跳到主要內容

臺灣博碩士論文加值系統

(54.92.164.9) 您好!臺灣時間:2022/01/23 05:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王雅亭
研究生(外文):YaTing Wang
論文名稱:利用穩定同位素追蹤河口食碎屑魚種之食物來源
論文名稱(外文):Using stable isotopes of carbon and nitrogen to reveal the food sources of estuarine detritivorous fish
指導教授:林幸助林幸助引用關係
指導教授(外文):Lin Hsing-Juh
學位類別:碩士
校院名稱:國立中興大學
系所名稱:植物學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:82
中文關鍵詞:13C15N食碎屑者碎屑食物鏈河口植群食物來源大鱗鮻穩定同位素胃內容物
外文關鍵詞:13C15NDetrivoreDetritus food chainEstuarine plantsFood sourceLiza macrolepisStable isotopeStomach content
相關次數:
  • 被引用被引用:0
  • 點閱點閱:2565
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
河口以碎屑食物網為主。為瞭解碎屑的來源以及對食碎屑魚類的重要性,於台灣西南沿海大鵬灣及北部關渡針對河口有機物質來源,包含維管束植物、附生藻類及漂浮性顆粒進行採樣,以台灣河口最常見之食碎屑魚種大鱗鮻(Liza macrolepis)為目標魚種,計算胃內含物的加權指數百分率來了解各類餌食在胃內含物中的重要性,並分析穩定性同位素13C和15N含量來追蹤這些食碎屑魚種之可能食物來源。由胃內含物分析結果得知,大鱗鮻胃內含物50 %以上皆為碎屑,但無法辨識其來源,其餘則反映不同環境所含的不同植群,且容易因採樣時間與個體差異而有變異。關渡濕地之大鱗鮻胃內容物除碎屑外以維管束植物為優勢植群。而大鵬灣在胃內容物上,則由大型海藻與動物碎片或附生微藻取代維管束植物之地位。穩定同位素分析結果顯示,關渡地區附生微藻重要性高於維管束植物,大鵬灣則是大型藻類與附生微藻的重要性高於維管束植物。就目前所捕獲之體長範圍,相同地點的大鱗鮻並不會隨成長而改變碳來源,而是隨環境、季節改變食物組成比例。但體長小於40mm的魚體其氮源則有所變化。總結而言,附生藻類對食碎屑魚種的貢獻高於維管束植物,而與過去認為的紅樹林及草澤植物為河口生物有機碎屑食物主要來源的觀念有所差異。

The biomass, production and yield of fish in estuaries are often higher than those in other aquatic ecosystems. In order to understand the food and relative contribution of each primary producer to detritivorous fish, I collected the sources of estuarine organic matter, including vascular plants, periphyton, and seston, from Tapong Bay and Kuandu wetlands, respectively. I used detritivorous fish (Liza macrolepis) as a model fish to examine its stomach contents by evaluating the percentage of weighted point value and to trace its food sources by analyzing stable carbon and nitrogen isotopes ratio. The results from the examination of stomach contents revealed that more than 50% of the contents is detritus, which can not be identified its sources. In addition to the detritus, the stomach contents of L. macrolepis in Kuandu were dominated by vascular plants. In contrast, macroalgae and benthos or microalgae have replaced vascular plants in stomach contents of L. macrolepis in Tapong Bay. The results of stable isotope analysis showed that the contribution of microalgae to the food of the fish is more important than vascular plants in Kuandu. The contribution of microalgae and macroalgae is more important than vascular plants in Tapong Bay. In the size range of L. macrolepis, the organic carbon sources do not shift with size, but the ratio of food changes with environment and season. However, the nitrogen source is different changed in the fish whose size is less than 40mm. As a result, the contribution of periphyton to detritivorous fish is more important than vascular plants. These results were different from the paradigm that mangroves and salt marsh plants are the major food source for estuarine detritivorous fish.

致謝..........Ⅰ
中文摘要......Ⅱ
英文摘要......Ⅲ
目次..........Ⅴ
表次..........Ⅷ
圖次..........Ⅹ
第一章、前言
1.1 河口生態系...........................1
1.2 河口生態系中有機碎屑食物網...........2
1.3 胃內容物分析.........................2
1.4 穩定同位素在營養階層的應用...........3
1.5 研究目的.............................5
第二章、材料與方法
2.1 研究地點.............................6
2.2 採樣時間............................10
2.3 分析材料
2.3.1 有機碎屑來源.......................10
2.3.2 魚類...............................10
2.4 樣品採集與處理
2.4.1 維管束植物與大型海藻...............16
2.4.2 附生微藻...........................16
2.4.3 漂浮性顆粒.........................17
2.4.4 魚類...............................19
2.5 胃內容物分析........................19
2.6 穩定同位素分析......................20
2.7 資料處理與統計
2.7.1 多種來源混合模式...................21
2.7.2 統計分析...........................22
第三章、結果
3.1 胃內容物分析........................26
3.1.1 關渡地區大鱗鮻胃內容物分析
3.1.1.1 樣品採集記錄.....................26
3.1.1.2 大鱗鮻胃內容物組成...............26
3.1.1.3 歸群分析.........................29
3.1.1.4 Simper分析.......................29
3.1.2 大鵬灣大鱗鮻胃內含物分析
3.1.2.1 樣品採集記錄.....................32
3.1.2.2 大鱗鮻胃內容物組成...............32
3.1.2.3 歸群分析.........................38
3.1.2.4 Simper分析.......................38
3.2 穩定同位素分析......................42
3.2.1 基礎生產者的穩定同位素值
3.2.1.1 關渡.............................42
3.2.1.2 大鵬灣...........................46
3.2.2 食碎屑魚種的穩定同位素值
3.2.2.1 關渡.............................48
3.2.2.2 大鵬灣...........................51
3.2.3 基礎生產者與食碎屑魚種穩定同位素值的相關性
3.2.3.1 關渡.............................54
3.2.3.2 大鵬灣...........................59
第四章、討論
4.1 胃內容物分析........................66
4.2 穩定同位素分析......................68
4.3 穩定同位素分析與胃內容物分析之比較..72
第五章、結論.............................74
第六章、參考文獻.........................75

王騰崇。2001。大鵬灣竹片上附生藻類生產力之時空變化。中興大學植物學研究所碩士論文,台灣,台中,119頁。
吳俊宗,周傳鈴。藻類動態,1-18頁。淡水河口生態監測系統的建立,第二年,中央研究院,台灣,台北。
吳玲毅。1996。高雄港附近水域大鱗鯔(Chelon macrolepis)之食性研究。中山大學海洋資源研究所碩士論文,台灣,高雄,105頁。
沈世傑。1993。台灣魚類誌,437-441,頁。國立台灣大學動物系印行,台灣,台北。
林幸助,邵廣昭,郭世榮。1996。台灣紅樹林區魚類研究之現況與展望,181-192頁。紅樹林生態系研討會論文集,特有生物研究保育中心。
邵廣昭、郭世榮。1998。曾文溪口海岸地區陸海交互作用之研究,228-261頁。國科會研究成果論文集(三),行政院國家科委員會,台灣,台北。
邵廣昭。1996。台灣常見魚貝類圖說(下),174-175,199頁。台灣省漁業局,台灣,台北。
洪佩瑩。2001。大鵬灣碳及營養鹽之生地化作用及通量研究。中山大學海洋地質及化學研究所碩士論文,台灣,高雄,155頁。
張文亮。2000。底土與水質環境。關渡自然保留區及關渡自然公園環境監測與研究(第二期)期末報告,台北市政府建設局,台灣,台北,343頁。
黃鴻昌。1997。以碳、氮穩定同位素探討台灣東北湧升海域不同體型之浮游生物與花腹鯖(Scomber australasicus)、真鰺(Trachurus japonicus)之食物鏈關係。國立中山大學海洋資源研究所碩士論文,台灣,高雄,170頁。
楊小慧。1998。淡水竹圍紅樹林溼地有機物質在底棲碎屑食者中的傳遞:穩定同位素分析之應用。國立台灣大學漁科所碩士論文,台灣,台北,69頁。
詹榮桂,盧樹欣。2001。魚類食性,107-125頁。淡水河口生態監測系統的建立,第二年,中央研究院,台灣,台北。
福建魚類志編寫組。1984。福建魚類志(上)、(下),700頁。福建科學技術出版社,福州,福建。
劉振鄉。1991。鯔科魚類的生物學研究。台灣大學動物學研究所博士論文,台灣,台北,203頁。
Beaudoin, C. P.,W. M. Tonn, E. E. Prepas and L. I. Wassenaar. 1999. Individual specialization and trophic adaptability of northern pike (Esox Lucius): an isotope and dietary analysis. Oecologia 120: 386-396.
Ben-David, M., R. W. Flynn, and D. M. Schell. 1997. Annual and seasonal changes in diets of martens: evidence from stable isotope analysis. Oecologia 111: 280-291.
Bligh, E. G., and W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. 37: 911-917.
Boutton, T. W. 1991. Stable carbon isotope ratios of natural material : I. sample preparation and mass spectrometric analysis, p.155-171. In D. C. Coleman and B. Fry (ed.), Carbon Isotope Techniques. Academic Press, New York.
Cabana, G., and J. B. Rasmussen. 1996. Comparison of aquatic food chains using nitrogen isotopes. Proc. Natl. Acad. Sci. 93: 10844-10847.
Cardona, Luis. 1999. Seasonal changes in the food quality, diet feeding rhythm and growth rate of juvenile leaping grey mullet Liza saliens. Aquat. Living Resour 12(4): 263-270.
Chan, E. H., and T. E. Chua. 1979. The food and feeding habits of greenback grey mullet, Liza subviridis (Valenciennes), from different habitats and at various stages of growth. J. Fish Biol. 15: 165-171.
Clarke, K. R., and R. M. Warwick. 1994. Transformations, p.9-1 - 9-4. In: K. R. Clarke and R. M. Warwick (ed.) Change in marine communities: an approach to statistical analysis and interpretation. Natural Environment Research Council, UK.
Clarke, K. R., and R. N. Gorley. 2001. PRIMER v5: User Manual/ Tutorial. PRIMER-E Ltd. Plymouth. 91 pp..
Créach, V., M. T. Schricke, G. Bertru, and A. Mariotti. 1997. Stable Isotopes and gut Analyses to determine feeding relationships in saltmarsh macroconsumers. Estuar., Coast. Shelf Sci. 44: 599-611.
Day, J. W., Jr., C. A. S. Hall, W. M. Kemp, and A. Yáñez-Arancibia. 1989. Estuarine ecology. Wiley, New York, 558pp.
DeNiro, M. J., and S. Epstein. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta. 45: 341-351.
Froese, R. and D. Pauly. 2002. FishBase. World Wide Web electronic publication, www.fishbase.org.
Fry, B., and E. B. Sherr. 1984. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci. 27: 13-47.
Haines, E. B. 1976. Relation between the stable carbon isotope composition of fiddler carbs, plants, and soils in a salt marsh. Limnol. Oceanogr. 21: 880-883.
Haines, E. B., and C. L. Montague. 1979. Food sources of estuarine invertebrates analyzed using 13C/12C ratios. Ecology 60(1): 48-56.
Hsieh, H.-L., C.-P. Chen, Y.-G. Chen, and H.-H. Yang. 2002. Diversity of benthic organic matter flows through polychaetes and crabs in a mangrove estuary: δ13C and δ34S signals. Mar. Ecol. Prog. Ser. 227: 145-155.
Hsieh, H.-L., Kao, W.-Y., Chen, C.-P & Liu, P.-J. 2000. Detrital flows through the feeding pathway of the oyster (Crassostrea gigas) in a tropical shallow lagoon: δ13C signals. Mar. Bio. 136: 677-684.
Hyslop, E. J. 1980. Stomach contents analysis, a review of methods and their application. J. Fish Biol. 17: 411- 429.
Kao, W. Y., and K. W. Chang. 1998. Stable carbon isotope ratio and nutrient contents of the Kandelia candel mangrove populations of different growth forms. Bot. Bull. Acad. Sin. 39: 39-45.
Kline, T. C., Jr, J. J. Goering, O. A. Mathisen, P. H. Poe, P. L. Parker, and R. S. Scalan. 1993. Recycling of elements transported upstream by runs of pacific salmon: Ⅱ. δ15N and δ13C evidence in the Kvichak River watershed, Bristol Bay, southwestern Alaska. Can. J. Fish. Aquat. Sci. 50: 2350-2365.
Kling, G. W., B. Fry, and W. J. O'Brien. 1992. Stable isotopes and planktonic trophic structure in Arctic lakes. Ecology 73(2): 561-566.
Kuo, S.- R., H.- J. Lin, and K.-T. Shao. 1999. Fish assemblages in the mangrove creeks of northern and southern Taiwan. Estuaries 22(4): 1004-1015.
Kuo, S.-R, H.-J. Lin, K.-T. Shao. 2001. Seasonal changes in abundance and composition of the fish assemblage in Chiku Lagoon, Southwestern Taiwan. Bull. Mar. Sci. 68(1): 85-99.
Lee, S. Y. 2000. Carbon dynamics of Deep Bay, eastern Pearl River estuary, China. Ⅱ: Trophic relationship based on carbon- and nitrogen-stable isotopes. Mar. Ecol. Prog. Ser. 205: 1-10.
Libes, S. M. 1992. Reading the sedimentary record: the use of stable isotopes in the study of paleoceanography, p.557-591. In: S. M. Libes (ed.) An Introduction to Marine Biogeochemistry. John Wiley and Sons, New York.
Lin, H.-J., J.-J. Hung, K.-T. Shao and Fancy Kou. 2001 Trophic functioning and nutrient flux in a highly productive tropical lagoon. Oecologia 129(3): 395-406.
Lin, H.-J., K.-T. Shao, S.-R. Kuo, H.-L. Hsieh, S.-L. Wong, I.-M. Chen, W.-T. Lo, and J.-J. Hung. 1999. A trophic model of a sandy barrier lagoon at Chiku in southwestern Taiwan. Estuar., Coast. Shelf Sci. 48: 575-588.
McClelland, J. W., and I. Valiela. 1998. Linking nitrogen in estuarine producers to land-driverd sources. Limnol. Oceanogr. 43(4): 577-585.
McClelland, J. W., I. Valiela, and R. H. Michener. 1997. Nitrogen-stable isotope signatures in estuarine food webs: A record of increasing urbanization in coastal watersheds. Limnol. Oceanogr. 42(5): 930-937.
Michener, R. H., and Schell D. M. 1994. Stable isotope ratios as tracers in marine aquatic food webs, p138-157. In: K. Lajtha and R. H. Micheren (ed.), Stable Isotopes in Ecology and Environmental Science. Blackwell, London.
Moncreiff, C. A. and M. J. Sullivan. 2001. Trophic importance of epiphytic algae in subtropical seagrass beds: evidence from multiple stable isotope analyses. Mar. Ecol. Prog. Ser. 215: 93-106.
Odum, E. P. 1980. The status of three ecosystem-level hypotheses regarding salt marsh estuarine: tidal subsidy outwelling, and detritus-based food chains, p.485-495. In: V. Kennedy (ed.), Estuarine Perspectives. Academic, New York.
Odum, W. E. 1973. Utilization of the direct grazing and plant detritus food chains by the striped mullet Mugil cephalus, p.222-240. In: H.J. Steele (ed.), Marine Food Chains. Oliver & Boyd, Edinburgh.
Page, H. M. 1997. Importance of vascular plant and algal production to macro-invertebrate consumers in a southern California salt marsh. Estuar., Coast. Shelf Sci. 45: 823-834.
Pennock, J. R., D. J. Velinsky, J. M. Ludlam, J. H. Sharp, and M. L. Fogel. 1996. Isotopic fractionation of ammonium and nitrate during uptake by Skeletonema costatum: Implications for δ15N dynamics under bloom conditions. Limnol. Oceanogr. 41(3): 452-459.
Peterson, B. J., and B. Fry. 1987. Stable isotopes in ecosystem studies. Ann. Rev. Ecol. Syst. 18: 293-320.
Polunin, N. V. C., B. Morales-Nin, W. E. Pawsey, J. E. Cartes, J. K. Pinnegar, and J. Moranta. 2001. Feeding relationships in Mediterranean bathyal assemblages elucidated by stable nitrogen and carbon isotope data. Mar. Ecol. Prog. Ser. 220: 13-23.
Post, D. M. 2002. Using stable isotopes to estimate trophic position: Models, Methods, and Assumptions. Ecology 83(3): 703-718.
Primavera J. H. 1996. Stable carbon and nitrogen isotope ratios of penaeid juveniles and primary producers in a riverine mangrove in Guimaras, Philippines. Bull. Mar. Sci. 58(3): 675-683.
Riera, P., and P. Richard. 1996. Isotopic determination of food sources of Crassostrea gigas along a trophic gradient in the estuarine bay of Marennes-Oléron. Estuar., Coast. Shelf Sci. 42: 347-360.
Sauriau, P.-G., and C.-K. Kang. 2000. Stable isotope evidence of benthic microalgae-based growth and secondary production in the suspension feeder Cerastoderma edule (Mollusca, Bivalvia) in the Marennes-Oléron Bay. Hydrobiologia 440: 317-329.
Wada, E., M. Minagawa, H. Mizutani, T. Tsuji, R. Imaizumi, and K. Karasawa. 1987. Biogeochemical studies on the transport of organic matter along the Otsuchi River watershed, Japan. Estuar., Coast. Shelf Sci. 25: 321-336.
Wada, E., Y. Kabaya, and Y. Kurihara. 1993. Stable isotopic structure of aquatic ecosystems. J. Biosci. 18(4): 483-499.
Zieman, J. C., Macko S. A., and A. L. Mills. 1984. Role of seagrasses and Mangroves in estuarine food webs: temporal and spatial changes in stable isotope composition and amino acid content during decomposition. Bull. Mar. Sci. 35(3): 380-392.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top