(3.215.180.226) 您好!臺灣時間:2021/03/06 15:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾榮凱
研究生(外文):Jung-Kai Tseng
論文名稱:高溫環境對卵子細胞核與細胞骨架之影響
論文名稱(外文):Nuclear and Cytoskeletal Alterations of In Vitro Matured Oocytes under Hyperthermia
指導教授:朱志成
指導教授(外文):Jyh-Cherng Ju
學位類別:碩士
校院名稱:國立中興大學
系所名稱:畜產學系
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:108
中文關鍵詞:熱緊迫染色體細胞骨架
外文關鍵詞:heat shockchromosomecytoskeleton
相關次數:
  • 被引用被引用:2
  • 點閱點閱:159
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的在於探討成熟階段之牛與豬卵母細胞,經高溫或熱緊迫後其染色體(質)與細胞骨架(cytoskeleton)形態之變化,並探討高溫處理後之恢復能力。由屠宰場取得牛或女豬卵巢,自其表面濾泡取出包被完整之卵丘卵母細胞複合體(cumulus oocyte complexes, COCs),分別經M199或NCSU#23培養液體外成熟20或42 h後,將含第一極體之成熟卵母細胞逢機分配至對照組(Control, 39℃, 經0或4 h)與熱處理組(HS, 41.5℃, 經1, 2,或4 h);另外則將豬卵母細胞經熱處理(41.5℃)4 h後,恢復至39℃繼續培養1、2、4、8或16 h;各組經熱處理後以免疫細胞化學染色法觀察染色體與細胞骨架形態之變化。結果顯示,經體外成熟培養後之牛與豬卵母細胞成熟率分別為42%(n= 300)與60%(n= 1570);成熟卵子經HS 1 h、2 h或4 h者其染色體、紡錘體及細胞質出現微管之比例明顯較對照組高,且隨熱處理時間延長其百分率亦隨之增加。至於豬卵母細胞經熱處理4 h後恢復正常溫度繼續培養8和16 h後,兩組均僅有20.6%(7/34)之染色體恢復至第二次減數分裂中期(Metaphase II, MII),並重新排列於紡錘體中央赤道板(equatorial plane)上,而兩組分別有32.4%(11/34)與23.5%(8/34)紡錘體重新出現於細胞質中,但細胞質出現微管(cytoplasmic microtubules, cyto. MT)之比例仍高達91.2%(31/34)與97.1%(33/34)。以上結果證明卵母細胞於成熟後遭受熱緊迫,會造成染色體、紡錘體及卵胞質微管分佈之變化;而當溫度恢復後,僅有少數卵子之染色體(20.6%, n=34)或紡錘體(23.5%~32.4%, n=34)能恢復成正常形態。故熱緊迫明顯造成卵子生理上之變化,而此可能為導致其後續受精率下降與其發育能力減低之主要原因之一。此類卵子於受精後,是否因紡錘體與染色體之異常,而導致胚無法正常發育,則有待進一步之研究。
The objective of this study was to determine the effect of a short-term heat shock (HS) on the chromatin/chromosome and microtubular structures (MT) of the in vitro matured (IVM) pig and cattle oocytes. Cumulus-oocyte-complexes (COCs) were collected from local abattoirs and were IVM in NCSU#23 or M199 media for 42 h. Matured oocytes were selected and randomly allocated to different treatment groups. The COCs were cultured at 39 °C for 0 or 4 h in the control groups (without HS) and at 41.5°C for 1, 2, or 4 h in the HS groups. The IVM-derived oocytes were HS for 4 h and were fixed in MTSB-XF at 1, 2, 4, 8 and 16 h following HS for immunocytochemical staining or confocal microscopy. The average maturation rates of the oocytes were 60% (n=1570) and 42% (n=300) in pig and cattle oocytes, respectively. Some oocytes revealed chromatin abnormality in 1 h (34/113) or 2 h (53/104) of HS treatment. For the oocytes subjected to 4 h of HS, dispersed chromatin clusters with severe condensation occurred in both pig and cattle oocytes. Disassembly or complete disappearance of spindle MT (85%, n=111) and formation of cytoplasmic MT (87%, n=111) were also clearly observed 4 h after HS. Eight to sixteen hours after HS, resumption of MII chromosome and spindle morphology was only observed in 21% (7/34) and 24-32% (n=34) of oocytes, respectively. Around 91-97% of the HS oocytes showed cytoplasmic MT. In conclusion, a short-term or acute HS condenses the chromatins and disassembles spindle MT in the IVM-derived pig and cattle oocytes. Only a small proportion of HS oocytes were capable of recovering from the altered chromosomal and cytoskeletal configurations after prolonged culture at 39°C. These alterations may contribute to the reduced fertility in domestic species during the hot season.
目錄
頁次
摘要 ------------------------------------------------------------------------------------------1
前言 ----------------------------------------------------------------------------------------3
文獻檢討 --------------------------------------------------------------------------------------5
壹、 卵母細胞之生長與成熟 -------------------------------------------------------------5
一、卵巢濾泡之發育 ----------------------------------------------------------------------5
二、卵母細胞之成熟 -------------------------------------------------7
三、 調控卵母細胞成熟之因子 ----------------------------------------------------8
貳、細胞骨架(cytoskeleton)---------------------------------------------------------------10
一、 細胞骨架之組成與功能-------------------------------------------------------------10
(一) 微管(microtubule)-------------------------------------------------------------10
(二) 微絲(microfilament)----------------------------------------------------------13
(三) 中間絲(intermediate filament)----------------------------------------------14
參、 紡錘體微管之組成與分離--------------------------------------------------------------15
肆、 卵母細胞成熟、受精及後續發育其細胞骨架之變化- -----------------------------19
伍、熱緊迫對卵母細胞與其細胞骨架之影響----------------------------------------------21
研究試驗
試驗壹、熱處理對牛卵母細胞染色體與細胞骨架之影響-----------------------------23
一、前言 -------------------------------------------------------------------------------23
二、材料與方法 ----------------------------------------------------------------------24
三、結果 -------------------------------------------------------------------------------35
四、討論 -------------------------------------------------------------------------------46
試驗貳、豬卵母細胞經熱處理後染色體與細胞骨架形態之變化--------------------48
一、前言 -------------------------------------------------------------------------------48
二、材料與方法 ----------------------------------------------------------------------49
三、結果 -------------------------------------------------------------------------------53
四、討論 -------------------------------------------------------------------------------64
試驗參、熱緊迫造成豬卵母細胞之染色質(體)與細胞骨架變化之可逆性----67
一、前言 --------------------------------------------------------------67
二、材料與方法-------------------------------------------------------68
三、結果 -------------------------------------------------------------------------------70
四、討論 -------------------------------------------------------------------------------79
試驗肆、利用雷射掃瞄共軛焦顯微鏡觀察高溫對豬卵母細胞染色體與細胞骨架
形態之影響----------------------------------------------------------------------- 81
一、前言 -----------------------------------------------------------------------------81
二、材料與方法 ----------------------------------------------------------------------82
三、結果 -------------------------------------------------------------------------------84
四、討論 -------------------------------------------------------------------------------88
結論 -------------------------------------------------------------------------------------------90
參考文獻 -------------------------------------------------------------------------------------91
英文摘要 ------------------------------------------------------------------------------------101
圖次
頁次
圖 1. 微管及微絲之結構------------------------------------------------------------11
圖 2. 染色體利用微管排列於赤道板之過程-------------------------------------16
圖 3. 動物細胞紡錘體之構造-----------------------------------------------------17
圖 4. 成熟卵母細胞紡錘體微管形態之分類----------------------------------------------33
圖 5. 不同紡錘體分類之影像分析圖-------------------------------------------------------34
圖 6. 熱緊迫對牛卵母細胞染色質(體)之影響----------------------------------36
圖 7. 熱緊迫對牛卵紡錘體微管之影響--------------------------------------------------38
圖 8. 熱緊迫對牛卵透明帶肌動蛋白、卵膜環及胞質微絲之影響--------------------42
圖 9. 熱緊迫對牛卵母細胞透明帶肌動蛋白之變化-------------------------------------43
圖 10. 熱緊迫對牛卵母細胞卵膜環之變化-----------------------------------------------44
圖 11. 熱緊迫對牛卵母細胞胞質微絲之變化--------------------------------------------45
圖 12. 熱緊迫對豬卵母細胞染色質(體)之影響-----------------------------------------54
圖 13. 熱緊迫對豬卵母細胞紡錘體微管之影響-----------------------------------------55
圖 14. 熱緊迫對豬卵母細胞透明帶肌動蛋白、卵膜環及胞質微絲之影響----------60
圖 15. 熱緊迫對豬卵母細胞透明帶肌動蛋白之變化-----------------------------------61
圖 16. 熱緊迫對豬卵母細胞卵膜環之變化-----------------------------------------------62
圖 17. 熱緊迫對豬卵母細胞胞質微絲之變化--------------------------------------------63
圖 18. 熱緊迫對豬卵母細胞染色體(質)與紡錘體微管影響之可逆性--------------72
圖 19. 熱緊迫對豬卵母細胞透明帶肌動蛋白、卵膜環及胞質微絲影響之可逆性--------------------------------------------------------------------------------------------75
圖 20. 熱緊迫對豬卵母細胞透明帶肌動蛋白影響之可逆性--------------------------76
圖 21. 熱緊迫對豬卵母細胞卵膜環影響之可逆性--------------------------------------77
圖 22. 熱緊迫對豬卵母細胞胞質微絲影響之可逆性-----------------------------------78
圖 23. 以共軛焦顯微鏡觀察熱緊迫對豬卵子細胞核與細胞骨架形態之影響-----85
圖 24. 熱緊迫對豬卵母細胞胞質微絲密度之影響--------------------------------------87
表次
頁次
表1. 牛卵母細胞體外成熟培養液之組成分-------------------------------------25
表 2. 熱緊迫對牛卵母細胞染色質(體)、紡錘體與胞質微管形態之影響-----37
表 3. 熱緊迫對牛卵母細胞紡錘體形態與螢光強度之變化----------------------------40
表 4. NCSU#23基礎培養液之組成分---------------------------------------------50
表 5. 熱緊迫對豬卵母細胞染色質(體)、紡錘體與胞質微管形態之影響-----56
表 6. 熱緊迫對豬卵母細胞紡錘體形態與螢光強度之變化----------------------------58
表 7. 熱緊迫對豬卵母細胞核與紡錘體微管形態之影響-------------------------------74
參考文獻
台灣省畜產試驗所。1995。在濕熱環境下如何改善乳牛的生產效能。熱緊迫對家畜之生產性能影響與改善策略。39: 1-12。
行政院農委會。2001。農業統計年報。
Ainsworth, L., B. K. Tsang, B. R. Downey and G. J. Marcus. 1990. The synthesis and prostaglandins during follicular maturation in the pig. J. Reprod. Fertil. Suppl. 40:137-150.
Albertini, D. F., E. W. Overstrom and K. M. Ebert. 1987. Changes in organization of the actin cytoskeleton during preimplantation development of the pig embryo. Biol. Reprod. 37: 441-451.
Al-Katanani, Y. M., D. W. Webb and P. J. Hansen. 1999. Factors affecting seasonal variation in 90 day nonreturn rate to first service in lactating Holstein cows in a hot climate. J. Dairy Sci. 82: 2611-2615.
Almeida, P. A. and U. Y. Bolton. 1995. The effect of temperature fluctuations on the cytoskeletal organization and chromosomal constitution of the human oocyte. Zygote 3: 357-365.
Aman, R. R. and J. E. Parks. 1994. Effects of cooling and rewarming on the meiotic spindle and chromosomes of in vitro-matured bovine oocyte. Biol. Reprod. 50: 103-110.
Badinga, L., W. W. Thatcher, T. Diaz, M. Drost and D. Wolfenson. 1993. Effect of environmental heat stress on follicular development and steroidogenesis in lactating Holstein cows. Theriogenology 39: 797-810.
Balakier, H. and A. K. Tarkowski. 1976. Diploid parthenogenetic mouse embryos produced by heat-shock and cytochalasin B. J. Embryol Exp. Morph. 35: 25-39.
Baumgartner, A. P. and C. L. Chrisman. 1987. Embryonic mortality caused by maternal heat stress during mouse oocyte maturation. Anim. Prod. Sci. 14:309-316.
Baumgartner, A. P. and C. L. Chrisman. 1988. Analysis of post-implantation mouse embryos after maternal heat stress during meiotic maturation. J. Reprod. Fert. 84: 469-474.
Bearden, H. J.and W. Fuquay. 1997. Applied animal reproduction. 4th . ed. pp 40-42. Prentice-Hall Inc.
Buňo, I., A. Juarranz, M. Caňete, A. Villanueva, J. Gosalvez and J. C. Stockert. 1998. Image processing and analysis of fluorescent labeled cytoskeleton. Micron 29: 445-449.
Choi, T., F. Aoki, M. Mori, M. Yamashita, Y. Nagahama and K. Kohmoto. 1991. Activation of p34cdc2 protein kinase activity in meiotic and mitotic cell cycles in mouse oocytes and embryos. Development. 113: 789-795.
Chiquoine, A. D. 1960. Ther development of the zona pellucida of the mammalian ovum. Am. J. Anat. 106: 149-170.
Coss, R. A., M. E. Alden, P. R. Wachsberger and N. N. Smith. 1996. Response of the microtubular cytoskeleton following hyperthermia as a prognostic indicator of survival of Chinese hamster ovary cells. J. Radiat. Oncol. Biol. Phys. 34: 403-410.
Debec, A. and C. Marcaillou. 1997. Structural alterations of the mitotic apparatus induced by the heat shock response in Drosophila cells. Biol. Cell 89: 67-78.
Dekel, N. and W. H. Beers. 1980. Development of the rat oocyte in vitro: Inhibition and induction of maturation in the presence or abscence of the cumulus oophorus. Devel. Biol. 75: 247-254.
Drost, M., J. D. Ambrose, M. J. Thatcher, C. K. Cantrell, K. E. Wolfsdorf, J. F. Hasler and W. W. Thatcher. 1999. Conception rates after artificial insemination or embryo transfer in lactating dairy cows during summer in Florida. Theriogenology 52: 1161-1167.
Ealy, A. D., M. Drost and P. J. Hansen. 1993. Developmental changes in embryonic reisistance to adverse effects of maternal heat stress in cows. J. Dairy Sci. 76: 2899-2905.
Ealy, A. D., J. L. Howell, V. H. Monterroso, C. F. Aréchiga and P. J. Hansen. 1995. Developmental changes in sensitivity of bovine embryos to heat shock and use of antioxidants as thermoprotectants. J. Anim. Sci. 73: 1401-1407.
Edwards, J. L. and P. J. Hansen. 1996. Elevated temperature increases heat shock protein 70 synthesis in bovine two-cell embryos and compromises function of maturing oocytes. Biol. Reprod. 55: 340-346.
Edwards, J. L. and P. J. Hansen. 1997. Differential responses of bovine oocytes and preimplantation embryos to heat shock. Mol. Reprod. Dev. 46: 138-145.
Edwards, J. L., A. D. Ealy, V. H. Monterroso and P. J. Hansen. 1997. Ontogeny of temperature-regulated heat shock protein 70 synthesis in preimplantation bovine embryos. Mol. Reprod. Dev. 48: 25-33.
Eppig, J. J. and S. M. Downs. 1984. Chemical signals that regulate mammalian oocyte maturation. Biol. Reprod. 39:1-11.
Eroglu, A., T. L. Toth and M. Toner. 1998. Alterations of the cytoskeleton and polyploidy induced by cryopreservation of metaphase II mouse oocytes. Fertil. Steril. 69: 944-957.
Giorgio, A. P. and X. Yang. 1994. Parthenogenetic development of bovine oocytes matured in vitro for 24 hr and activated by ethanol and cycloheximide. Mol. Reprod. Dev. 38: 380-385.
Grant, S. A., M. G. Hunter and G. R. Foxcroft. 1989. Morphological and bioche- mical characteristics during ovarian follicular development in the pig. J. Reprod. Fertil. 86: 171-183.
Gu, M. 2002. Image formation in fibre-optic two-photon fluorescence microscopy. Proceedings of technical digest of focus on microscopy. pp: 18.
Guraya, S.S. 1985. Biology of Ovarian Follicles in Mammals, pp. 3-14. Springer-Verlag, Berlin.
Guthrie, H. D. and D. J. Bolt. 1990. Changes in plasma follicle-stimulating hormone, luteinizing hormone, estrogen and progesterone during growth of ovulatory follicles in the pig. Domest. Anim. Endo. 7: 83-91.
Gwazdauskas, F. C., W. W. Thatcher and C. J. Wilcox. 1973. Physiological, environmental, and hormonal factors at insemination which may affect conception. J. Dairy Sci. 56: 873-877.
Hafez, E. S. E. 1987. Folliculogenesis, egg maturation and ovulation. In : E. S. E. Hafez, Reproduction in farm animals. 5th. ed. pp. 130-167. Lea & Febiger, Philadelphia.
Hägglund, A. C., P. Basset and T. Ny. 2001. Stromelysin-3 is induced in mouse ovarian follicles undergoing hormonally controlled apoptosis, but this metalloproteinase is not required for follicular atresia. Biol. Reprod. 64: 457- 463.
Hansen, P. J., M. Drost, R. M. Rivera, L. Panla, Y. M. Al-Katanani, C. E. Krininger and C. C. Chase.Jr. 2001. Adverse impact of heat stress on embryo production: cause and strategies for mitigation. Theriogenology 55: 91-103.
Homa, S. T., J. Carroll and K. Swann. 1993. The role of calcium in manmmalian oocyte maturation and egg activation. Human Reprod. 8:1274-1281.
Howell, J. L., J. W. Fuquay and A. E. Smith. 1994. Corpus luteum growth and function in lactating Holstein cows during spring and summer. J. Dairy Sci. 77: 735-739.
Ju, J. C. 1999. The effect of heat shock on the developmental competence and activation. Cornell USA, Ph. D. Thesis.
Ju, J. C., J. E. Parks and X. Yang. 1999. Thermotolerance of IVM-derived bovine oocytes and embryos after short-term heat shock. Mol. Dev. Reprod. 53: 336-340.
Karp, C. 2002. Cell and Molecular biology. 3rd. ed. chapter 9, 14. John Wiley & Son, Inc. NY.
Kim, N. H., H. Funahashi, R. S. Prather, G. Schatten and B. N. Day. 1996a. Microtubule and microfilament dynamics in porcine oocytes during meiotic maturation. Mol. Reprod. Dev. 43: 248-255.
Kim, N. H., S. J. Moon, R. S. Prather and B. N. Day. 1996b. Cytoskeleton alteration in aged porcine oocytes and parthenogenesis. Mol. Reprod. Dev. 43: 513-518.
Kim, N. H., C. Simerly, H. Funahashi, G. Schatten and B. N. Day. 1996c. Microtubule organization in porcine oocytes during fertilization and parthenogenesis. Biol. Reprod. 54: 1397-1404.
Kim, N. H., K. S. Chung and B. N. Day. 1997. The distribution and requirements of microtubules and microfilaments during fertilization and parthenogenesis in pig oocytes. J. Reprod. Fertil. 111: 143-149.
Kimura, Y., N. Manabe, S. Nishihara, H. Matsushita, C. Tajima, S. Wada and H. Miyamoto. 1999. Up-regulation of the α2, 6-sialyltransferase messenger ribonucleic acid increases glycoconjugates containing α2,6-linked sialic acid residues in granulosa cells during follicular atresia of porcine ovaries. Biol. Reprod. 60: 1475-1482.
Kline, D. and J. T. Kline. 1992. Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev. Biol. 149: 80-89.
Komar, A. 1973. Parthenogenetic development of mouse eggs activated by heat shock. J. Reprod. Fert. 35: 433-443.
Krisher, R. L. and B. D. Bavister. 1999. Enhanced glycolysis after maturation of bovine oocytes in vitro is associated with increased developmental competence. Mol. Reprod. Dev. 53: 19-26.
Lavoie, J. N., G. Gingras-Breton, R. M. Tanguay and J. Landry. 1993a. Induction of Chinese hamster HSP27 gene expression in mouse cells confers resistance to heat shock. J. Biol. Chem. 268: 3420-3429.
Lavoie, J. N., E. Hickey, L. A. Weber and J. Landry. 1993b. Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J. Biol. Chem. 268: 24210-14214.
Lavoie, J. N., H. Lambert, E. Hickey, L. A. Weber and J. Landry. 1995. Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Mol. Cell Biol. 15: 505-516.
Leung, P. C. K. and D. T. Armstrong. 1980. Interactions of steroids and gonadotropins in the control of steroidogenesis in the ovarian follicle. Ann. Rew. Physiol. 42:71-82.
Lewin, B. 1990. Driving the cell cycle: M phase kinase, it''s partners and substrates. Cell 61:743-752.
Liang, P. and T. H. MacRae. 1997. Molecular chaperones and the cytoskeleton. J. Cell Sci. 110: 1431-1440.
Loeken, M. R. and C. P. Channing. 1985. Direct evidence for de-novo synthesis of LH receptors in cultured pig granulosa cells in response to FSH. J. Reprod. Fertil. 73:343-351.
Long, C. R., C. Pinto-Correia, R. T. Duby, F. A. P. D. Leon, M. P. Boland, J. F. Roche and J. M. Robl. 1993. Chromatin and microtubule morphology during the first cell cycle in bovine zygotes. Mol. Reprod. Dev. 36: 23-32.
MacRae, T. H. and C. M. Langdon. 1989. Tubulin synthesis, structure, and function: what are the relationships? Biochim. Cell Biol. 67: 770-790.
Magistrini, M. and D. Szöllösi. 1980. Effects of cold and isopropyl-N-phenylcarbamate on the second meiotic spindle of mouse oocytes. J. Cell Biol. 22: 699-707.
Mattioli, M., G. Galeati, M. L. Bacci and B. Barboni. 1991. Changes in maturation-promoting activity in the cytoplasm of pig oocytes throughout maturation. Mol. Reprod. Dev. 30: 119-125.
Minsky, M. 1988. Memoir on inventing the confocal scanning microscopy. Scanning 10: 128.
Monty, D. E. and C. Racowsky. 1987. In vitro evaluation of early embryo viability and development in summer heat-stressed superovulated dairy cows. Theriogenology 28: 451-465.
Moor, R. M. and G. M. Warness. 1978. Regulation of oocyte maturation in mammals. In : Control of ovulation. butterworths, London. pp. 159-176.
Moor, R. M. and I. M. Crosby. 1984. Oocyte maturation in: In vitro fertilization and embryo transfer. Churchill Livingstone, London. pp. 19-31.
Morbeck, D. E., W. L. Flowers and J. H. Britt. 1993. Response of porcine granulosa cells isolated from primary and secondary follicles to FSH, 8-bromo-cAMP and epidermal growth factor in vitro. J. Reprod. Fertil. 99:577-584.
Motlik, J. and M. Kubelka. 1990. Cell-cycle aspects of growth and maturation of mammalian oocytes. Mol. Reprod. Dev. 27: 366-375.
Murray, A. W. and M. W. Kirschner. 1989. Cyclin synthesis drives the early embryonic cell cycle. Nature 339: 275-280.
Newport, J. W. and M. W. Kirschner. 1984. Regulation of the cell cycle during early Xenopus development. Cell 37: 731-742.
Pickering, S. J. and M. H. Johnson. 1987. The influence of cooling on the organization of the meiotic spindle of the mouse oocyte. Human Reprod. 2: 207-216.
Pickering, S. J., P. R. Braude and M. H. Johnson. 1990. Transient cooling to room temperature can cause irreversible disruption to the meiotic spindle in human oocytes. Fertil. Steril. 54: 102-108.
Plancha C. E. and D. F. Albertini. 1994. Hormonal regulation of meiotic maturation in the hamster oocyte involves a cytoskeleton-mediated process. Biol. Reprod. 51: 852-864.
Preston, T. M., C. A. King and J. S. Hyams. 1990. The cytoskeleton and cell motility. 1st. ed. pp. 36-39. Chapman and Hall, Inc. NY.
Putney, D. J., M. Drost and W. W. Thatcher. 1989. Influence of summer heat stress on pregnancy rates of lactating dairy cattle following embryo transfer or artificial insemination. Theriogenology 31: 765-778.
Rivera, R. M. and P. J. Hansen. 2001. Development of cultured bovine embryos after exposure to hight temperature in the physiological range. Reproduction 121: 107-115.
Rodionov, V., E. Nadezhdina and G. Borisy. 1999. Centrosomal control of microtubule dynamics. Proc. Natl. Acad. Sci. U. S. A. 96: 115-120.
Roman-Ponce, H., W. W. Thatcher, D. Caton, D. H. Barron and C. J. Wilcox. 1978. Thermal stress effects on uterine blood flow in dairy cows. J. Anim. Sci. 46: 175-180.
Rutledge, J. J. 2001. Use embryo transfer and IVF to bypass effects of heat stress. Theriogenology 55: 105-111.
Ryan, D. P., J. F. Prichard, E. Kopel and R. A. Godke. 1993. Comparing early embryo mortality in dairy cows during hot and cool seasons of the year. Theriogenology 39: 719-737.
Sagata, N., N. Watanabe, G. F. Vande and Y. Ikawa. 1989. The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. Nature 342: 512-518.
Shatten, G. 1994. The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization. Dev. Biol. 165: 299-335.
Stanley, C. M. 2002. Mirror and filter design for multiphoton microscopy. Proceedings of technical digest of focus on microscopy. pp: 8.
Sun, Q. Y., L. Lai, K. W. Park, B. Kühholzer, R. S. Prather and H. Schatten. 2001. Dynamic events are differently mediated by microfilaments, microtubules and mitogen-activated protein kinase during oocyte maturation and fertilization in vitro. Biol. Reprod. 64: 879-889.
Suzuki, H., X. Yang and R. H. Foote. 1994. Surface alterations of the bovine oocytes and its investments during and after maturation and fertilization in vitro. Mol. Reprod. Dev. 38: 421-430.
Suzuki, H., J. C. Ju, J. E. Parks and X. Yang. 1998. Surface ultrastructural characteristics of bovine oocytes following heat shock. J. Reprod. Dev. 44: 345-351.
Thibault, C., M. Gerard and Y. Menezo. 1975. Preovulatory and ovulatory mechanism in oocyte maturation. J. Reprod. Fert. 45: 605-610.
Tomes, G. J. and H. F. Nielson. 1979. Seasonal variations in the reproductive performance of sows under different climatic conditions. World Rev. Anim. Prod. XV(1): 9.
Trout, J. P., L. R. McDowell and P. J. Hansen. 1998. Characteristic of the estrous cycle and anrioxidant status of lactating Holstein cows exposed to heat stress. J. Dairy Sci. 81: 1244-1250.
Tsafriri, A., S. Bar-Ami and H. R. Linder. 1982a. Control of the development of meiotic competence and of oocyte maturation in mammals. In: Fertilization of the human egg in vitro. Springer-Verlag, Berlin. pp. 3-17.
Tsafriri, A., N. Dekel and S. Bar-Ami. 1982b. The role of oocyte maturation inhibitor in follicular regulation of oocyte maturation. J. Reprod. Fert. 64:541-551.
Ullrey, D. E., J. I. Sprague, D. E. Becker and E. R. Miller. 1965. Growth of the swine fetus. J. Anim. Sci. 24: 711-717.
Wang, W. H., L. R. Abeydeera, R. S. Prather and B. N. Day. 2000. Polymerization of nonfilamentous actin into microfilaments is an important process for porcine oocyte maturation and early embryo development. Biol. Reprod. 62: 1177-1183.
Wang, W. H., L. Meng, R. J. Hackett, R. Odenbourg and D. L. Keefe. 2001a. The spindle observation and its relationship with fertilization after intracytoplasmic sperm injection in living human oocytes. Fertil. Steril. 75: 348-353.
Wang, W. H., L. Meng, R. J. Hackett, R. Odenbourg and D. L. Keefe. 2001b. Limited recovery of meiotic spindle in living human oocytes after cooling-rewarming observed using polarized light microscopy. Human Reprod. 16: 2374-2378.
Warnick, A. C., H. D. Wallace, A. Z. Palmer, E. Sosa, D. J. Duerre and V. E. Caldwell. 1965. Effect of temperature on early embryo survival in gilts. J. Anim. Sci. 24: 89.
Wassarman, P. M. 1988. The mammalian ovum. In E Knobil and J Neill (eds): "The Physiology of Reproduction." New York: Raven press Ltd. pp. 63-102.
Welch, W. J. and J. P. Suhan. 1985. Morphological study of the mammalian stress response: characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment. J. Cell Biol. 101: 1198-1211.
Wolfenson, D., W. W. Thatcher, L. Badinga, J. D. Savio, R. Meidan, B. J. Lew, R. Braw-Tal and A. Berman. 1995. Effect of heat stress on follicular development during the estrous cycle in lactating dairy cattle. Biol. Reprod. 52: 1106-1113.
Wu, G. J., C. Simerly, S. S. Zoran, L. R. Funte and G. Schatten. 1996. Microtubule and chromatin dynamics during fertilization and early development in Rhesus monkeys, and regulation by intracellular calcium ions. Biol. Reprod. 55: 260-270.
Yellera-Fernandez, M. D. M., N. Crozet and M. Ahmed-Ali. 1992. Microtubule distribution during fertilization in the rabbit. Mol. Reprod. Dev. 32: 271-276.
Zenzes, M. T., R. Bielecki, R. F. Casper and S. P. Leibo. 2001. Effects of chilling to 0℃ on the morphology of meiotic spindles in human metaphase II oocytes. Fertil. Steril. 75: 769-777.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔