(3.237.97.64) 您好!臺灣時間:2021/03/03 06:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李雅惠
研究生(外文):Ya-hui Lee
論文名稱:拮抗性桿菌屬(Bacillusspp.)之分離、培養與抗生活性之改進以及病害防治之應用
論文名稱(外文):Antagonistic Bacillus spp.— isolation, culture and antagonisity improvement, and the application in disease control
指導教授:曾德賜
學位類別:碩士
校院名稱:國立中興大學
系所名稱:植物病理學系
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:80
中文關鍵詞:桿菌屬柑橘潰瘍病抗生活性
相關次數:
  • 被引用被引用:15
  • 點閱點閱:13974
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
為探討本土桿菌屬(Bacillus spp.)細菌於農業上之實際應用,由收集之田間土壤、栽培介質與有機堆肥中,利用加熱前處理,大量篩選菌落生長形態類似桿菌屬之細菌菌落,共分離出326株革蘭氏陽性桿狀菌,藉由對峙培養檢測其抗生活性,其中123株對Pythium aphanidermatum具有抗生活性,125株對Rhizoctonia solani AG4具有抗生活性,58株對Xanthomonas axonopodis pv. citri(Xac)具有抗生活性,以及58株對Xanthomonas axonopodis pv. vesicatoria (XVT12) 具有抗生活性。上述菌株經綜合其生長強勢與抗生活性之結果,篩選出HSP1、TKS1-1、OF3-17、SP4-17、WG6-14、TLB7-7與WP8-12等七株具實際應用潛力之菌株。菌株BS001為本研究室應用已久之桿菌屬細菌,並以此菌株為模式菌株,建立起液態發酵產孢技術,於本試驗中作為菌株改進之對照菌株。將上述八株菌株進行種之鑑定工作,根據Bergey’s Manual所記載之生理生化特性,除TLB7-7歸屬為B. pumilus外,其餘菌株皆歸屬於B. lichniformis ,並以Biolog 細菌鑑定系統作輔助確認,其中TLB7-7歸為B. pumilus,TKS1-1與WP8-12 歸為B. subtilis,BS001與SP4-17歸為B. megaterium,WG6-14歸為B. amyloliquefaciens,而OF3-17則無法確認其種之歸屬,雖然兩者鑑定結果有所差異,根據Priest(1993)所採行之分類方法皆歸屬為B. subtilis group。以本研究室已建立之液體發酵培養模式,將上述八株菌株培養於SYM培養液中並於溫室進行初步篩選工作,培養液澆灌於甘藍種子,發現依序以WG6-14、TLB7-7、SP4-17、WP8-12與BS001等菌株對甘藍幼苗具有較佳之生長促進效果,值得注意的是此八株測試菌株中並無抑制甘藍植株生長之現象。上述八株測試菌株於SYM培養液搖瓶培養下,菌株生長與內生孢子形成均良好,而隨著內生孢子的形成,抗生物質亦伴隨著產生,當內生孢子形成量逐漸增加時,培養過濾液之抗生物質逐漸減少,主要為內生孢子之菌體所產生之抗生物質逐漸增加,顯見存在著由不同代謝路徑所產生之抗生物質。就BS001及WG6-14兩測試菌株所產生之抗生物質而言,以XVT12及Xac作為抗生活性標的菌株,兩者培養液經調整酸鹼值後,酸鹼值對於不同標的菌株其抗生活性強度具有不同之影響,對XVT12於pH7-9之間表現出最高之抗生活性,而對Xac最高之抗生活性範圍則於pH3-6之間,而丙酮具抑制對Xac抗生物質之結果,而對於XVT12則無明顯之差異,另藉由C18逆向層吸管柱以不同濃度甲醇提洗,對XVT12之抗生物質可由70%甲醇提洗出,而對Xac之抗生物質則可由10-100%甲醇提洗出。去除菌體之BS001發酵濾液,對XVT12具有致死作用,XVT12菌液(1×109 cfu/ml)經發酵過濾液處理24小時後菌量降至100倍以下。由試驗結果顯示,對Xanthomonads產生作用之抗生物質屬為胜肰類抗生物質,且至少包含兩種抗生物質以上。為促進抗生物質之產生,於Modified Czapek’s Hoagland基礎培養基中分別添加19種胺基酸與8種無機氮,其中除胱胺酸外,胺基酸的添加相較於無機氮添加,對生長與內生孢子形成具有較佳之效果,而其中以丙胺酸、精胺酸、瓜胺酸、谷胺酸與甘胺酸的添加對菌量生長最好,可達1×108 cfu/ml以上,而於此培養基中對內生孢子的形成普遍不佳,孢子量只達1×107 cfu/ml左右,無機氮的提供無法有效促進菌量之生長,除磷酸銨及硝酸銨外,上述之無機態氮並不利於生長,然而硝酸鈣對內生孢子形成具有促進作用,為所有氮素源中促進內生孢子形成最佳者。氮素源的添加對XVT12與Xac之抗生活性促進方面,其中以組胺酸、鳥胺酸與瓜胺酸的添加處理促進效果最佳,而硝酸鉀與硝酸鈉亦有利於產生對Xac之抗生物質,然對XVT12之抗生物質則無促進之作用。而於所試驗之12種糖類中,所有糖類對BS001與WG6-14等供試菌株皆生長良好,而其中以葡萄糖、蔗糖、果糖、棉子糖、麥芽糖、甘露糖與甘露糖醇等添加處理對抗生活性具有助益之效果,除此外甘露糖醇亦具有促進內生孢子形成之作用。外加胺基酸於SYM培養液並非必須的,然而在BS001菌株接種後6或14小時添加組胺酸對產孢是有所助益的。為實際應用桿菌屬細菌於田間以防治植物病害,將篩選出具實際應用潛力之菌株先行於溫室與田間進行病害防治試驗,供試菌株BS001發酵液經200或500倍稀釋,每月於田間澆灌柑橘植株一次,有效抑制田間柑橘植株Xac之感染。而由下述兩者試驗觀察結果,桿菌屬細菌除可有效防治病害外,並可促進植物之生長與分櫱,菌株培養液經稀釋於田間澆灌使用時,對植株之生長促進效果非常顯著。茭白莖基腐病乃由腐生性細菌所感染,於埔里地區進行茭白莖基腐病害防治試驗,WG6-14發酵液經500倍稀釋,每分地施用250公升,觀察結果顯示施用WG6-14發酵液除可有效抑制茭白莖基腐病外(數據未顯示),亦可增加茭白分櫱數與茭白筍之全年產量達56%。另外於埔里地區進行蟲草白絹病害防治試驗時,BS001發酵液經500倍稀釋澆灌施用,試驗結果顯示除可增加植株存活外,並可增加塊莖之產量。雖然BS001與WG6-14兩供試菌株於病害防治方面結果仍須以試驗更進一步加以證實,但由上述試驗結果明白顯示,兩者具有實際應用田間之潛力與價值。
In order to explore the use of native bacilli for agricultural application, isolation and mass screening of antagonistic bacilli from natural resources including field soil, culture substrates, and natural composts was conducted. A total of 326 isolates of bacteria with bacilli colony characteristics was obtained by a thermal sensitized screening method previously established. The bacteria were all shown to be Gram positive rods; and among them 123 showed antagonisity against Pythium aphanidermatum (Pa), 125 against Rhizoctonia solani (AG4), 58 against Xanthomonas axonopodis pv. citri (Xac), and 58 against X. axonopodis pv. vesicatoria (XVT12). For exploring the potential of practical application, 7 isolates namely HSP1, TKS1-1, OF3-16, SP4-17, WG6-14, TLB7-7, and WP8-12, were chosen as targets for further evaluation among these isolate collection based on the overall performance of growth vigor and antagonisity. BS001, a Bacillus sp. Isolate long being used in the laboratory as a model isolate for establishing endospore production liquid fermentation technique, was also included in the test as a comparison for strain improvement. Attempted identification of these chosen isolates according to morphological and physiological characteristics shown in Bergey’s Manual indicated that all of them (including BS001) can be identified as B. lichniformis except that TLB7-7 was identified as B. pumilus. However, a double check of the identification by Biolog○R system indicated that TKS1-1 and WP8-12 should be B. subtilis, BS001 and SP4-17 should be B. megaterium, and WG6-14 should be B. amyloliquefaciens. The system also confirmed the species identity of TLB7-7 as B. pumilus, but it failed to identify isolate OF3-16. The species identified, although different, all belong to B. subtilis group of Priest (1993). A preliminary greenhouse screening test using culture broth of all 8 isolates grown in SYM medium demonstrated that by drenching treatment, WG6-14, TLB7-7, SP4-17 WP8-12, and BS001 were in the order among these tested isolates the best in stimulating growth of cabbage seedlings. Also worth to mention is that none of the tested isolates showed deleterious effect on the plant growth and development.
The tested isolates all grow well and transform well into endospores in SYM broth medium under continuous shaking. In accompany to the endospore formation, a paralleled increase of antibiotics was detected which generally appeared about one day before the detection of endospore formation. It was also noted that during the period of endospore formation, there was a decrease of antibiotic in culture filtrate and in accompany to that was the increment of spore extractable antibiotics indicating the existence of different types of antibiotics and the involvement of different pathways for the production. For antagonisity characterization, effect of pH on that of BS001 and WG6-14 was tested with Xanthomonas spp. XVT12 and Xac as bioassay targets. Adjustment of pH of culture broth of both tested isolates appeared to have differential effect on the strength of activity regarding to different targets. The adjustment of pH to 3-6 appeared to favor the activity on Xac, while the adjustment to 7-9 favors that on XVT12. Moreover, the addition of acetone appeared to annihilate the antagonisity of BS001 culture broth against Xac, whereas that against XVT12 remained not much changed. By Sep-Pak C18 cartridge clean up treatment, the Xac active antibiotic constituent contained in the Millipore filtered culture filtrate of both isolates was consistently eluted by 10 to 100% series of methanol, while that of XVT12 active ones was eluted only by methanol approximately at 70%. The cell free culture filtrate when added to suspension culture of XVT12, appeared to be lethal; the viable count of XVT12 at 1 X 109 cfu/ml was reduced about 100 folds 24 hrs after treatment. The accumulated evidence suggests clearly the involvement of certain chemically related peptide antibiotics in the observed antagonisity of tested bacilli against tested xanthomonads. For improving the antibiotic production, effect of 19 amino acids and 8 inorganic nitrogen was investigated using modified Czapek’s Hoagland as a basal medium. With the exception like cysteine for both test isolates and aspartic acid for WG6-14, provision of amino nitrogen apparently supported better growth and endospore formation as comparing to that by inorganic nitrogen. Among the amino nitrogen tested, the addition of alanine, arginine, citrulline, glutamate, glycine, methionine and valine were good in supporting the bacterial growth (up to 108 cfu/ml). The endospore formation in these cultures, however, was rather poor (only up to 107 cfu/ml). The provision of inorganic nitrogen was considerable less effective in promoting the bacterial growth. NH4H2PO4 and KNO3 were among them the best for supporting the growth; whereas for endospore formation, Ca(NO3)2 takes the lead. As for the antibiotic production, the best efficacy in regarding to antagonisity against both Xac and XVT12 was consistently detected from ornithine, citrulline, and histidine amended medium. The addition of KNO3 and NaNO3 also supported well the production of antibiotic against Xac, but that for XVT12 was not as good. The effect of 12 kinds of sugars including mono- and disaccharides on growth, sporulation and antagonisity was also tested. All the tested sugars appeared to support well the growth of both BS001 and WG6-14. Glucose, mannose, fructose, raffinose, maltose, mannitol, and sucrose were among them the best for antagonisity expression and mannose was among them the best for supporting sporulation. In SYM medium wherein most of the amino nitrogen were well supplied by natural substrate contained, extra addition of amino nitrogen was found not necessary as regard to promotion of the growth and sporulation of both tested isolates. The addition of histidine at 6-14 hrs after culturing, however, significantly increased the spore yield of BS001.
As for the potential of disease control application, some preliminary greenhouse and field trials were conducted. A monthly spray application of BS001 at 200 and 500X in dilution was shown to be effective in reducing Xac infection on naval orange in the field. In both experiments, what worth to mention is that in addition to efficacy of disease control, significant promotion of plant growth and improved vigor was generally observed. The plant growth promoting effect was even more prominent when the culture broth was applied by drenching application. In an attempt to control basal rot of Zizania latifolia presumably caused by certain saprophytic bacteria to be identified, drenching application of WG6-14 at 500 X in dilution, and 250 L/ha rate of application, was found effective in reducing the disease incidence in the field (data not shown). And it was especially worth noting that in accompany to that was the significantly increased tiller number and total yield of the smut gall production. Another attempt of disease control was for Sclerotium rot on Stachys sieboldii in field at Puli. The application of 500X diluted BS001 broth culture was also found effective in increasing the survival stand and the yield of tuberose root. Although the effectiveness of disease control of the both tested isolates need further works for a final documentation proof, the accumulated evidence has clearly indicated their possibility and great value in agricultural application.
目錄
壹、前言……………………………………………………………………..1
貳、前人研究………………………………………………………………..2
參、材料與方法……………………………………………………………..8
供試藥品試劑來源及培養基種類………………………………………..8
菌株之分離與篩選………………………………………………………..8
菌株分離與菌株拮抗性測定…………………………………………..9
拮抗菌株之鑑定………………………………………………………..9
篩選菌株對甘藍苗期生長之影響……………………………………..9
WG6-14施用於茭白對產量及分蘗之影響………………………….10
BS001添加不同胺基酸對蟲草產量之影響…………………………10
拮抗物質特性分析………………………………………………………..11
抗生活性之測試………………………………………………………..11
培養過程內生孢子之分化與抗生性物質之形成……………………..11
溫度對拮抗物質活性之影響…………………………………………..12
酸鹼度對拮抗物質活性之影響………………………………………..12
有機溶煤對拮抗物質活性之影響……………………………………..12
抗生活性物質之逆向層析淨化………………………………………..12
抗生性物質對Xanthomonas axonopodis pv. vesicatoria XVT12存活之影響…………………………………………………………………..13
營養因子對菌株生長、內生孢子及抗生活性影響……………………..13
菌株保存及接種源之製備……………………………………………..13
總菌量與內生孢子量測定……………………………………………..13
氮素源對生長、內生孢子與抗生活性之影響………………………..13
碳素源對生長、內生孢子與抗生活性之影響………………………..14
外加胺基酸額對生長、內生孢子與抗生活性之影響………………..14
不同時間點添加組胺酸對生長、內生孢子及抗生活性產生之影響..14
桿菌屬用於防治蕃茄細菌性斑點病及柑橘潰瘍病…………………….15
BS001不同施用濃度對柑橘潰瘍病防治之影響……………………15
肆、結果
菌株之分離與篩選……………………………………………………….16
菌株分離及菌株拮抗性篩選………………………………………….16
拮抗菌株之鑑定……………………………………………………….16
篩選菌株對甘藍幼苗生長之影響…………………………………….17
WG6-14施用於茭白對產量與分蘗之影響………………………….17
BS001之施用對蟲草產量之影響……………………………………18
供試菌株抗生物質之產生與理化特性檢測…………………………….18
培養過程內生孢子之分化與抗生性物質之形成…………………….18
溫度對抗生物質活性之影響………………………………………….18
酸鹼度對抗生物質活性之影響……………………………………….19
有機溶媒對抗生物質活性之影響…………………………………….19
抗生活性物質之逆向層析淨化……………………………………….19
抗生性物質對Xanthomonas axonopodis pv. vesicatoria XVT12存活之影響………………………………………………………………….20
營養因子對生長、內生孢子分化及抗生活性之影響………………….20
氮素源對生長菌量與內生孢子產生之影響………………………….20
碳素源對生長菌量與內生孢子產生之影響………………………….21
氮素源對抗生活性之影響…………………………………………….22
碳素源對抗生活性之影響…………………………………………….25
外加胺基酸對生長及內生孢子產生之影響………………………….26
不同時間點添加組胺酸對生長及內生孢子產生之影響…………….26
外加胺基酸對抗生活性之影響……………………………………….27
不同時間點添加組胺酸對BS001抗生活性之影響…………………27
桿菌屬於柑橘潰瘍病防治之應用………………………………………..27
BS001不同施用濃度對柑橘潰瘍病防治之影響………………….27
伍、討論…………………………………………………………………..29
陸、中文摘要……………………………………………………………..37
柒、英文摘要……………………………………………………………..40
捌、參考文獻……………………………………………………………..44
玖、圖表說明……………………………………………………………..54
拾、附錄…………………………………………………………………..77
倪蕙芳。1992。枯草桿菌Bacillus subtilis PB-113菌株所產生抗生物質之理化與生物特性研究。碩士論文。P1-91。
吳文川、鄭安秀、王玉如、胡建國。1995。柑橘潰瘍病及其病原菌。台灣柑橘之研究與發展研討會刊。P221-243。
謝廷芳、黃振文、張志展、彭玉湘。2001。碳氮源影響拮抗細菌防治百合灰黴病的效應。植物病理會刊。10:55-64。
鍾宜穎、吳文希。2000。利用Bacillus megaterium防治百合Rhizoctonia根腐病。植物病理會刊。9:53-58。
彭廣茜、張學君。1999。枯草芽胞桿菌生防菌株Bp產生抗菌物質的條件。貴州農業科學。27:6-9。
Asaka, O. and Shoda, M. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Applied and Environ. Microbiol. 62:4081-4085.
Baker, K. F. 1987. Evolving concepts of biological control of plant pathogens. Annu. Rev. Phytopathol. 25:67-85.
Baker, K. F. and Cook, R. J. 1974. Biological control of plant pathogens. W. H. Freeman Press, San Francisco. 433pp.
Baker, C. J., Stavely, J. R., and Mock, N. 1985. Biocontrol of bean rust by Bacillus subtilis under field conditions. Plant Dis. 69:770-772.
Baker, C. J., Stavely, J. R., Thomas, C. A., Sasser, M., and Macfall, J. S. 1983. Inhibitory effect of Bacillus subtilis on Uromyces phaseoli and on development of rust pustules on bean leaves. Phytopathology 73:1148-1152.
Bapat, S. and Shah, A. K. 2000. Biological control of fusarial wilt of pigeon pea by Bacillus brevis. Can. J. Microbiol. 46:125-132.
Bashan, Y. and Holguin, G. 1998. Proposal for the division of plant growth-promoting rhizabacteria into two classifications: biocontrol-PGPB (Plant growth-promoting bacteria) and PGPB. Soil. Biol. Biochem. 30:1225-1228.
Besson, F., Peypoux, F., Quentin, M. J., and Michel, G. 1979. Antifungal activity upon Saccharomyces cerevisiae of iturin A, mycosubtilin, bacillomycin L and of their derivatives; inhibition of this antifungal zctivity by lipid antagonists. J. Antibiotics 32:828-833.
Baumann, L. and Baumann, P. 1989. Expression in Bacillus subtilis of the 51- and 42- kilodalton mosquitocidal toxin genes of Bacillus sphaericus. Appl. Environ. Microbiol. 55:252-253.
Besson, F., Peypoux, F., Quentin, M. J., and Michel, G. 1984. Action of antifungal peptidolipids from Bacillus subtilis on the cell membrane of Saccharomyces cerevisiae. J. Antibiotics 37:172-177.
Besson, F. and Michel, G. 1986. Isolation and characterization of new iturins: iturin D and iturin E. J. Antibiotics 39:437-442.
Berger, F., Li, H., White, D., Frazer, R., and Leifert, C. 1996. Effect of pathogen inoculum, antagonist density, and plant species on biological control of Phytophthora and Pythium damping-off by Bacillus subtilis Cot1 in high-humidity fogging glasshouses. Phytopathology 86:428-433.
Bertagnolli, B. L., Soglio, F. K., and Singlair, J. B. 1996. Extracellular enzyme profiles of the fungal pathogen Rhizoctonia solani isolate 2B-12 and of two antagonist, Bacillus megaterium strain B153-2-2 and Trichoderma harzianum isolate Th008. I. Possible correlations with inhibition of growth and biocontrol. Physiol. Mol. Plant Pathol. 48:145-160.
Broadbent, P., Baker, K. F., Franks, N., and Holland, J. 1977. Effect of Bacillus spp. on increased growth of seedlings in steamed and in nontreated soil. Phytopathology 67:1027-1034.
Elad, Y., Köhl, J., and Fokkema, N. J. 1994. Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic bacteria and fungi. Eur. J. Plant Pathol. 100:315-336.
Emmert, E. A. B. and Handelsman, J. 1999. Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol. Lett. 171:1-9.
Ferreira, J. H. S., Matthee, F. N., and Thomas. A. C. 1991. Biological control of Eutypa lata on grapevine by an antagonistic strain of Bacillus subtilis. Phytopathology 81:283-287.
Fiddaman, P. J. and Rossall, S. 1993. The production of antifungal volatiles by Bacillus subtilis. J. Appl. Bacteriol. 74:119-126.
Garrett, S. D. 1965. Towards biological control of soil-borne plant pathogens. In: Ecology of Soil-borne Plant Pathogens. University of California Press, Berkeley. 571pp.
Glick, B. R. and Bashan, Y. 1997. Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol. Adv. 15:353-378.
Gueldner, R. C., Reilly, C. C., Pusey, P. L., and Costello, C. E. 1988. Isolation and identification of iturins as antifungal peptides in biological control of peach brown rot Bacillus subtilis. J. Agric. Food Chem. 36:366-370.
Gottwald, T.R., Hughes, G., Graham, J.H., Sun, X., and Riley, T. 2001. The citrus canker epidemic in Florida: the scientific basis of regulatory eradication policy for an invasive species. Phytopathology 91:30-34.
Hall. T. J. and Davis, W. E. E. 1990. Survival of Bacillus subtilis in silver and sugar maple seedlings over a two-year period. Plant Dis. 74:608-609.
Hall, T. J., Schreiber, L. R., and Leben, C. 1986. Effects of xylem-colonizing Bacillus spp. on Verticillium wilt in maples. Plant Dis. 70:521-524.
Harish, S., Manjula, K., and Podile, A. R. 1997. Fusarium udum is resistant to mycolytic activity of a biocontrol strain of Bacillus subtilis AF1. FEMS Microbiol. Ecol. 25:385-390.
Harris A. R., Siwek, K., and Wiseman, B. M. 1997. Interactions between damping-off fungi, antagonist and Capsicum seedling. Appl. Soil Ecol. 6:251-263.
Handelsman, J. and Stabb, E. V. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8:1855-1869.
He, H., Silo-Suh, L. A. Handelsman, J., and Clardy, J. 1994. Zwittermicin A, an antifungal and plant protection agent from Bacillus cereus UW85. Tetrahedron Lett. 35:2499-2502.
He, H., Shen, B., Korshalla, J., and Carter, G. T. 2001. Circulocins, new antibacterial lipopeptides from Bacillus circulans, J2154. Tetrahedron. 57:1189-1195.
Hervás, A., Landa, B., and Jiménez-Díaz, R. M. 1997. Influence of chickpea genotype and Bacillus sp. on protection from Fusarium wilt by seed treatment with nonpathogenic Fusarium oxysporum. Eur. J. Plant Pathol. 103:631-642.
Hiraoka, H., Asaka, O., Ano, T., and Shoda, M. 1992. Characterization of Bacillus subtilis RB14, coproducer of peptide antibiotics iturin A and surfactin. J. Gen. Appl. Microbiol. 38:635-640.
Imbriani, J. L. and Mankau, R. 1977. Ultrastructure of the nematode pathogen, Bacillus penetrans. J. Invertebr. Pathol. 30:337-347.
Junge, H., Krebs, B., and Kilian, M. 2001. Strain selection, production, and formation of biological plant vitality enhancing agent FEB24® Bacillus subtilis. Pflanzenschutz Nachrichten Bayer. 53:94-104.
Kajimura, Y., Sugiyama, M., and Kaneda, M. 1995. Bacillopeptins, new cyclic lipopeptide antibiotics from Bacillus subtilis FR-2. J. Antibiotics. 48:1095-1103.
Katz, E. and Demain, A. L. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol. Rev. 41:449-474.
Kim, D.S. Cook, R.J., and Weller, D.M. 1997. Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage. Phytopathology 87:551-558.
Kilian, M., Steiner, U., Krebs, B., Junge, H., Schimiedeknecht, G., and Hain, R. 2001. FEB24® Bacillus subtilis-mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz Nachrichten Bayer. 53:72-93.
Kleinkauf, H. and Döhren, H. von.. 1987. Biosynthesis of peptide antibiotics. Ann. Rev. Microbiol. 41:259-289.
Kloepper, J. W. 1991. Development of in vivo assays for prescreening antagonists of Rhizoctonia solani on cotton. Phytopathology 81:1006-1013.
Knudsen, G. R. and Spurr, H. W., Jr. 1987. Field persistence and efficacy of five bacterial preparations for control of peanut leaf spot. Plant Dis. 71:442-445.
Korsten, L., Jager, E. S. D., Villiers, E. E. D., and Kotzé J. M. 1995. Evaluation of bacterial epiphytes isolated from avocado leaf and fruit surfaces for biocontrol of avocado postharvest diseases. Plant Dis. 79:1149-1156.
Korsten, L., Villiers, E. E. D., Wehner, F. C., and Kotzé J. M. 1997. Field sprays of Bacillus subtilis and fungicides for control of preharvest fruit disease of avocado in South Africa. Plant Dis. 81:455-459.
Kousik, C. S., Sanders, D. C., and Ritchie, D. F. 1996. Mixed genotypes combined with copper sprays to manage bacterial spot of bell peppers. Phytopathology 86:502-508.
Latoud, C., Peypoux, F., and Michel, G. 1987. Action of iturin A, an antifungal antibiotic from Bacillus subtilis, on the yeast Saccharomyces cerevisiae: modifications of membrane permeability and lipid composition. J. Antibiotics 40:1588-1595.
Latoud, C., Peypoux, F., and Michel, G. 1990. Interaction of iturin A, a lipopeptide antibiotic, with Saccharomyces cerevisiae cells: influence of the sterol membrane composition. Can. J. Microbiol. 36:384-389.
Leibinger, W., Breuker, B., Hahn, M., and Mendgen, K. 1997. Control of postharvest pathogens and colonization of the apple surface by antagonistic microorganisms in the field. Phytopathology 84:1103-1110.
Leifert, C., Li, H., Chidburee, S., Hampson, S., Workman, S., Sigee, D., Epton, H. A. S., and Harbour, A. 1995. Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J. Appl. Bacteriol. 78: 97-108.
Li, H., White, D., Lamza, K. A. Berger, F., and Leifert, C. 1998. Biological control of Botrytis, Phytophthora and Pythium by Bacillus subtilis Cot1 and CL27 of micropropagated plants in high-humidity fogging glasshouses. Plant Cell Tissue Organ Cult. 52:109-112.
Liu, Z. L. and Sinclair, J. B. 1992. Population dynamics of Bacillus megaterium strain B153-2-2 in the rhizosphere of soybean. Phytopathology 82:1297-1301.
Lumsden, R. D., and Locke, J. C. 1989. Biological control of damping-off caused by Pythium ultimum and Rhizoctonia solani with Gliocladium virens in soilless mix. Phytopathology 79:361-366.
Mankau, R. 1975. Prokaryote affinities of Duboscqia pentrans Throne. J. Protozool. 21:31-34.
Mahaffee, W. F. and Backman, P. A. 1993. Effects of seed factors on spermosphere and rhizosphere colonization of cotton by Bacillus subtilis GB03. Phytopathology 83:1120-1125.
Manjula, K. and Podile, A. R. 2001. Chitin-supplemented formulations improve biocontrol and plant growth promoting efficiency of Bacillus subtilis AF1. Can. J. Microbiol. 47:618-625.
Mckeen, C. D.,Reilly, C. C., and Pusey, P. L. 1986. Production and partial characterization of antifungal substrances antagonistic to Monilinia fructicola from Bacillus subtilis. Phytopathology 76:136-139.
Nemec, S., Datnoff, L. E., and Strandberg, J. 1996. Efficacy of biocontrol agents in planting mixes to colonize plant roots and control root diseases of vegetables and citrus. Crop Prot. 15:735-742.
Nicholson. W. L., Munakata, N., Horneck, G., Melosh, H. J., and Setlow, P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64:548-572.
Ohno, A., Ano, T., and Shoda, M. 1995. Effect of Temperature on production of lipopeptide antibiotics, iturin A and surfactin by a dual producer, Bacillus subtilis RB14, in solid-state fermentation. J. Ferment. Bioeng. 80:517-519.
Osburn, R. M., Milner, J. L., Oplinger, E. S., Smith, R. S., and Handelsman, J. 1995. Effect of Bacillus cereus UW85 on the yield of soybean at two field sites in Wisconsin. Plant Dis. 79:551-556.
Peypoux, F., Guinand M., Michel, G., Delcambe, L. Das, B. C., and Lederer E. 1978. Structure of iturine A, a peptidolipid antibiotics from Bacillus subtilis. Biochemistry 17:3992-3996.
Phae, C. and Shoda M. 1991. Investigation of optimal conditions for foam separation of iturin, an antifungal peptide produced by Bacillus subtilis. J. Ferment. Bioeng. 71:118-121.
Pleban, S. Ingel, F., and Chet, I. 1995. Control of Rhizoctonia solani and Sclerotium rolfsii in the greenhouse using endophytic Bacillus spp.. Eur. J. Plant Pathol. 101:665-672.
Podile, A. R. and Prakash, A. P. 1996. Lysis and biological control of Aspergillus niger by Bacillus subtilis AF1. Can. J. Microbiol. 42:533-538.
Priest, F. G. 1993. Systematics and ecology of Bacillus. In: Sonensheine, A. L., Koch, J. A.,and Losick, R. (eds). Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society of Microbiology, Washington. 3-16pp.
Pusey, P. L. 1986. Compatibility of Bacillus subtilis for postharvest control of peach brown rot with commercial fruit waxes, dicloran, and cold-storage conditions. Plant Dis. 70:587-590.
Pusey, P. L. 1999.Effect of nectar on microbial antagonists evaluated for use in control of fire blight of pome fruits. Phytopathology 89:39-46.
Pusey, P. L., Hotchkiss, M. W., Dulmage, H. T., Baumgardner, R. A., Zehr, E. I., Reilly, C. C., and Wilson, C. L. 1988. Pilot tests for commercial production and application of Bacillus subtilis (B-3) for postharvest control of peach brown rot. Plant Dis. 72:622-626.
Raupach, G. S. and Kloepper, J. W. 1998. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology.88:1158-1164.
Ryder, M. H., Yan, Z., Terrace, T. E., Rovira, A. D., Tang, W., and Correll, R. L. 1999. Use of strains of Bacillus isolated in China to suppress take-all and rhizoctonia root rot, and promote seedling growth of glasshouse-grown wheat in Australian soils. Soil Biol. Biochem. 31:19-29.
Rytter, J. L., Lukezic, F. L., Craig, R., and Moorman, G. W. 1989. Biological control of Geranium rust by Bacillus subtilis. Phytopathology 79:367-370.
Sailaja, P. R., Podile, A. R., and Rsddanna, P. 1997. Biocontrol strain of Bacillus subtilis AF1 rapidly induces lipoxygenase in groundnut (Arachis hypogaea L.) compared to crown rot pathogen Aspergillus niger. Eur J. Plant Pathol. 104:125-132.
Seifert, K. A., Hamilton, W. E., Breuil, C., and Best, M. 1987. Evaluation of Bacillus subtilis C186 as a potential biological control of sapstain and mould on unseasoned lumber. Can. J. Microbiol. 33:1102-1107.
Sharga, B. M. 1997. Bacillus isolates as potential biocontrol agents against chocolate spot on faba beans. Can. J. Microbiol. 43:915-924.
Sharga, B. M. and Lyon, G. D. 1998. Bacillus subtilis BS107 as an antagonist of potato blackleg and soft rot bacteria. Can. J. Microbiol. 44:777-783.
Shishido, M., Breuil, C., and Chanway, C. P. 1999. Endophytic colonization of spruce by plant growth-promoting rhizobacteria. FEMS Microbiol. Ecol.. 29:191-196.
Sholberg, P. L., Marchi, A., and Bechard, J. 1995. Biocontrol of postharvest disease of apple using Bacillus spp. isolated from stored apples. Can. J. Microbiol. 41:247-252.
Siddiqui. Z. A. and Mahmood, I. 1999. Role of bacteria in the management of plant parasitic nematodes: a review. Bioresour. Technol. 69:167-179.
Simonen, M. and Palva, I. 1993. Protein secretion in Bacillus species. Microbiol. Rev. 57:109-137.
Silo-Suh, L. A., Lethbrige, B. J., Raffel, S. J., He, H., Clardy, J., and Handelsman, J. 1994. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl. Environ. Microbiol. 60:2023-2030.
Slepecky, R. A. and Hemphill, H. E. 1992. The genus Bacillus-nonmedial. In: Albert, B. (eds.) The Prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. Springer-Verlag, New York.
Smith, K. P., Havey, M. J., and Handelsman, J. 1993. Suppression of cottony leak of cucumber with Bacillus cereus strain UW85. Plant Dis. 77:139-142.
Sneath, P. H. A., Mair, M. E., Holt, I. G. Willian & Wilkins, 1986, Bergey’s Manual of Systematic Bacteriology, Vol. 2, Ed. Baltimore.
Sonenshein, A. L. 2000. Control of sporulation initiation in Bacillus subtilis. Curr. Opin. Microbiol. 3:561-566.
Thimon, L., Peypoux, F., Wallach, J., and Michel, G. 1995. Effect of the lipopeptide antibiotic, iturin A, on morphology and membrane ultrastructure of yeast cells. FEMS Microbiol. Lett. 128:101-106.
Tokuda, Y., Ano, T., and Shoda, M. 1993. Survival of Bacillus subtilis NB22, an antifungal-antibiotic iturin producer, and its transformant in soil-systems. J. Ferment. Bioeng. 75:107-111.
Utkhede, R. S. and Rane, J. E. 1983. Interactions of antagonist pathogen in biological control of onion white rot. Phytopathology 73:890-893.
Utkhede, R. S. and Sholberg, P. L. 1986. In vitro inhibition of plant pathogens by Bacillus subtilis and Enterobacter aerogens and in vivo control of two postharvest cherry disease. Can. J. Microbiol. 32:963-967.
Vaughan, D., Jones, D., and Ord, B. G. 1993. Amelioration by Volutella ciliata of the phytotoxicity of vanillic acid towards the growth of Pisum sativum L. Soil Biol. Biochem. 25:11-17.
Walker, R. Powell, A. A., and Seddon, B. 1998. Bacillus isolates from the spermosphere of peas and dwarf French beans with antifungal activity against Botrytis cinerea and Pythium species. J. Appl. Microbiol. 84:791-801.
Wei, G., Klopper, J. W., and Tuzun, S. 1996. Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology 86:221-224.
Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52:487-511.
Wuytack, E. Y., Soons, J., Poschet, F., and Michiels, C. W. 2000. Comparative study of pressure- and nutrients-induced germination of Bacillus subtilis spores. Appl. Environ. Microbiol. 66:257-261.
Zheng, X. Y. and Sinclaur J. B. 1996. Screening and isolation of mutants of Bacillus megaterium B153-2-2 for motility, chemotaxis, antagonism, and sporulation. Physiol. Mol. Plant Pathol. 48:233-244.
Zuber, P., Nakano, M. M., and Marahiel, M. A. 1993. Peptide antibiotics. In: Sonensheine, A. L., Koch, J. A., Losick, R. (eds). Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society of Microbiology, Washington. 897-916pp.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔