(3.231.166.56) 您好!臺灣時間:2021/03/08 11:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王家麒
研究生(外文):Wang Chia-Chi
論文名稱:受質專一性和鉀離子濃度對嗜鹽性甲烷古生菌相容質甜菜鹼生合成酵素的影響
論文名稱(外文):Substrate and Potassium Effects on Osmolyte Betaine Synthesizing Enzyme — Glycine Sarcosine N, N-dimethylglycine Methyltransferase from Methanohalophilus portucalensis strain FDF1
指導教授:賴美津
學位類別:碩士
校院名稱:國立中興大學
系所名稱:植物學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:105
中文關鍵詞:古生菌甜菜鹼GSDMT
相關次數:
  • 被引用被引用:8
  • 點閱點閱:2140
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
嗜鹽性甲烷古生菌Methanohalophilus portucalensis是一株可生長在高鹽環境的太古生物,會利用在胞內大量累積甜菜鹼 (glycine betaine)作為相容質 (compatible solutes)來對抗外在的高滲透壓環境。NMR的分析及in vivo和in vitro的相容質甜菜鹼生合成實驗,已證實嗜鹽性甲烷古生菌以S-adenosyl-L- methionine (SAM)為甲基提供者,利用甲基化glycine的方式進行相容質甜菜鹼的生合成。將嗜鹽性甲烷古生菌M. portucalensis strain FDF1的細胞粗萃取液以DEAE-Sephacel陰離子交換樹脂進行純化後,得到一具有能將glycine甲基化成sarcosine活性的glycine N-methyltransferase (GNMT, EC 2.1.1.20)。進一步測試嗜鹽性甲烷古生菌的GNMT的受質專一性時發現,亦具有將sarcosine和dimethylglycine分別甲基化生成dimethylglycine和 glycine betaine的活性,較高等生物及高鹽細菌的GNMT具有較廣的受質使用性。此GNMT會受到鈉和鉀離子濃度不同影響其甲基轉移的能力,生成不同的甲基化產物。在高鉀離子濃度 (800 mM)時傾向生成glycine betaine,低鉀離子濃度 (400 mM)時則傾向生成sarcosine,而鈉離子在高低濃度時則有相反結果。利用2-D電泳及PBE 94 chromatofocusing column可將此嗜鹽性甲烷古生菌的GNMT分為四個分子量相似 (52 kDa),但pI值分別為4.4、5.0、5.2和4.8的胜肽,分別命名為α、β、γ和δ。其中α具有較低的glycine sarcosine dimethylglycine N-methyltransferase (GSDMT)活性,β則具有較高的活性,而γ則僅具有sarcosine dimethylglycine N-methyltransferase (SDMT)的活性。同時α蛋白的GSDMT酵素活性亦受到鉀離子濃度的調控,在低鉀濃度 (≤ 0.4 M)具有較高活性,而γ蛋白的SDMT酵素活性卻只在高鉀濃度時具有較高活性。
Abstract
Methanohalophilus portucalensis FDF1 can de novo synthesize and accumulate glycine betaine through threefold methylation of glycine as compatible solutes to overcome the osmotic stress. The activity of glycine N-methyltransferase (GNMT) which formed sarcosine by transferring the methyl group from S-adenosyl-L- methionine (SAM) to glycine was detected by radiometric methods in extracts of M. portucalensis FDF1. The cell extract with GNMT activity was further purified by DEAE-Sephacel ion chromatograph with a 0.1~0.5 M potassium (step or linear) gradient. In addition to the transfer of methyl group from SAM to glycine, experimental results also showed that the GNMT of strain FDF1 was able to transfer the methyl group to sarcosine and N, N-dimethylglycine. GNMT methyltransferring activities on different substrate were effectted by different concentrations of sodium and potassium ions. By 2-D gel and PBE 94 chromatofocusing column, GNMT was further separated into four non-identical subunits (α, β, γ and δ). They have the same molecular weights (52 kDa) and different pI values of 4.4, 5.0, 5.2 and 4.8, respectively. Both the α and β subunits posses the glycine sarcosine N, N-dimethylglycine N-methyltransferase (GSDMT) activity, while the γ subunits only demonstrated the sarcosine N, N-dimethylglycine N-methyltransferase (SNMT) activity. The activities of methyltransferases were regulated by potassium concentrations; the optimal concentration of α, β subunits were around and below 0.4 M, whereas γ subunit was around 0.8 M.
目錄
中文摘要 Ⅰ
英文摘要 Ⅱ
表目錄 Ⅵ圖目錄 Ⅶ
壹、前言 1
貳、前人研究 3
一、相容質 3
1.相容質的種類和特性 4
2.滲透壓調節 5
3.相容質累積 8
二、嗜鹽性甲烷古生菌相容質 9
三、相容質glycine betaine 11
1. Glycine betaine的功能 11
2. Glycine betaine的生合成途徑 12
3. Glycine betaine的生合成調控因子 14
4. Glycine betaine自體生合成酵素和GNMT 15
四、SAH對N-methyltransferase的抑制作用 19
五、嗜鹽性蛋白的結構與特性 20
參、材料與方法
一、菌種 22
二、配置含12 % NaCl的無氧培養液H-P medium 22
三、厭氧接菌與菌體生長 24
四、厭氧細胞萃取液的製備 25
五、蛋白質定量 26
六、管柱層析分離GSDMT 26
七、濃縮蛋白質溶液 30
八、酵素蛋白的保存 31
九、蛋白質電泳 31
十、二維電泳分析 (2-D Electrophoresis) 34
十一、銀染色法 (Silver staining) 35
十二、N-methyltransferase酵素活性分析 36
十三、核酸分析技術 40
十四、聚合酶連鎖反應(Polymerase chain reaction, PCR) 43
十五、GSDMT基因的選殖 45
十六、蛋白質轉印(Protein blotting) 48
肆、結果與討論
一、純化相容質甜菜鹼生合成酵素 51
1.陰離子交換樹脂DEAE-Sephacel純化GNMT (P5) 51
2.以膠體層析Superose 12 column再純化P5蛋白 53
3.利用Native gel和SDS-PAGE電泳分析P5蛋白 54
4.二維電泳 (2-D gel)分析P5 55
5. Chromatofocusing樹脂PBE 94分析 56
6. Chymotrypsin處理與N端胺基酸定序 57
7.蛋白純化效率 58
8.甜菜鹼生合成酵素蛋白結構探討 59
9.酵素穩定性 59
二、受質專一性測試 60
1. M. portucalensis FDF1 P5的受質專一性 60
2. M. portucalensis FDF1 α、β和γ的受質專一性 62
三、P5受質濃度測試 63
四、鉀離子對甜菜鹼生合成酵素活性的影響 64
1.鉀離子濃度對M. portucalensis FDF1 P5的影響 65
2.鉀離子濃度對M. portucalensis FDF1α、β和γ的影響 65
五、鈉離子對甜菜鹼生合成酵素活性的影響 66
六、反應時間對甜菜鹼生合成酵素活性的影響 67
七、GSDMT的基因分析 68
伍、結論 69
陸、表與圖 71
柒、參考文獻 94
表目錄
Table 1. Methyltransfer activities of P5 from M. portucalensis assayed with the
TLC phenol-water system and acid-washed charcoal methods. 72
Table 2. The yield and activity of GNMT purified from M. portucalensis strain
FDF1. 73
圖目錄
Figure 1. The fate of compatible solutes in the halophilic methanogens. 74
Figure 2. N-methylamine separation in betaine formation assays under a
TLC phenol-water system. 75
Figure 3. Purification of P5 from M. portucalensis strain FDF1 by DEAE-
Sephacel chromatography with KCl step gradient. 76
Figure 4. Gel electrophoresis of P5 from the crude extract of M. portucalensis after being separated by DEAE-Sephacel chromatography. (A)12 % native Poly-
acrylamide gel and (B)12.5 % SDS-PAGE. 77
Figure 5. Heat treatment P5 from M. portucalensis strain FDF1 showed the mono-
mer 52 kDa protein in 12.5 % SDS-PAGE. 78
Figure 6. Native polyacryamide gel electrophoresis (9 %, 11 %, 13 % and 15 %)
of P5 from M. portucalensis strain FDF1 showed the different migration pattern. 79
Figure 7. Determination of native P5 molecular weights based on Bollag’s equation. 80
.
Figure 8. 2-D gel electrophoresis of purified P5 (pI 3~10). 81
Figure 9. 2-D gel electrophoresis of purified P5 (pI 4~7). 82
Figure 10. P5 of M. portucalensis were separated by PBE 94 chromatofocusing
column with pH gradient of 7.4. 83
Figure 11. Chymotrypsin digestion and N-terminal sequencing results
of P5. 84
Figure 12. A. Standard methylamines were separated by a TLC phenol-water
system. B. P5 methyltransfering activities assays were under a TLC phenol-water
system. 85
Figure 13. Substrates and potassium effects on the activity of P5. 86
Figure 14. Substrate and potassium effects on the α, β and γ. 87, 88, 89
Figure 15. Substrates and sodium effects on the activity of P5. 90
Figure 16. The effect of substrate sarcosine concentrations on SNMT activity. 91
Figure 17. The effect of substrate N, N-dimethylglycine concentrations on DNMT
activity. 92
Figure 18. The effect of reaction time periods at GNMT activity of P5. 93
柒、參考文獻
Arakawa, T. and S. N. Timasheff. 1985. The stabilization of proteins by osmolytes Biophysical J. 47: 411-414.
Asha, H. and J. Gowrishankar. 1993. Regulation of kdp operon expression in Escherichia coli: evidence against turgor as signal for transcriptional control. J. Bacteriol. 175: 4528-4537.
Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese and R. S. Wolfe. 1979. Methanogens: revaluation of a unique biological group. Microbiol. Rev. 43: 260-269.
Bhat, R. amd E. Bresnick. 1997. Glycine N-methyltransferase is an example of fuctional diversity. J. Biol. Chem. 272: 21221-21226.
Blount, P. and P. C. Moe. 1999. Bacterial mechanosensitive channels: integrating physiology, structure and function. Tends Microbiol. 7: 420-424.
Bollag, D. M. and S. J. Edelstein. 1992. Gel electrophoresis under nondenaturing conditions, p.143-160. In Bollag, D. M. and S. J. Edelstein (ed.), Protein Methods. Wiley-Liss, Inc., New York, NY.
Boone, D. M., I. M. Mathrani, Y. Liu., J. A. G. F. Menaia, R. A. Mah and J. E. Boone. 1993. Isolation and characterization of Methanohalophilus portucalensis sp. Nov. and DNA reassociation study of the genus Methanohalophilus. Int. J. Syst. Bacteriol. 43: 430-437.
Bork, P., Ouzounis, C., Sander, C., Scharf, M., Schneider, R. and E. Sonnhammer. 1992. Comprehensive sequence analysis of the 182 predicted open reading frames of yeast chromosome III. Prot. Sci. 1: 1677-1690.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Brown, A. D. 1976. Microbiol water stress. Bacteriol. Rev. 40: 803-846.
Brown, A. D., K. R. Mackenzie and K. K. Singh. 1986. Selected aspects of microbial osmoregulation. FEMS Microbiol. Rev. 39: 31-36.
Chen, Y. M. A., J. Y. Shiu, S. J. Tzeng, L. S. Shih, Y. J. Chen, W. Y. Liu and P. H. Chen. 1998. Characterization of glycine-N-methyltransferase gene expression in human hepatocellular carcinoma. Int. J. Cancer. 75: 787-793.
Chen, T. M. A., L. Y. Chen, F. H. Wang, C. M. Lee, T. J. Chang and T. L. Yang-Feng. 2000. Genomic structure, expression, and chromosomal localization of the human glycine N-methyltransferase gene. Genomics. 66: 43-47.
Ciulla, R. A., S. Burggraf, K. O. Stetter and M. F. Roberts. 1994. Occurrence and role od di-myo-inositol-1-1’-phosphate in Methanococcus ingeus. Appl. Environ. Microbiol. 60: 3660-3664.
Cook, R. J. and C. Wagner. 1984. Glycine N-methyltransferase is a folate binding protein of rat liver cytosol. Proc. Natl. Acad. Sci. USA. 81: 3631-3634.
Cooper, T. G. 1977. Ion exchange. p136-168. In The Tools of Biochemistry. Ch4. John-Wile & Sons, Londom.
Csonka, L. N. 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 53: 121-147.
Culham, D. E., B. Lasby, A. G. Marangon, J. L. Milner, B. A. Steer, R. W. Nue and J. M. Wood. 1993. Isolation and sequencing of Escherichia coli gene proP reveals unusual structural features of the osmoregulation proline/betaine transporter, ProP. J. Mol. Biol. 229: 268-267.
Delamarche, C., D. Thomas, J. P. Rolland, A. Froger, J. Gouranton, M. Svelto, P. Agre and G. Calamita. 1999. Visualization of AqpZ-mediated water permeability in Escherichia coli by cryoelectron microscopy. J. Bacteriol. 181: 4193-4197.
Dennis, D. P. and L. C. Shimmin. 1997. Evolutionary divergence and salinity- mediated selection in halophilic archaea. Microbiol. Mol. Biol. Rev. 61: 90-104.
Dym, O., M. Mevarech and J. L. Sussman. 1995. Structural features that stabilize halophilic malate dehydrogenase from an archaebacterium. Science. 267: 1344-1346.
Esienberg, H. 1995. Perspectives in biochemistry and biophysics- life in unusual environments: progress in understanding the structure and function of enzymes from extreme halophilic bacteria. Arch. Biochem. Biophys. 318: 1-5.
Falkenberg, P. and A. R. Strom. 1990. Purification and characterization of osmoregulatory betaine aldehyde dehydrogenase of Escherichia coli. Biochem. Biophys. Acta. 1034: 253-259.
Ferguson, T. J. and R. A. Mah. 1983. Isolation and characterization of an H2-oxidizing thermophilic methanogen. Appl. Environ. Microbiol. 45: 265-274.
Galagan J. E., C. Nusbaum, A. Roy, M. G. Endrizzi, P. Macdonald, W. FitzHugh, S. Calvo, R. Engels, S. Smirnov, D. Atnoor, A. Brown, N. Allen, J. Naylor, N. Stange-Thomann, K. DeArellano, R. Johnson, L. Linton, P. McEwan, K. McKernan, J. Talamas, A. Tirrell, W. Ye, A. Zimmer, R. D. Barber, I. Cann, D. E. Graham, D. A. Grahame, A. M. Guss, R. Hedderich, C. Ingram-Smith, H. C. Kuettner, J. A. Krzycki, J. A. Leigh, W. Li, J. Liu, B. Mukhopadhyay, J. N. Reeve, Smith K, Springer TA, Umayam LA, White O, White RH, Conway de Macario E, J. G. Ferry, K. F. Jarrell, H. Jing, A. J. Macario, I. Paulsen, M. Pritchett, K. R. Sowers, R. V. Swanson, S. H. Zinder, E. Lander, W. W. Metcalf and B. Birren. 2002. The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res. 12: 532-42.
Galinski, E. A. 1993. Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection. Experientia. 49: 487-496.
Galinski, E. A. and H. G. Trüper. 1982. Betaine a compatible solute in extremely halophilic phototrophic bacterium Ectothiorhodospira halochloris. FEMS Microbiol. Letters. 13: 357-360.
Galinski, E. A. and H. G. Trüper. 1994. Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol. Rev. 15: 95-108.
Galinski, E. A., H. P. Pfeiffer and H. G. Trüper. 1985. 1,4,5,6-Tetrahydro-2-methyl -4-pyrimidinecarboxylic acid: a novel cyclic amino acid from halophilic phototrophic bacterium Ectothiorhodosphira. Eur. J. Biochem. 149: 135-139.
Hanson, A. D. and D. Rhodes. 1983. 14C tracer evidence for synthesis of choline and betaine via phosphoryl base intermediates in salinized sugarbeet leaves. Plant Physiol. 71: 692-700.
Heady, J. E. and S. J. Kerr. 1973. Purification and characterization of glycine N- methyltransferase. J. Biol. Chem. 248: 69-72.
Higgins, C. F., J. Cairney, D. A. Stirling, L. Sutherland and I. R. Booth. 1987. Osmotic regulation of gene expression: ionic strength as an intracellular signal? TIBS 12: 339-344
Holmes, M. L., R. K. Scopes, R. L. Moritz, R. J. Simpson, C. Englert, F. Pfeifer, M. L. Dyall-Smith. 1997. Purification and analysis of an extremely halophilic beta-galactosidase from Haloferax alicantei. Biochim. Biophys. Acta. 1337: 276-286.
Huang, Y. F., J. Komoto, K. Konishi, Y. Takata, H. Ogawa, T. Gomi, M. Fujioka and F. Takusagawa. 2000. Mechanism for auto-inhibition and forced product release in glycine N-methyltransferase: crystal structures of wild type, Mutant R175K and S-adenosylhomocysteine-bound R175K enzymes. J. Mol. Biol. 298: 149-162.
Hungate, R.E. 1969. A roll tube method for cultivation of strict anaerobes, p117-132. In J. R. Norris and D. W. Ribbons (ed.) Method in microbiology, vol 3B. Academic press Inc., New york, NY.
Jung, K., B. Tjadan and K. Altendorf. 1997. Purification, reconsitution and characterization of KdpD, the turgor sensor of Escherichia coli. J. Biol. Chem. 272: 10847-10852.
Kenny, L. J., M. D. Bauer and T. J. Silhavy. 1995. Phosphorylation-dependent conformational changes in OmpR, an osmoregulatory DNA-binding protein of Escherichia coli. Proc. Natl. Acad. Sci. USA 92: 8866-8870.
Kerr, S. J. 1972. Competing methyltransferase system. J. Biol. Chem. 247: 4248- 4252.
Kerr, S. J. and J. E. Heady. 1974. Modulation of tRNA methyltransferase activity by competing enzyme systems. Adv. Enz. Regul. 12: 103-117.
Kushner, U. 1978. Life in high salt and solute concentrations: halophilic bacteria, p317-368. In Kushner, D. R., Microbiological life in extreme environments. Academic Press Inc., London, UK.
Laemmli, U. 1970. Cleavage of structural protein during assembly of bacteriophage T4. Nature (London). 222:293-298.
Lai, M. C., S. C. Chen, C. M. Shu, M. S. Chiou, C. C. Wang, M. J. Chuang, T. Y. Hong, C. C. Liu, L. J. Lai and J. J. Hua. 2002. Methanocalcuclus taiwanensis sp. nov., isolated from an estuarine environment. Int. J. Syst. Evol. Microbiol. 52: 1799-1806.
Lai, M. C. and R. P. Gunsalus. 1992. Glycine betaine and potassium ion are the major compatible solutes in the extremely halophilic methanogen Methanohalophilus strain Z7302. J. Bacteriol. 174: 7474-7477.
Lai, M. C., T. Y. Hong and R. P. Gunsalus. 2000. Glycine betaine transport in the obligate halophilic archaeon Methanohalophilus portucalensis. J. Bacteriol. 182: 5020-5024.
Lai, M. C., K. R. Sowers, D. E. Robert, M. F. Robert and R. P. Gunsalus. 1991. Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J. Bacteriol. 174: 5352-5358.
Lai, M. C. and D. R. Yang. 1995. Osmoregulation of Methanohalophilus: de novo biosynthesis of glycine betaine and its regulatory factors. Beijerinck Centennial. Microbial physiology and gene regulation: Emerging principles and application. Then Hauge, The Netherlands.
Lai, M. C., D. R. Yang and M. J. Chuang. 1999a. Regulatory factor associated with synthesis of the osmolyte glycine betaine in the halophilic methanoarchaeon Methanohalophilus portucalensis. Appl. Enviorn. Microbiol. 65: 828-833.
Lai, M. C., D. R. Yang and M. J. Chuang. 1999b. Activity and purification of Glycine N-methtransferase in Halophilic Methanoarchaeon-Methanohalophilus portucalensis, I-17, In Abstracts of the 99th general meeting of the society of Microbiology. American Society for Microbiology, Washington, D. C.
Landfald, B. and A. R. Strom. 1986 Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J. Bacteriol. 165: 849-855.
Lanyi, J. K. 1974. Salt dependent properties of protein from extremely halophilic bacteria. Bacteriol. Rev. 38: 272-290.
Le Rudulier, D., A. R. Strom, A. M. Dandekar, L. T. Smith and R. C. Valentine. 1984. Molecular biology of osmoregulation. Science. 224: 1064-1068.
Li, W. T., R. A. Garyling, K. Sandman, S. Edmondson, J. W. Shriver and J. N. Reeve. 1998. Thermodynamic stability of archaeal histones. Biochemistry. 30: 10563-72.
Liu, Y., D. R. Boone and C. Choy. 1990. Methanohalophilus oregonense sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer. Int. J. Syst. Bacteriol. 40: 111-116.
Madern, D., C. Ebel and G. Zaccai. 2000. Halophilic adaptation of enzyme. Extremophiles. 4: 91-98.
Madern, D., C. Pfister and G. Zaccai. 1995. A single acidic amino acid mutation enhances the halophilic behavior of malate dehydrogenase from Haloarcula marismortui. Eur. J. Biochem. 230: 1088-1095.
Marmur, J. 1994. Similarity analysis of DNAs: DNA isolation p.658-660. In P. Gerhardt, R. G. E. Murray, W. A. Wood, N. R. Krieg. (ed.) Methods for general and molecular bacteriology. American Society for Microbiology, Washington.
Martin, D. D., R. A. Giulla and M. F. Roberts. 1999. Osmoadaptation in archaea. Appl. Environ. Microbiol. 65: 1815-1825.
Mathrani, I. M. and D. R. Boone. 1985. Isolation and characterization of a moderately halophilic methanogen from a solar saltern. Appl. Environ. Microbiol. 50: 140-143.
Mathrani, I. M., D. R. Boone and R. A. Mah. 1988. Isolation and characterization of halophilic methanogen and DNA/DNA homology studies of 12 halophilic methanogens. I-23, p184. In Abstract of the 88th General Meeting of the American Society for Microbiology. American Society for Microbiology, Washington, D.C.
Meury, J. 1988. Glycine betaine reverses the effects of osmotic stress on DNA replication and cellular division in Escherichia coli. Arch. Microbiol. 149: 232-239.
Muriana, F. J. G., M. C. Alvarez-Ossorio, M. M. Sanchez-Garces, F. F. de la Rosa and A. M. Relimpio. 1992. Effect of salt on the activity and stability of asparate aminotransferase from the halophilic archaebacterium Haloferax mediterranei. Z. Naturforsch. 47c: 375-381.
Nyyssölä, A., J. Kerovouo, P. Kaukinen, N. von Weymarn and T. Reinikainen. 2000. Extreme halophiles synthesize betaine from glycine by methylation. J. Bio. Chem. 275: 22196-22201.
Nyyssölä, A., T. Reinikainen and M. Leisola. 2001. Characterization of glycine sarcosine N-methyltransferase and sarcosine N, N-dimethylglycine N-methyl- transferase. Appl. Environ. Microbiol. 67: 2044-2050.
Ogawa, H., T. Gomi, F. Takusagawa and M. Fujioka. 1993. Mammalian glycine N-methyltransferase. Comparative kinetic and structural properties of the enzymes from human, rat, rabbit and pig livers. Comp. Biochem. Physiol. 106B: 601-611.
Ogawa, H., T. Gomi, F. Takusagawa and M. Fujioka. 1998. Structure, function and physiological role of glycine N-methyltransferase. Int. J. Biochem. Cell Biol. 30: 13-26.
Ollivier, B., P. Canmette, J. -L. Gareia and Y. Horiuti. 1994. Anaerobic bacteria from hypersaline environments. Microbiol. Rev. 58: 27-38.
Paterek, J. R. and P. H. Smith. 1988. Methanohalophilus mahii gen. nov., a methylotrophic halophilic methanogen. Int. J. Syst. Bacteriol. 38:122-123.
Perlman, D. F. and L. Goldstein. 1999. Organic osmolyte channels in cell volume regulation in vertebrates. Exp. Zool. 283: 725-733.
Pollard, A. and R. G. Wyn Jones. 1979. Enzyme activities in concerated solutes of glycine betaine and other solutes. Planta. 144: 291-298.
Pratt, L. A., W. Hsing, K. E. Gibson and T. J. Silhavy. 1996. From acids to osmZ: multiple factors influence synthesis of the OmpF and OmpC porins in Escherichia coli. Mol. Mucrobiol. 20: 911-917.
Raha, A., C. Wamger, R. G. MacDonald and E. Bresnick. 1994. Rat liver cytosolic 4S polycyclic aromatic hydrocarbon-binding protein is glycine N-methyltransferase. J. Biol. Chem. 269: 5750-5756.
Ramalingam, K., S. Aimoto and J. Bello. 1992. Conformational studies of anionic melittin analogus: effect of peptide concentration, pH, ionic strength and temperature -models for protein folding and halophilic proteins. Biopolymer. 32: 981-992.
Roberts, M. F. 2000. Osmoadaptation and osmoregulation in archaea. Front Biosci. 5: D796-812.
Roberts, M. F., M. C. Lai and R. P. Gunsalus. 1992. Biosynthetic pathways of the osmolytes Nε-acetyl-β-lysine, β-glutamine, and betaine in Methanohalophilus strain FDF1 suggested by nuclear magnetic resonance analysis. J. Bacteriol. 174: 6688- 6693.
Robertson, D. E. and M. F. Roberts. 1991. Organic osmolytes in methanogenic archaebacteria. BioFactors. 3: 1-9.
Robertson, D. E., M. C. Lai, R. P. Gunsalus and M. F. Roberts. 1992. Composition, variation, and dynamic of major osmotic solutes in Methanohalophilus strain FDF1. Appl. Environ. Microbiol. 58: 2438-3443.
Santoro, M. M., Y. Liu, S. M. A. Khan, L. X. Hou and D. W. Bolen. 1992. Increase thermal stability of proteins in the presence of naturally occurring osmolytes. Biochem. 31: 5278-5283.
Sambrook, J., E. F. Fritsch and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Laboratory. Cold Spring Harbor, New York.1.25.
Schneider, W. J. and D. E. Vance. 1979. Conversion of phosphatidyethanolamine to phosphatidylcholine in rat liver. Partial purification and characterization of the enzymatic activities. J. Biol. Chem. 254: 3886-2891.
Shpoprer, M. and M. M. Civan. 1977. Pulsed nuclear magnetic resonance study of 39K within halobacteria. J. Membr. Biol. 31: 385-400.
Sibley, M. H. and J. H. Yopp. 1987. Regulation of S-adenosylhomocysteine hydroase in the halophilic cyanobacterium. Aphanothece halophtica: a possible role in glycine betaine biosynthesis. Arch. Microbiol. 149: 43-46.
Sleator, R. D. and C. Hill. 2001. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Micro. Rev. 26: 49-71.
Smirnova, G. and O. Oktyabrsky. 1995. Betaine modulates intracellular thiol and potassium levels in Escherichia coli in medium with high osmolarity and alkine pH. Arch. Microbiol. 163: 76-78.
Smith, L. T. 1996. Role of osmolytes in adaptation of osmotically stressed and chill-stressed Listeria monocytogenes grown in liquid media. Appl. Environ. Microbiol. 62: 3008-3093.
Sowers, K. R., D. E. Robertson, D. Noll, R. P. Gunsalus and M. F. Roberts. 1990. Nε-acetyl-β-lysine: an osmolyte synthesized by methanogenic archaebacteria. Proc. Natl. Acad. Sci. USA. 87: 9083-9087.
Sowers, K. K. and R. P. Gunsalus. 1995. Halotolerance in Methanosarcina spp.: Role of Nε-acetyl-β-lysine, α-glutamate, glycine betaine and K+ as compatibles for osmotic adaptation. Appl. Environ. Microbiol. 61: 4382-4388.
Sowers, K. R. and H. J. Schreier. 1995. Archaea, a laboratory manual, p508-509. In Place, A. R. Codon usage tables for methanogenic archaea. Cold Spring Harbor Laboratory Press, NY, USA.
Truper, H. G. and E. A. Galinski. 1990. Biosynthesis and the fate of compatible solutes in extremely halophilic phototrophic eubacteria. FEMS Microbiol. Rev. 75: 247-254.
Upmeier, B., W. Gross, S. Köster and W. Barz. 1988. Purification and properties of S-adenosyl-L-methionine: nicotinic acid-N-methyltransferase from cell suspension cultures of Glycine max L. Arch. Biochem. Biophys. 262: 445-454.
van der Heide, T. and B. Poolman. 2000a. Glycine betaine transport in Lactococcus lactis is osmotically regulated at the level of expression and translocation activity. J. Bacteriol. 182: 203-206.
van der Heide, T. and B. Poolman. 2000b. Osmoregulated ABC-transport system of Lactococcus Lactis senses water stress via changes in the physical state of the membrane. Proc. Natl. Acad. Sci. 97:7102-7106.
von Weymarn, N., A. Nyyssölä, T. Reinikainen, M. Leisola and H. Ojamo. 2001. Improved osmotolerance of recombinant Escherichia coli by de novo glycine betaine biosynthesis. Appl. Mircobiol. Biotech. 55: 214-218.
Walderhaug, M. O., J. W. Polarek, P. Voelkner, J. M. Daniel, J. E. Hesse, K. Altendorf and W. Epstein. 1992. KdpD and KdpE, proteins that control expression of the kdpABC operon, are members of the two-component sensor-effector class of regulators. J. Bacteriol. 174: 2152-2159.
Wang, C. C., M. C. Lai and Y. C. Wu. 2002. Substrates and potassium effects on glycine N-methyltransferase of halophilic methanoarchaea, K-48, In Abstracts of the 102th general meeting of the society of Microbiology. American Society for Microbiology, Washington, D. C.
Wanger, C., W. T. Briggs and R. J. Cook. 1985. Inhibition of glycine N-methyltransferase activity by folate derivatives. Implication for regulation of methyl group metabolism. Biochem. Biophys. Res. Commun. 127: 746-752.
Wiggins, P. M. 1990. Role of water in some biological processes. Microbiol. Rev. 54: 432-449.
Wilharm, T., T. N. Zhilina and P. Hummel. 1991. DNA-DNA hybridization of methylotrophic halophilic methanogenic bacteria and transfer of Methanococcus halophilusvp to the genus Methanohalophilus as Methanohalophilus halophilus comb. Nov. Int. J. Syst. Bacteriol. 41: 558-562.
Wolin, E. A., M. J. Wolin and R. S. Wolfe. 1963. Formation of methane by bacterial extracts. J Biol. Chem. 238: 2882-2886.
Wood, J. M. 1999. Osmosensing by bacteria: signals and membrane-based sensors. Microbiol. Mol. Biol. Rev. 63: 2882-2886.
Yancey, P. H., M. E. Clark, S. C. Hand, R. D. Bowlus and G. N. Somero. 1982. Living with water stress: evolution of osmolyte systems. Science. 217: 1214-1222.
Zaccai, G. and H. Eisenberg. 1990. Halophilic proteins and the infuence of solvent on protein stabilization. TIBS. 15: 333-339.
楊道任。1995。嗜鹽性甲烷古生菌相容質glycine betaine的合成相關酵素及其影響因子之研究。國立中興大學植物研究所碩士論文。
洪堂耀。1997。嗜鹽性甲烷菌Mathanohalophilus portucalensis FDF1運送相容質glycine betaine機制。國立中興大學植物研究所碩士論文。
莊旻貞。1997。嗜鹽性甲烷古生菌相容質glycine betaine生合成調控與其生合成酵素glycine N-methyltransferase的純化。國立中興大學植物研究所碩士論文。
吳琰奇。2001。嗜鹽性甲烷古生菌之相容質甜菜鹼生合成酵素glycine N- methyltransferase的特性探討。國立中興大學植物研究所碩士論文。
王家麒。2002。Substrate and potassium effects on glycine N-methyltransferase of halophilic methanoarchaea. P-99.第十七屆生物醫學年會看板論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔