of α-amylase by Bacillus subtilis. Appl. Environ. Microbio. 64: 2875-2881.
van Dijl, J.M., de Jong, A., Vehmaanpera, J., Venema, G., and Bron, S. 1992. Signal peptidase I of Bacillus subtilis: patterns of conserved amino acids in prokaryotic and eukaryotic type I signal peptidases. EMBO J. 11: 2819-2828.
Warren, C.J., Mueller, G.M., and McKown, R.L. 1992. Ice crystal growth suppression polypeptides and methods of preparation. US Patent. 118: 792.
Warren, G.J., Hauge, C.M., Corotto, L.V., and Mueller, G.M. 1993. Properties of engineered antifreeze peptides. FEBS Lett. 321: 116-120.
Webb, C.D., Decatur, A. Teleman, A., and Losick, R. 1995. Use of green fluorescent protein for visualization of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. J. Bacteriol. 177: 5906-5911.
Wely, K.H.M., Swaving, J., Freusl, R., Droessen, A.J.M. 2001. Trasnlocation of proteins across the cell envelope of Gram-postive bacteria. FEMS Microbiol. Revi. 25: 437-454.
Wu, C.K., Liu, Z.J., Rose, J.P., Inouye, S., Tsuji, F., Tsien, T.Y.,Remington, S.J., and Wang, B.C. 1997. The three-dimentional structure of green fluorescent protein resembles a lantern. In Bioluminescence and Chemoluminescence. Hastings, J.W., Kricka, L.J., and Stanley, P.E., Eds.,Wiley, Chichester, UK. pp. 399-402.
Wu, S.C., Ye, R., Wu, X.C., Ng, S.C., and Wong, S.L. 1998. Enhanced secretory production of a single-chain antibody fragment from Bacillus subtilis by coproduction of molecular chaperones. J. Bacteriol. 180: 2830-2835.
Wu, Y., Banoub, J., Goddard, S.V., Kao, M.H., and Fletcher, G.L. 2001. Antifreeze glycoproteins: relationship between molecular weight, thermal hysteresis and the inhibition of leakage from liposomes during thermotropic phase transition. Comp. Biochem. Physiol. B. 128: 265-273.
Yang, F., Moss, L.G., and Philips, G.N. 1996. The molecular structure of green fluorescent protein. Nature Biotechnol. 14: 1246-1251.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top