跳到主要內容

臺灣博碩士論文加值系統

(54.92.164.9) 您好!臺灣時間:2022/01/23 04:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐鎮暉
研究生(外文):Jen-Huei Shiu
論文名稱:台灣二葉松與台灣雲杉光合作用及相關生理特性之季節變化
論文名稱(外文):Seasonal Variation on Photosynthesis And Related Physiological Characteristics of Pinus taiwanensis And Picea morrisonicola
指導教授:翁仁憲翁仁憲引用關係
指導教授(外文):Jen-Hsien Weng
學位類別:碩士
校院名稱:國立中興大學
系所名稱:植物學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:75
中文關鍵詞:台灣雲杉台灣二葉松葉綠素螢光海拔季節形成層溫度降雨
外文關鍵詞:Picea morrosonicolaPinus Taiwanensischlorophyll fluorescenceelevationseasoncambialtemperatuerrailfall
相關次數:
  • 被引用被引用:8
  • 點閱點閱:2349
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
摘要
為了解生長於亞熱帶高、低海拔針葉樹光合作用之季節變化,及縱向生長和橫向生長時期差異,並探討光合產物於不同季節之累積及利用情形,以生長在塔塔地區台灣雲杉、台灣二葉松及惠蓀林場之台灣二葉松為材料進行數年之實驗,茲將結果摘要於後。
在塔塔地區之台灣雲杉,其光合能力在暮春經夏秋至初冬期間均能維持較高之水準,然後隨溫度下降而逐漸低下,入春後又漸次恢愎,此變動與葉綠素螢光(Fv/Fm)及可溶性蛋白質之含量有密切關係。
台灣二葉松葉綠素螢光之季節變化雖如台灣雲杉,在初冬才會下降,但因針葉老化之緣故,導致其光合作用能力在入秋後即開始降低。惠蓀林場之台灣二葉松其Fv/Fm之季節變化不大,而光合作用能力則隨降雨量多寡而變化,與氣溫變化沒有顯著之關係。
惠蓀地區之台灣二葉松在3月時萌芽且形成層細胞開始分裂,塔塔加地區之台灣二葉松及台灣雲杉萌芽時期及形成層細胞分裂在4月時才開始,造成兩地生育期之不同可能是由於溫度及降雨差異所造成。在冬季塔塔地區可能為適應低溫,而惠蓀林場則可能為適應缺水環境,兩地之植物體內之可溶性糖類均有明顯增加之趨勢。在3、4月萌芽期植物體內澱粉含量會上升,此時若光合作用能力強時則可溶性糖不會降低,若光合作用能力因低溫及缺水而降低時,則植物會將可溶性糖類轉換為澱粉。
以上結果顯示,在塔塔加地區之台灣雲杉、台灣二葉松及惠蓀地區之台灣二葉松其光合能力之季節變化,碳水化合物之累積利用、萌芽及形成層細胞之分裂之差異主要受到溫度變化及降雨量之影響。
Summary
The purpose of this study is to explore the seasonal variations of photosynthesis and related physiological characteristics of conifers in high and low elevation of subtropical Taiwan. Picca morrisonicola and pinus taiwanensis were used as materials.
It was observed from that the photosynthesis and chlorophyll fluorescence of Picea morrosonicola in Takata Area had been maintained a higher level from late spring to early winter. Then decreased with temperature decreasing in winter and recovered with temperatuer increased. Pinus Taiwanensis was as same as Picea morrisonicola in winter but the decrease of its photosynthesis effectiveness was early than that of Picea morrisonicola. The seasonal variation on chlorophyll fluorescence of Pinus Taiwanensis could not be seen in Hung-sun Area , but which variation of capacity in different seasons were related to rainfall.
The flush and cambial division of Pinus Taiwanesis in Hung-sun Area usually begins in March, on the contrary which was begins in April in both Picea Morrisonicola and Pinus Taiwanesis in Taketa Area. This difference might be due to the differences in temperature and rainfall of the Hung-sun and Takaka Areas. It also observed that the seasonal variation of carbohydrat and sugar were relate to the seasonal of flush and cambinal division as well as temperatuer and rainfall.
It was concluded that, the accumulation and utilization of carbohydrate, the discrepancy of flush and cambial division, and the efficiency of photosynthesis, of Pinus Taiwanensis and Picea morrisonicola in both Takaka and Hung-sun Areas, all closely linked with the factors such as the changes of temperature and rainfall in the specific sections they exist.
目錄
摘要..........................................................................................................Ⅰ英文摘要...................................................................................................Ⅱ
一、 前言..............................................................................................1
二、 前人研究......................................................................................2
三、 材料與方法................................................................................11
(一)實驗材料...............................................................................11
(二)實驗方法...............................................................................12
1.光合速率測定...................................................................12
2.葉綠素螢光測定...............................................................13
3.可溶性蛋白質...................................................................13
4.葉片色素含量...................................................................13
5.可溶性醣及澱粉測定.......................................................14
6.生長發育之記錄及形成層之採取、埋臘切片與光學顯微鏡的觀察..........................................................................15
四、 結果............................................................................................16
(一)氣候及氣象條件...................................................................16
(二)光合能力、葉綠素螢光及可溶性蛋白質之季節變化.......20
(三)葉綠素含量變化...................................................................25
(四)碳水化合物含量之季節變化...............................................35
(五)生長發育...............................................................................38
五、 討論............................................................................................49
(一)光合速率之季節變化...........................................................49
(二)生長特性...............................................................................60
(三)碳水化合物...........................................................................63
六、引用文獻..........................................................................................66
六、引用文獻
孫國笏2000. 塔塔加地區五種優勢植物光合作用及相關生理特性之研究。國立中興大學植物所碩士論文。
徐邦達2002. 葉綠素螢光和PAM螢光儀:原理及測量。光合作用研討會。
黃博富2000. 不同葉色芥藍菜品種之光合作用特性及硝酸態氮含量。國立中興大學植物所碩士論文。
鐘基啟2001. 不同環境條件下植物葉片光譜反射及葉綠素螢光特性之研究。中興大學植物所碩士論文。
Amundson, R. G., J. L. Hadley, J. F. Fincher, S. Fellows, R. G. Alscher. 1992. Comparisons of seasonal changes in photosynthetic capacity, pigments, and carbohydrates of healthy saplong and mature red spruce and of declining and healthy red spruce. Can. J. For. Res. 22:1605-1616.
Amundson, R. G., R. F. Kohut. and J. A. Laurence. 1995. Influence of foliar N on foliar soluble sugars and starch of red spruce saplings exposed to ambient and elevated ozone. Tree Physiol. 15:167-174.
Arnon, N., M. Allen. and F. Whatley. 1954. Photosynthesis by isolated chlorplasts. Nature 174:494.
Barcikowski, A. 1996. Biomass and chlorophyll of photosynthesizing organs of plant communities in secondary successioin in pine forest habitat. Photosynthetica 32:63-76.
Bergmeyer, H. U. 1983. Methods for protein determination in methods of enzymatic analysis 3rd edition vol Ⅱ- samples reagents assessment of results pp:84-99. Verlag Chemie Weinheim.
Borchert, R. 1999. Climatic periodicity, phenology and cambium activity in tropical dry forest trees. IAWA. J. 20(3):239-247.
Bravdo, B. and J.E. Pallas. 1982. Photosynthesis, photorespiration and RuBP carboxylase/oxygenase activity in selected peanut genotypes. Photosynthetica 16:36-42.
Bruggemann, W., V-D. Kooij. Taw. and PR-V. Hasselt. 1992. Long-term chilling of young tomato plant under low light and subsequent recoverry. Ⅱ. Chlorophyll fluorescence, carbon metabolism and activity of ribulose-1,5-bisphosphate carboxylase/oxygenase. Planta 186:179-187.
Castonguay, Y. and P. Nadeau. 1998. Enzymatic control of soluble carbohydrate accumulation in cold-acclimated crowns of alfalfa. Crop Sci. 38:1183-1189.
Chomba, B. M., D. Robert. and G. Harold. 1993. Carbohydrate reserve accumulation and depletion in engelmann sprue(Picea engelmannii parry) : effects of cold storage and pre-storage CO2 enrichment. Tree Physiol. 13:351-574.
Demming-Adams, B. and W. W. Adams. 1996. The role of xanyhophyll cycle carotenoids in the protection of photosynthesis. Trend in Plant Sci. 1:21-26.
Egger, B., W. Einig, A. Schlereth, T. Wallenda, E. Magel, A. Loewe. and H. Rudiger. 1996. Carbohydrate metabolism in one and two-year-old spruce needles, and stem carbohydrates from three months before until three months after bud break. Physiol. Plant. 96:91-100.
Ekramoddoullah, K. M. and D. W. Taylor. 1996. Seasonal variation of western white pine(Pinus monticola D.Don) foliage proteins. Plant Cell Physiol. 37(2):189-199.
Fincher, J. and R.G. Alscher. 1992. The effect of long-term ozone exposure on injury in seedlings of red spruce (Picea rubens Sarg.). New Phytol. 120:49-59.
Friedrech, J.W. and R. C. Haffaker. 1980. Photosynthesis, leaf resistances, and ribulose-1.5-biphosphate carboxylase degradation in senescing barley leaves. Plant Physiol. 65:1103-1107.
Gezelius, K. and M. Hallen. 1980. Seasonal variation in ribulose bisphosphate activity in Pinus sylvestris. Physiol. Plant. 48:88-98.
Gilmore, A. M., T. L. Hazlett. and Govindjee. 1995. Xanthophyll cycle-dependent quenching of photosystem Ⅱ chlorophyll a fluoresscence: Formation of of a quenching complex with a short fluorescence lifetime. Proc Natl Acad Sci, USA. pp. 2273-2277.
Goldstein, G., F. Rada. and A. Azocar 1985. Cold hardiness and super-cooling along and altitudinal gradient in andean giant rosette species. Oecologia 68:147-152.
Gratani, L., P. Pesoli. and M. F. Crescente. 1998. Relationship between photosynthetic activity chlorobhyll content in an isolated Quercus ilex L. tree during the year. Photosynthetica 35:445-451.
Haldimann, P. 1998. Low growth temperature-induced changes to pigment composition and photosynthesis in Zea mays genotypes differing in chilling sensitivity. Plant Cell Environ. 21:200-208.
Hauch, S. and E. Magel. 1998. Extractable activities and protein content of sucrose-phosphate synthase, sucrose synthase and neutral invertase in trunk tissues of Robinia pseudoacacia L. are related to cambial wood production and heartwood formation. Planta 207:266-274.
Hurry, V. M., A. Strand, M. Tobiaeson, P. Gardestrom. and G. Oquist. 1995. Cold hardening of spring and winter wheat and rqpe results in differential effects on growth, carbon metabolism, and carbohydrate content. Plant Physiol. 109:697-706.
Jach, M. E. and R. Ceulemans. 1999. Effects of elevated atmospheric co2 on phenology, growth and crown structure of scots pine (Pinus sylvestris) seedings after two years of exposure in the field. Tree Physiology. 19:289-300.
Kao, W. Y., T. T. Tsai. and W. H. Chen. 1998. A comparative study of Misccanthus floridulus (labill) Warb and M. Transmorrisonensis Hayata: photosynethetic gas exchange, leaf characteristics and growth in controlled evnironments. Ann. of Bot. 81:295-299.
Kozlowski, T. T. and S. G. Pallardy. 1997. Physiology of woody plants. 2nd pp.104-115.
Lachaud, S., A. M. Catesson. and J. L. Bonnemain. 1999. Structure and functions of the vascular cambium. C. R. Acad. Sci. 322(8):633-650.
Law, R. D. and S. J. Crafts-Brandner. 1999. Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol. 120:173-181.
Lebourgeois, F. 2000. Climatic signals in earlywood, latewood and total ring width of corsican pine from western France. Ann. For. Sci. 57:155-164.
Leishman, M. R., L. Hughes, K. French, D. Armstrong. and M. Wewtoby. 1992. Seed and seedling biology in relation to modeling modeling vegetation dynamics under global climate chage. Aust. J. Bot. 40:599-613.
Li, X., Y. Feng. and L. Boersma. 1993. Comparison of osmotic adjustment responses to water and temperature stresses in spring wheat and subangrass. Ann. Bot. 71:303-310.
Lin, C. H. and M. F. George. 1998. The effects of intracellular solute concentration on freezing avoidance by supercooling- a theoretical freezing model for woody plant cells. Q. J. Chin. For. 31(2):131-140.
Lundmark, T., J. Burgh, M. Strand. and A. Koppel. 1998. Seasonal variation of maximum photochemical efficiency in boreal Norway spruce stands. Trees 13:63-67.
Lundmark, T., J. E. Hallgren. and J. Haden. 1988. Recovery from winter depression of photosynthesis in pine and spruce. Trees 2:110-114.
Manuel, N., G. Cornic, S. Aubert, P. Choler, R. Bligny. and U. Herber. 1999. Protection against photoinhibition in the alpine plnat geum montanum. Oecologia 119:149-158.
Martin, B. and D. R. Ort. 1985. The recovery of photosynthesis in tomato subsequent to chilling exposure. Photosyn. Res. 6:121-132.
Maxwell, K. and G. N. Johnson. 2000. Chlorophll fluorescence-a practical guide. J. Exp. Bot. 51(345):659-668.
Meletiou-Christou, M. S., G. P. Banilas. and S. Diamantoglou. 1998. Seasonal trends in evergy contents and storage substances of the mediterranean species Dittrichia viscosa and thymelaea tartonraira. Environ. Exp. Bot. 39:21-32.
Meletiou-Christou, M. S., S. Rhizopoulou. and S. Diamantoglou. 1994. Seasonal changes of carbohydrates, lipids and nitrogen content in sun and shade leaves from four meiterranean evergreen sclerophylls. Environ. Exp. Bot. 34(2):129-140.
Mellerowicz, E. J., R. T. Riding. and C. H. A. Little. 1993. Nucleolar activity the fusiform cambial cells of abies balsamea(Pinaceae): effect of season and age. Am. J. Bon. 80(10):1168-1174.
Moren, A. S. and A. Lindroth. 2000. CO2 exchange at the floor of a boreal forest. Agricultural and For. Meteorology 101:1-14.
Muthuchelian, K. 1992. Biomass productivity relative to net photosynthetic rate, ribulose-1,5-biophosphate carboxylase activity, soluble protein and nitrogen contents in ten tree species. Photosynthetica 26:333-339.
Naidu, C. V. and P. M. Swamy, 1995. Seasonal variation in ribulose 1,5-bis-phosphate carbohydrate activity, soluble protein and nitrogen contents in ten tree species. Photosynthetica 26:333-339.
Naidu, C.V. and P.M. Swamy. 1995. Seasonal variation in ribulose 1,5-bisphosphate carboxylase activity and its relationship with leaf protein content and net photosynthetic rate in tropical deciduous tree species. Photosynthetica 31:85-90.
Öquist, G. 1986. Effect of winter stress on chlorophyll organization and function in Scots pine. J. Plant Physiol. 1202:169-179.
Öquist, G. and M. Strand. 1986. Effects of frost hardening on photosynthetic quantum yield, chlorophyll organization, and energy distribution between the two photo systems in Scots pine. Can. J. Bot. 64: 748-753.
Öquist, G., D.H. Greer. and E. Ögreen. 1987. Light stress at low temperature. In: Topics in photosynthesis. Vol. 9. Eds. Kyle, D.J., C.B. Ormond and C.J. Anthem. Leerier Amsterdam. pp. 67-87.
Oribe, Y. and T. Kubo. 1997. Effect of heat on cambial reactivation during winter dormancy in evergreen and deciduous conifers. Tree Physiol. 17:81-87.
Oribe, Y., R. Funada, M. Shibagaki. and T. Kubo. 2001. Cambial reactivationin locally heated stems of the evergreen conifer Abies sachalinensis(Schmidt) masters. Planta 212:684-691.
Ottader, C., D. Campbell. and G. Oquist. 1995. Seasonal changes in potosystem II organization and pigment compostition in pinus sylvestris. Planta 197:176-183.
Ottander, C. and G. Öquist. 1991. Recovery of photosynthesis in winter-stressed Scots pine. Plant cell Environ. 14:345-349.
Ottander, C., D. Campbell. and G. Oquist. 1995. Seasonal changes in photosystem II organization and pigment composition in Pinus sylvestris. Planta 197: 176-183.
Pankovic, M., Z. Sakac, S. Kevresan, M. Plesnicar. 1999. Acclimation to long-term water deficit in the leaves of two sunflower hybrids: photosyntesis, electron transport and carbon metabolism. J. Exp. Bot. 50:127-138.
Patterson, D. T., J.A. Bounce, R.S. Alberta. and E.V. Oldenburg. 1977. Photosynthesis in relation to leaf characteristics of cotton from controlled and field environments. Plant Physiol. 59:384-387.
Peisker, M. and I. Ticha. 1991. Effects of chillingon CO2 gas exchange in two cultivars of phaseolus vulgaris. L. J. Plant Physiol. 138:12-16.
Priya, P. B. and K. M. Bhat. 1999. Influence of rainfall, irrigation and age on the growth periodicity and wood structure in teak (Tectona grandis). IAWA. J. 20(2):181-192.
Rajendrudu, G., G. Mallikarjuna, B. Rooseveltbabu. and A. Prasada-Rao 1996. Net photosynthesis, foliar dark respiration and dry matter production in Cleome gynandra, a C4 diaheliotropic plant grown under low and full daylight. Photosynthetica 32(2):245-254.
Rao, K. S. and K. S. Rajput. 1999. Seasonal behaviour of vascular cambium in teak (Tectona grandis) growing in moist deciduous and dry deciduous forests. IAWA. J. 20(1):85-93.
Richardson, A. D. and G. P. Berlyn. 2002. Spectral reflectance and photosynthetic properties of Betula papyrifera (Betulaceae) leaves along an elevational gradient on Mt. Mansfield, Vermont, USA. Am. J. Bot. 89: 88-94.
Richardson, A. D., G. P. Berlyn. and T. G. Gregoire. 2001. Spectral reflectance of Picea rubens (Pinaceae) and Abies balsamea (Pinaceae) needles along an elevational gradient, Mt. Moosilauke, New Hampshire, USA. Am. J. Bot. 88: 667-676.
Royce, E. B. and M. G. Barbour. 2001. Mediterranean climate effects.II. Conifer growth phenology across a sierra nevada ecotone. Am. J. Bot. 88(5):919-932.
Savidge, R. A. 1991. Seasonal cambial activity in Larix laricina saplingsin relation to endogenous indol-3-ylacetic acid, sucrose, and conifer. For. Sci. 37(3):953-958.
Savidge, R. A. 2000. Intrinsic regulation of cambial growth. J. Plant Growth Regul. 20:52-77.
Savidge, R. A. and J. R. Barnett. 1993. Protoplasmic changes in cambial cells induced by a tracheid-differentiation factor from pine needles. J. Exp. Bot. 44:(259):395-405.
Savitch, L. V., G. R. Gray. and N. P. A. Huner. 1997. Feedback-limited photosynthesis and regulation of sucrose-starch accumulation during cold acclimation and low-temperature stress in a spring and winter wheat. Planta 20:18-26.
Schaberg, P. G., M. C. Snyder, J. B. Shane. and J. R. Donnelly. 2000. Seasonal patterns of carbohydrate reserves in red spruce seedlings. Tree Physiol. 20:549-555.
Schaberg, P.G., J.B. Shane, P.F. Cal, J.R. Donnelly. and G.R. Strobes. 1998. Photosynthetic capacity of red spruce during winter. Tree Physiol. 18: 271-276.
Schaberg, P.G., R.C. Wilkinson, J.B. Shane, J.R. Donnelly. and P.F. Cal. 1995. Winter photosynthesis of red spruce from three Vermont seed sources. Tree Physiol. 15: 345-350.
Strand, M. and G. Quits. 1985. Inhibition of photosynthesis by freezing temperature and high light levels in cold-acclimated seedlings of Scots pine (Pinus sylvestris). Ⅱ. Effects on chlorophyll fluorescence at room temperature and 77K. Physiol. Plant. 65:117-123.
Strand, M. and G. Quits. 1988. Effects of frost hardening, deadening and freezing stress on in vivo chlorophyll fluorescence of Scots pine seedlings (Pinus sylvestris L.). Plant Cell Environ. 11:231-238.
Strand, M. and T. Lundmark. 1995. Recovery of photosynthesis in 1-year-old needles of unfertilized and fertilized Norway spruce (Picea abides (L.) Karts.) during spring. Tree Physiol. 15:151-158.
Streb, P., W. Shan, J. Federated and R. Bilgy. 1998. Divergent strategies of photoprotection in high-mountain plants. Plantarum 207:313-324.
Taiz, L. and E. Zeiger 1998. Plant Physiology. 2nd ed. Benjamin/Cummings Publisher. New York. pp:234-238.
Tewari. A. K. and B. C. Tripathy, 1998. Temperatuer stress induced imparirmene of chlorophyll biosynthetic ractions in cucubmer and wheae. Plant. Physiol. 117:851-858.
Tognetti, R., G. Minotta, S. Pinzauti, M. Michelozzi. and M. Borhetti. 1998. Acclimation to changing light conditions of long-term shade-grown beech(Fagus sylvatica L.) seedings of different geographic origins. Trees 12:326-333.
Uggla, C., E. Magle, T. Moritz. and B. Sundberg. 2001. Function and dynamics of auxin and carbohydrate during earlywood/latewood transition in scots pine. Plant Physiol. 125:2029-2039.
Vogg, G., R. Heim, J. Hansen, C. Schafer and E. Beck. 1998. Frost hardening and photosynthetic performance of Scots pine (Pinus sylvestris L.) needles. I. Seasonal changes in the photosynthetic apparatus and its function. Plantarum 204: 193-200.
Weng, J. H. and. Hsu, F. H. 2001. Gas exchange and epidermal characteristics of Miscanthus populations in Taiwan varying with habitats and nitrogen application. Photosynthetica 39: 35-41.
Weng, J.H. and C.Y. Chen. 1987. Differences between India and Japonica rice varieties in CO2 exchange rates in response to leaf nitrogen and temperature. Photosynth. Res. 14: 171-178.
Wilson, J. W., P. M. Wilson-Warren. 1991. Effects of auxin concentration on the dimensions and patterns of tracheary elements differentiating in pith explants. Ann. Bot. 68:463-467.
Wiser, G. 1997. Carbon dioxide gas exchange of cumbrance pine (Pinus cembra) at the alpine timberline during winter. Tree Physiol. 17:473-477.
Worbes, M. 1999. Annual growth rings, rainfall-dependent grwth and long-term growth patterns of tropical trees from the caparo forest reserve in venexuela. J. Eco. 87:391-403.
Yoshida, M., J. Abe, M. Moriyama. and T. Kowabara, 1998. Carbohydrate levels among winter wheat cultiuars varying in fresszing tderance and snow mold resistance during autumn and winter. Physiol. Plantarum 103:8-16.
Yoshie, F., H. Nakashima, H. Arai. and S. Kawano. 1994. Seasonal changes in nitrogen fractions of Coptis japonica, a temperate forest evergreen chamaephyte, and their ecological implications. Ann. Bot. 74:217-226.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊