跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/21 13:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昭
研究生(外文):chen chao-hsien
論文名稱:木瓜畸葉嵌紋病毒鞘蛋白基因在大腸桿菌載體或病毒載體之表現
論文名稱(外文):Expression of the coat protein gene of Papaya leaf-distortion mosaic virus by bacterial plasmid or viral vector
指導教授:葉錫東葉錫東引用關係
指導教授(外文):Yeh Shyi-Dong
學位類別:碩士
校院名稱:國立中興大學
系所名稱:植物病理學系
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:57
中文關鍵詞:木瓜畸葉嵌紋病毒
外文關鍵詞:Papaya leaf-distortion mosaic virus
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
木瓜畸葉嵌紋病毒(Papaya leaf-distortion mosaic virus, PLDMV) 台灣分離株為馬鈴薯Y病毒科 (Potyviridae),馬鈴薯Y病毒屬 (Potyvirus group) 之一員,目前發現僅能感染木瓜。在無適當的繁殖寄主以供病毒純化的情況下,為快速製備血清,本研究將木瓜畸葉嵌紋病毒鞘蛋白轉譯區 (reading frame) 基因以專一性引子對,利用反轉錄-聚合酵素連鎖反應 RT-PCR 的方法增幅出,經選殖、解序確定後再將其轉殖到細菌表現載體 pET-32a (+) (Novagen) 中。經IPTG 誘導五小時後的細菌,產生大小約 51.8-kDa 的融合蛋白,其 N 端帶有 109 個氨基酸的蛋白 thioredoxin及六個組織胺基酸 (histidine)。利用先前以細菌所表現帶有纖維素結合區 (cellulose binding domain) 的木瓜畸葉嵌紋病毒鞘蛋白之融合蛋白所製備出之抗血清 As48,及組織胺基酸之專一性單元抗體可於西方轉渍法 (western blotting) 中測定此融合蛋白。此融合蛋白大多存在於不溶性部分 (insoluble fraction),藉由組織胺基酸與金屬如銅或鎳結合之特性,在變性的條件下 (6 M尿素) 以親和性管柱層析法純化出 51.8 kDa 大小的蛋白,經透析作用去掉尿素後用以製備血清。由於大部分的蛋白未能在透析的過程中還原,所製備出的抗血清 (As 59) 於酵素連結抗體法中,對感病植物中加熱變性的病毒鞘蛋白有很高的靈敏度。該血清也能應用在西方轉漬法 (western blotting) 中去偵測感病植物中的木瓜畸葉嵌紋病毒鞘蛋白。另外,利用本實驗室林氏所建構的矮南瓜黃化嵌紋病毒 (Zucchini yellow mosaic virus, ZYMV) 載體表現PLDMV 鞘蛋白基因,以對應轉譯 (in frame) 的方式插入ZYMV載體之協同性蛋白 (HC-Pro protein) N端,藉由 NIa 蛋白裂解酵素之辨識位置,以利 C 端帶有組織胺基酸標定 (histidine tag) 的游離態蛋白之裂解與純化。含有 PLDMV 鞘蛋白基因的重組病毒ZYMVPCP4-6,在矮南瓜上造成的黃化嵌紋 (yellow mosaic) 及脈綠 (vein-banding) 病徵較 ZYMV 所造成的情況輕微許多。此重組體也能感染刺角瓜造成斑駁 (mottling) 及輕微的脈綠病徵以及在奎藜 (Chenopodium quinoa) 上產生單斑。由此而知本重組病毒 ZYMVPCP4-6 能感染原寄主矮南瓜,同時表現出 PLDMV。

Abstract
The Taiwan isolate of Papaya leaf-distortion mosaic virus (PLDMV), a member of the genus Potyvirus of the family Potyviridae, only infects plants of Carica papaya, which was not the proper propagation host for virus purification. For antiserum production, the complete reading frame of the coat protein (CP) gene of Papaya leaf-distortion mosaic virus (PLDMV) was amplified from the total RNA extracted from virus-infected leaves of papaya plants by reverse transcription-polymerase chain reaction (RT-PCR) with the CP-gene specific primers. The amplified DNA fragment was cloned, sequenced, and transferred to the bacteial expression vector pET-32a (+) vector (Novagen) in this investigation. The PLDMV CP was expressed as a 51.8-kDa fusion protein containing the 109 aa thioredoxin protein and a N-terminal histidine tag in the E. coli cells. This fusion protein reacted with PLDMV-specific antiserum As48, previously produced against the bacterial expressed PLDMV CP protein that was fused with a cellulose binding domain, and the histidine tag-specific monoclonal antibody in western blotting. The target protein of PLDMV CP was collected and purified under denaturing conditions, in buffers containing 6 M urea, by Ni2+-NTA affinity chromatography. The denatured target protein was used for antiserum production after dialysis. Most of the fusion protein was not refolded during the process of dialysis. The antiserum As59 produced by immunizing a New Zealand white rabbit with the purified fusion protein reacted with the boiled extracts of PLDMV-infected papaya plants in ELISA test with high sensitivity. It also was able used to detect the CP of PLDMV in the infected leaves by Western blotting. In addition, the reading frame of PLDMV CP was in frame inserted into the Zucchini yellow mosaic virus (ZYMV) vector at the N-terminal region of the HC-Pro protein, with additional six histidine residues to facilitate the purification and a NIa protease cleavage site to process the free form proteins. The recombinant virus ZYMVPCP4-6 carrying the CP of PLDMV induced milder symptoms of yellow mosaic with vein-banding on zucchini squash plants than those induced by the wild type of ZYMV. The recombinant ZYMVPCP4-6 also induced mottling and mild vein-banding symptoms on plants of horn melon and local lesions on plants of Chenopodium quinoa. The expression efficiency of PLDMV CP in the ZYMVPCP4-6 infected squash plants is discussed.

Content
Abstract……………………………………………………..………………….….. 1
中文摘要………………………………………………………………….………... 3
前言………………...…………………………………………………………….… 5
Introduction…………………………………………………………………...…... 11
Materials and Methods
Virus source……………………………………………………………….……. 17
Reverse transcription-polymerase chain reaction (RT-PCR)……..………….… 17
TA cloning and sequence comparison…………………………………….……. 18
Construction of the reading frame of the CP gene of PLDMV in pET32a vector………………………………………………………………………….
18
Expression and analysis of the target protein…….…………………………….. 19
Purification of the target protein …………………………………………….… 21
Antiserum preparation and serological test…………………………………….. 22
Detection of the titer of the antiserum against PLDMV CP in infected plants by indirect-ELISA……………………………………………………………...
22
Analysis of the sensitivity of the antiserum against PLDMV CP in infected plants by indirect-ELISA……………………………………...………….……
23
Expression of PLDMV CP by the ZYMV vector………………………....…… 24
Plant inoculation……………………………………………………… 24
Detection of the ZYMV recombinants in the infected plants by RT-PCR……... 25
Detection of the recombinant ZYMVPCP4-6 in infected plants by Western blotting……………………………………………………………………….....
25
Detection of the accumulation of viral vector expressed coat protein in infected squash plants…………………………………………………………..
26
Results
Construction of the reading frame of CP gene of PLDMV in pET32a vector………….…………………………………………………………………….
27
Expression of the target gene…………………….…………………………….. 27
Purification of the target protein……………...…………………….....……….. 28
Serological reactivity of the antiserum………………………………..………. 28
Analysis of the sensitivity of the antiserum against PLDMV CP in infected papaya plants by indirect-ELISA………………………………………………
29
Construction of PLDMV CP reading frame into the ZYMV vector………….. 30
Infectivity of the ZYMV vector carrying the CP gene of PLDMV…………… 30
Detection of the PLDMV CP expressed by ZYMV vector in infected squash plants by western blotting………………………………………………
31
The accumulation of viral vector expressed coat protein in infected squash plants……………………………………………………………………
32
Discussion………………………………………………………………………..… 33
Literature cited……………………………………………………………………. 38
Table and Figures…………………………………………………………………. 44
Appendix…………………………………………………………………………... 57

Literature cited
Adler, S., and Modrich, P. (1983). T7-induced DNA polymerase. Requirement for thioredoxin sulfhydryl groups. J. Biol. Chem. 258, 6956-6962.
Anandalakshimi, R., Pruss, G.J., Ge, X., Marathe, R., Mallory, A.C., Smith, T.H., and Vance, V.B. (1998). A viral supressor of gene silencing in plants. Proc. Natl. Acad. Sci. USA 95, 13079-13084.
Andrejeva, J., Puurand, U., Merits, A., Rabenstein, F., Jarvekulg, L., and Valkonen, J.P. (1999). Potyvirus helper component-proteinase and coat protein (CP) have coordinated functions in virus-host interactions and the same CP motif affects virus transmission and accumulation. J. Gen. Virol. 80, 1133-1139.
Arazi, T., Slutsky, S.G., Shiboleth, Y.M., Wang, Y., Rubinstein, M., Barak, S., Yang, J., and Gal-On, A. (2001). Engineering Zucchini yellow mosaic potyvirus as a non-pathogenic vector for expression of heterologous proteins in cucurbits. J. Biotechnol. 87, 67-82.
Bateson, M.F., Henderson, J., Chaleeprom, W., Gibbs, A.J., and Dale, J.L. (1994). Papaya ringspot potyvirus : isolate variability and the origin of PRSV type P (Australia). J. Gen. Virol. 75, 3547-3553.
Bau, H.J. (2000). Studies on resistance of transgenic papaya conferred by the coat protein gene of Papaya ringspot virus. In Ph. D. Dissertation. Department of Plant Pathology (Taichung, Taiwan: National Chung Hsing University), pp. 108-134.
Bayer, M.E. (1968). Areas of adhesion between wall and membrane of Escherichia coli. J. Gen. Microbiol. 53, 395-404.
Blanc, S., Lopez-Moya, J.J., Wang, R., Garcia-Lampasons, S., Thornbury, D.W., and Pirone, T.P. (1997). A specific interaction between coat protein and helper component correlates with aphid transmission of a potyvirus. Virology 231, 141-147.
Brigneti, G., Voinnet, O., Li, W.-X., Ji, L.-H., Ding, S.-X., and Baulcombe, D.C. (1998). Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 17, 6739-6746.
Carrington, J.C., and Dougherty, W.G. (1987). Small nuclear inclusion protein encoded by a plant potyvirus genome is a protease. J. Virol. 61, 2540-2548.
Carrington, J.C., Cary, S.M., and Dougherty, W.G. (1988). Mutational analysis of tobacco etch virus polyprotein processing: cis and trans proteolytic activities of polyproteins containing the 49-kilodalton proteinase. J. Virol. 62, 2313-2320.
Carrington, J.C., Cary, S.M., Parks, T.D., and Dougherty, W.G. (1989). A second protease encoded by a plant potyvirus genome. EMBO J. 8, 365-370.
Chan, S.J. (1999). Production of antibodies to bacterial expressed P1 protein of Papaya ringspot viruses and coat protein of Papaya leaf distortion mosaic virus. In M. S. thesis. Department of plant pathology (Taichung, Taiwan: National Chung Hsing University), pp. 1-53.
Chen, C.-C., Hsiang, T., Chiang, F.-L., and Chang, C.-A. (2002). Molecular characterization of Tuberose mild mosaic virus and preparation of its antiserum to the coat protein expressed in bacteria. Bot. Bull. Acad. Sin. 43, 13-20.
Chen, L.F. (1999). Sequence variatoin of the coat protein genes of Papaya ringspot virus isolates with different symptom types. In B. S. thesis. Department of plant pathology (Taichung, Taiwan: National Chung Hsing University). pp. 1-28.
Chen, T.C. (2001). Broad-spectrum resistance to tospoviruses in transgenic Nicotiana benthamiana plants carrying the conserved RNA polymerase motifs of Watermelon silver mottle virus and expression of its individual genes using the Zucchini yellow mosaic virus vector. In Ph. D. Dissertation. Department of Plant Pathology (Taichung, Taiwan: National Chung Hsing University), pp. 63-137.
Chu, M., Lopez-Moya, J., Llave-Correas, C., and Pirone, T. (1997). Two separate regions in the genome of the tobacco etch virus contain detreminants of the wilting response of Tabasco pepper. Mol. Plant-Microbe Inteact. 10, 472-480.
Colinet, D., Kummert, J., Lepoivre, P., and Semal, J. (1994). Identification of distinct Potyvirus in mixedly-infected sweet potato by the polymerase chain reation with degenerate primers. Phytopathology 84, 65-69.
Cronin, S., Verchot, J., Haldeman, C.R., Schaad, M.C., and Carrington, J.C. (1995). Long-distance movement factor: A transport function of the potyvirus helper component proteinase. Plant Cell 7, 549-559.
Desbiez, C., and Lecoq, H. (1997). Zucchini yellow mosaic virus. Plant Pathol. 46, 809-829.
Dijkstra, J., and Jager, C.P.d. (1998). Practical plant virology: protocols and exercises (New York: Springer), pp. 319-327.
Dolja, V.V., Haldeman, R., Roberson, N.L., Dougherty, W.G., and Carrington, J.C. (1994). Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants. EMBO J. 13, 1482-1491.
Dolja, V.V., Haldeman-Cahill, R., Montgomery, A.E., Vandenbosch, K.A., and Carrington, J.C. (1995). Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus. Virology 206, 1007-1016.
Dubendorff, J.W., and Studier, F.W. (1991). Creation of a T7 autogene. Cloning and expression of the gene for bacteriophage T7 RNA polymerase under control of its cognate promoter. J Mol Biol 219, 61-68.
Fernandez, A., and Garcia, J. (1996). The RNA helicase CI from plum pox potyvirus has two regions involved in binding to RNA. FEBS Lett. 388, 206-210.
Fernandez, A., Lain, A., and Garcia, J. (1995). RNA helicase activity of the plum pox potyvirus CI protein expressed in Escherichia coli. Mapping of an RNA binding domain. Nucl. Acids Res. 23, 1327-1332.
Gonsalves, D., and Ishii, M. (1980). Purification and serology of Papaya ringspot virus. Phytopathology 70, 1028-1032.
Harrison, B.D., and Robinson, D.J. (1988). Moleular variation in vector-borne plant viruses: epidemiological significance. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 321, 447-462.
Hong, Y., and Hunt, A.G. (1996). RNA polymerase activity catalyzed by a potyvirus-encoded RNA-dependent RNA polymerase. Virology 226, 146-151.
Huber, H.E., Russel, M., Model, P., and Richardson, C.C. (1986). Interaction of mutant thioredoxins of Escherichia coli with the gene 5 protein of phage T7. The redox capacity of thioredoxin is not required for stimulation of DNA polymerase activity. J. Biol. Chem. 261, 15006-15012.
Kasschau, K.D., and Carrington, J.C. (1995). Requirement for HC-Pro processing during genome amplification of Tobacco etch potyvirus. Virology 209, 268-273.
Kasschau, K.D., and Carrington, J.C. (1998). A counterdefenive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95, 461-470.
Kasschau, K.D., Cronin, S., and Carrington, J.C. (1997). Genome amplification and long-distance movement functions associated with the central domain of tobacco etch potyvirus helper component-proteinase. Virology 228, 251-262.
Kawano, S., and Yonaha, T. (1992). The occurrence of Papaya leaf-distortion mosaic virus in Okinawa. Tech. Bull. FFTC 132, 13-23.
Kiritani, K., and Su, H.-J. (1999). Papaya ring spot, banana bunchy top, and citrus greening in the Asia and Pacific Region: Occurrence and control strategy. JARQ. 33, 23-30.
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T-4. Nature 227, 680-685.
Lain, S., Riechmann, J., and Garcia, J. (1990). RNA helicase: a novel activity associated with a protein encoded by a positive strand RNA virus. Nucl. Acids Res. 18, 7003-7006.
Lain, S., Martin, M., Riechmann, J., and Garcia, J. (1991). Novel catalytic activity associated with positive-strand RNA virus infection: nucleic acid-stimulated ATPase activity of the plum pox potyvirus helicaselike protein. J. Virol. 65, 1-6.
LaVallie, E.R., DiBlasio, E.A., Kovacic, S., Grant, K.L., Schendel, P.F., and McCoy, J.M. (1993). A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Bio/Technology 11, 187-193.
Li, R.H., Zettler, F.W., Purcifull, D.E., and Hiebert, E. (1998). The nucleotide sequence of the 3'-terminal region of dasheen mosaic virus (Caladium isolate) and expression of its coat protein in Escherichia coli for antiserum production. Arch. Virol. 143, 2461-2469.
Lin, S.S. (2001). Assessments of genetic variability, characterization of genome organization, construction of infectious transcripts, development of viral vector, and generation of valuable attenuated strains of a Taiwan strain of Zucchini yellow mosaic virus. In Ph. D. Dissertation. Department of Agricultural Biotechnology (Taichung, Taiwan: National Chung Hsing University), pp. 111-140.
Lin, S.S., Hou, R.F., Huang, C.H., and Yeh, S.D. (1998). Characterization of Zucchini yellow mosaic virus (ZYMV) isolates collected from Taiwan by host reactions, serology, and RT-PCR. Plant Prot. Bull. 40, 163-176.
Lunn, C.A., Kathju, S., Wallace, B.J., Kushner, S.R., and Pigiet, V. (1984). Amplification and purification of plasmid-encoded thioredoxin from Escherichia coli K12. J. Biol. Chem. 259, 10469-10474.
Mahajan, S., Dolja, V.V., and Carrington, J.C. (1996). Roles of the sequence encoding Tobacco etch virus capsid protein in genome amplification: requirements for the translation prodess and a cis-active element . J. Virol. 70, 4370-4379.
Maia, I.G., Haenni, A.-L., and Bernardi, F. (1996). Potyviral HC-Pro: a multifunctional protein. J. Gen. Virol. 77, 1335-1341.
Maoka, T. (2001). Complete nucleotide sequence and genetic organization of Papaya leaf-distortion mosaic virus RNA. JIRCAS Newsletter 29.
Maoka, T., Kashiwazaki, S., Tsuda, S., Usugi, T., and Hibino, H. (1996). Nucleotide sequence of the capsid protein gene of Papaya leaf-distortion mosaic potyvirus. Arch. Virol. 141, 197-204.
Merits, A., Guo, D., and Saarma, M. (1998). Vpg, coat protein and five non-structural proteins of potato A potyvirus bind RNA in a sequence-unspecific manner. J. Gen. Virol. 79, 3123-3127.
Mierendorf, R., Yaeger, K., and Novy, R. (1994). The pET System: Your Choice for Expression. inNovations 1, 1-3.
Moreno, M., Bernal, J.J., Jimenez, I., and Rodriguez-Cerezo, E. (1998). Resistance in plants transformed with the P1 and P3 gene of tobacco vein mottling potyvirus. J. Gen. Virol. 79, 2819-2827.
Nagel, J., and Hiebert, E. (1985). Complementary DNA cloning and expression of the Papaya ringspot potyvirus sequences encoding capsid protein and a nuclear inclusion-like protein in Escherichia coli. Virology 143, 435-441.
Nikolaeva, O.V., Karasev, A.V., Gumpf, D.J., Lee, R.F., and Garnsey, S.M. (1995). Production of polyclonal antisera to the coat protein of citrus tristeza virus expressed in Escherichia coli: Application for immunodiagnosis. Phytopathology 85, 691-694.
Novy, R., Berg, J., Yaeger, K., and Mierendorf, R. (1995). pET TRX Fusion System for Increased Solubility of Proteins Expressed in E. coli. inNovations 3, 7-9.
Pirone, T.P., and Blanc, S. (1996). Helper-dependent vector transmission of plant viruses. Annu. Rev. Phytopathol. 34, 227-247.
Restrepo-Hartwig, M., and Carrington, J. (1992). Regulation of nuclear transport of a plant potyvirus protein by auto-proteolysis. J. Virol. 66, 5662-5666.
Revers, F., Le Gall, O., Candresse, T., and Maule, A.J. (1999). New advances in understanding the molecular biology of plant/potyvirus interactions. Mol. Plant-Microbe Interact. 12, 367-376.
Riechmann, J.L., Lain, S., and Garcia, J.A. (1992). Highlights and prospects of potyvirus molecular biology. J. Gen. Virol. 73, 1-16.
Riechmann, J.L., Cervera, M.T., and Garcia, J.A. (1995). Processing of the Plum pox virus polyprotein at the P3-6K1 junction is not required for virus viability. J. Gen. Virol. 76, 951-956.
Rodriguez-Cerezo, E., Findlay, K., Shaw, J.G., Lomonossoff, G.P., Qiu, S.G., Linstead, P., Shanks, M., and Risco, C. (1997). The coat and cylindrical inclusion proteins of a potyvirus are associated with connections between plant cells. Virology 236, 296-306.
Rojas, M.R., Zerbini, F.M., Allison, R.F., Gilbertson, R.L., and Lucas, W.J. (1997a). Capsid protein and helper component-proteinase function as potyvirus cell-to-cell movement proteins. Virology 237, 283-295.
Rojas, M.R., Murillo Zerbini, F.M., Allison, R.F., Gilbertson, R.L., and Lucas, W.J. (1997b). Capsid protein and helper component-proteinase function as potyvirus cell-to-cell movement proteins. Virology 237, 283-295.
Rosenberg, A.H., Lade, B.N., Chui, D.S., Lin, S.W., Dunn, J.J., and Studier, F.W. (1987). Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene 56, 125-135.
Russel, M., and Model, P. (1986). The role of thioredoxin in filamentous phage assembly. Construction, isolation, and characterization of mutant thioredoxins. J. Biol. Chem. 261, 14997-15005.
Sambrook, J., and Russell, D.W. (2001). Expression of cloned genes in Escherichia coli. In Molecular cloning: A laboratory manual (NY: Cold Spring Harbor), pp. 15.11-15.24.
Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular cloning: A laboratory manual. (NY: Cold Springs Harbor).
Schaad, M., Lellis, A., and Carrington, J. (1997). VPg of tobacco etch potyvirus is a host genotype-specific determinant for long-distance movement. J. Virol. 71, 8624-8631.
Shi, X.M., Miller, H., Verchot, J., Carrington, J.C., and Vance, V.B. (1997). Mutations in the region encoding the central domain of helper component-proteinase (HC-Pro) eliminate potato virus X/potyviral synergism. Virology 231, 35-42.
Skelton, G.S. (1968). Papaya proteinases. II. Effect of ascorbic acid on proteolytic activity. Enzymologia 35, 275-278.
Studier, F.W., and Moffatt, B.A. (1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113-130.
Studier, F.W., Rosenberg, A.H., Dunn, J.J., and Dubendorff, J.W. (1990). Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60-89.
van Regenmortel, M.H.V., Fauquet, C.M., Bishop, D.H.L., Carstens, E.B., Estes, M.K., Lemon, S.M., Maniloff, J., Mayo, M.A., McGeoch, D.J., Pringle, C.R., and Wickner, R.B. (2000). Family Potyviridae. In Virus Taxonomy (USA: Academic Press), pp. 706-712.
Verchot, J., Koonin, E.V., and Carrington, J.C. (1991). The 35-kDa protein from the N-terimus of a potyviral polyprotein functions as a third virus-encoded proteinase. Virology 185, 527-535.
Yeh, S.D., and Gonsalves, D. (1984). Evaluation of induced mutants of Papaya ringspot virus for control by cross protection. Phytopathology 74, 1086-1091.
Yeh, S.D., Jan, F.J., Chiang, C.H., Doong, T.J., Chen, M.C., Chung, P.H., and Bau, H.J. (1992a). Complete nucleotide sequence and genetic organization of Papaya ringspot virus RNA. J. Gen.Virol. 73, 2531-2541.
Yeh, S.D., Jan, F.J., Chiang, C.H., Doong, T.J., Chen, M.C., Chung, P.H., and Bau, H.J. (1992b). Complete nucleotide sequence and genetic organization of papaya ringspot virus RNA. J. Gen. Virol. 73, 2531-2541.
Yonaha, T., Yonemori, S., and Tamori, M. (1976). Relation between the flight occurrence of alate aphids and the spread of papaya virus disease in the field. Okinawa Agriculture 14, 7-15.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文