跳到主要內容

臺灣博碩士論文加值系統

(54.92.164.9) 您好!臺灣時間:2022/01/23 03:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鐘雅慧
研究生(外文):Ya-Hui Chung
論文名稱:溫度、離水時間以及藥劑處理對玫瑰切花品質與生理之影響
論文名稱(外文):Effects of Temperature, Dehydration and Chemical Treatment on the Quality and Physiology of Cut Rose Flowers
指導教授:林瑞松林瑞松引用關係
指導教授(外文):Ruey-Song Lin
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:133
中文關鍵詞:溫度離水時間糖類藥劑處理電解質滲漏乙烯瓶插壽命
外文關鍵詞:temperaturedehydrationsugarschemicalselectrolyte leakageethylenevase life
相關次數:
  • 被引用被引用:5
  • 點閱點閱:3564
  • 評分評分:
  • 下載下載:753
  • 收藏至我的研究室書目清單書目收藏:1
本試驗以‘Grand Gala’、‘Noblesse’與‘Super baby’等玫瑰切花商業栽培品種作為試驗材料,以探討瓶插溫度、離水時間、外加糖類、化學藥劑處理及冷藏對玫瑰切花之花朵開放及瓶插壽命之影響。
在不同瓶插溫度下,‘Grand Gala’、‘Noblesse’與‘Super baby’ 3者之切花鮮重下降速率與瓶插溫度成正比,瓶插溫度越高鮮重下降越快,而此3品種維持鮮重的效果均以藥劑預措後於5 ℃瓶插者最佳。花朵開放之受瓶插溫度影響,則因品種而有所差異,其中以 ‘Grand Gala’較不受影響。在瓶插過程中,玫瑰切花花瓣的澱粉含量隨時間的增加而有下降的趨勢,全可溶性糖含量則隨著瓶插天數的增加而增加,瓶插溫度越低此現象越明顯。瓶插溫度對‘Grand Gala’、‘Noblesse’與‘Super baby’之花色表現的影響勝於藥劑預措處理的影響,隨瓶插溫度的降低對維持花瓣之L、a、b值的效果較佳。此外,玫瑰切花瓶插壽命隨瓶插溫度的降低而增加,‘Noblesse’與‘Super baby’均以5 ℃之瓶插壽命最長,而‘Grand Gala’則是以10 ℃的瓶插壽命較佳。
離水處理後,‘Grand Gala’並未立即產生乙烯,但隨瓶插天數的增加乙烯會逐漸形成,且花莖未重剪者其乙烯生成量高於花莖重剪者。此外,隨離水時間的延長,有助於‘Grand Gala’切花瓶插時鮮重的增加,但花瓣澱粉含量隨著瓶插時間的增加而呈現下降的趨勢會越明顯。且‘Grand Gala’離水處理後,無論花莖重剪與否,並不影響瓶插初期花瓣的電解質滲漏率。
外加不同糖類濃度瓶插處理有助於維持切花鮮重、延長切花瓶插壽命、促進花朵開放、維持花色穩定的效果。且隨著處理濃度的增加此效果越顯著,‘Grand Gala’、‘Noblesse’與‘Super baby’三者皆是以6%葡萄糖處理對延長瓶插壽命的效果最佳。‘Grand Gala’、‘Noblesse’與‘Super baby’之花瓣電解質滲漏隨著瓶插時間而增加,而外加糖類處理並不能改善花瓣離子滲漏情形。
‘Grand Gala’以不同藥劑瓶插處理時,會促進乙烯的產生。以10 mM proline處理可改善切花的水分吸收。Malonate 、proline配合ATA同時處理時均可增加花瓣中的澱粉含量,以及增加花瓣的全可溶性糖含量。‘Grand Gala’以藥劑預措4 hr以20 mM ATA混合10 mM proline的瓶插壽命效果較佳;藥劑預措可改善5 ℃冷藏3週後鮮重的維持及水分的吸收,其中以20 mM ATA混合10 mM proline預措16 hr的效果較佳。
玫瑰切花以ATA瓶插或預措處理者均可增加水分吸收、維持切花鮮重及延長瓶插壽命。ATA處理可促進‘Grand Gala’與‘Super baby’切花水分吸收,以kinetin處理則會抑制玫瑰切花的水分吸收。ATA處理或混合不同濃度IAA處理,均具有維持鮮重的效果,但水分吸收能力隨IAA濃度的增加而下降。‘Grand Gala’與‘Super baby’以ATA或混合IAA同時處理會促進乙烯的產生。ATA混合0.01 mM IAA處理,可延長‘Grand Gala’的瓶插壽命。
Three cultivars of Rosa hybrid ‘Grand Gala’, ‘Noblesse’ and ‘Super baby’ were tested in this study to investigate the effects of the various temperature, time of dehydration, addition of sugars, chemicals treatment and cold storage on the flower opening and vase life of cut rose flowers.
‘Grand Gala’, ‘Noblesse’ and ‘Super baby’ were placed in various temperature. The fresh weight of cut flowers decreased with the temperature. The higher the temperature, the less the fresh weight. After pulsed with 200 mg/l 8-HQS mixed 500 mg/l citrate and 2 % sucrose for 8 hr, the cut roses maintained the fresh weight of flowers were better at 5℃.In contrast to ‘Noblesse’ and ‘Super baby’, the flowers opening of ‘Grand Gala’ cut roses were uneffected by the temperature. Periods of flower opening were accompanied by decreased in starch and increased in soluble sugars of petals. This change of carbohydrate contents were related to the temperature. The values of L, a, b of petals were affected by the temperature more than the chemicals pulsed. Not only the ability of maintain the petal color but also the vase life of cut rose flowers increased with the temperature lowered. The vase life of ‘Noblesse’ and ‘Super baby’ were longest at 5 ℃, but the vase life of ‘Grand Gala’ were better at 10 ℃.
For rehydration after transient water stress, there were no ethylene produced immediately of ‘Grand Gala’ cut rose flowers. Ethylene production would be increased gradually by the time. The flower stem unrecut which ethylene produced were higher than the stem recut 5 cm off. The longer the time of dehydrated, the longer the fresh weight of ‘Grand Gala’ cut rose flowers increased during the vase. Increasing the time of dehydration, the starch contents of petals decreased with the time were significantly changed. No matter the stem recut or not, transient water stress had no effect on the initial electrolyte leakage of petals on ‘Grand Gala’ cut rose.
In another test, sugars were added into the vase water. Sugars could maintain the fresh weight of flower, prolong the vase life, accelerate flower opening greatly, and maintain flower color. Those effects were appeared significantly with the concentrations of sugars increased. All of the ‘Grand Gala’, ‘Noblesse’ and ‘Super baby’ which treated with 6 % dextrose had the longest vase life. The electrolyte leakage of petals on three cut rose cultivars were increased by the time and which couldn’t improved by addition of sugars.
‘Grand Gala’ treated with chemicals would increase ethylene production. The holding solution of 10 mM proline improved ‘Grand Gala’ cut rose water uptake. Mixture of 20 mM ATA and malonate or proline could increase the starch and soluble sugars contents of petals. The pulse treatment of mixture with 20 mM ATA and 10mM proline for 4 hours extended vase life of ‘Grand Gala’ cut rose. After storage 3 weeks at 5 ℃, that mixture of 20 mM ATA and 10mM Pro for 16 hours had the longest vase life. ‘Grand Gala’ cut roses pulsed with chemicals could maintain fresh weight of flowers and improve water uptake after cold storage.
Cut rose treated with ATA by holding and pulsing solution induced more water uptake, maintained fresh weight of cut rose, then extended vase life. The holding solution of 20 mM ATA improved ‘Grand Gala’ and ‘Super baby’ cut rose water uptake. Cut rose treated with kinetin inhibited water uptake. The holding solution of mixture ATA and IAA could maintain fresh weight of ‘Grand Gala’ and ‘Super baby’ cut rose but water uptake of cut roses were inhibited with increased the concentrations of IAA. The mixture of ATA and IAA increased ethylene production at the same time. The holding solution of 20 mM ATA and 0.01 mM IAA extended vase life of ‘Grand Gala’ cut rose.
壹、 前言(Introduction)……………….…………………….1
貳、 前人研究(Literature review)………….………………..3
一、 花朵開放的生理機制………………………………….3
(一) 花瓣的生長發育………………………………….3
(二) 花瓣之老化生理與微細構造之變化……………….5
二、 水分、碳水化合物及乙烯對切花採後品質之影響….….11
(一) 水分關係……………………………...………...11
(二) 暫時性水分逆境對切花老化之影響……………...16
(三) 碳水化合物之影響……………………………...17
(四) 乙烯對切花老化之影響………………………....20
三、 低溫貯藏對切花生理反應之影響………...…………...25
(一) 低溫貯藏對切花生理的影響………………..…...25
(二) 冷藏後對切花瓶插品質的影響………………......27
(三) 藥劑處理以改善冷藏後切花品質……………......28
參、 材料與方法(Material and methods)………………….30
一、 植物材料……………………………………………30
二、 瓶插環境及瓶插壽命之評定…………………………30
三、 鮮重變化及吸水量之測定與碳水化合物之取樣……....30
四、 試驗方法……………………………………………31
(一) 溫度、離水時間及外加糖類處理對玫瑰切花品質、壽命與生理之影響……………………………..31
(二) 不同藥劑處理對玫瑰切花生理、品質及壽命之影響……………………………………………32
(三) ATA處理對玫瑰切花瓶插品質及乙烯生成與呼吸率之影響………………………………………...33
五、 分析方法……………………………………………34
(一) 呼吸率及乙烯生成量的測定……………………34
(二) 碳水化合物的測定……………………………..34
(三) 電解質之測定…………………………………36
(四) 花瓣色差變化之測定…...………………………36
(五) 統計分析………………………………………36
肆、 結果(Results)……………………………………….…37
一、 溫度、離水時間及外加糖類處理對玫瑰切花品質、壽命與生理之影響…………………………….……………37
(一) 不同瓶插溫度對蕾期採收玫瑰切花生理、瓶插品質與壽命及花瓣碳水化合物含量之影響………..…37
(二) 暫時性離水對蕾期採收玫瑰切花生理、瓶插品質與壽命及花瓣碳水化合物含量之影響………….…39
(三) 外加糖類的影響………….……………………41
二、 不同藥劑處理對玫瑰切花生理、品質及壽命之影響…44
(一) Aminotriazole(ATA)、malonic acid (malonate)、proline對玫瑰切花瓶插品質之影響………….………...44
(二) Aminotriazole(ATA)、malonic acid (malonate)、proline預措對經低溫冷藏後玫瑰切花生理、品質及壽命之影響………….……………………………….46
三、 ATA處理對玫瑰切花瓶插品質及乙烯生成與呼吸率之影響………….………………………………………..48
(一) 以ATA瓶插與預措之影響………….………….48
(二) 比較kinetin以及外加auxin對玫瑰切花以ATA處理效果之影響………….………………………...49
伍、 討論(Discussion)……………………………...……….104
一、 溫度、離水時間及外加糖類處理對玫瑰切花品質、壽命與生理之影響……………………………...…………104
(一) 不同瓶插溫度對蕾期採收玫瑰切花生理、瓶插品質與壽命及花瓣碳水化合物含量之影響…………104
(二) 暫時性離水對蕾期採收玫瑰切花生理、瓶插品質與壽命及花瓣碳水化合物含量之影響…………...106
(三) 外加糖類的影響……………………………...108
二、 不同藥劑處理對玫瑰切花生理、品質及壽命之影響…109
(一) Aminotriazole(ATA)、malonic acid (malonate)、proline對玫瑰切花瓶插品質之影響…………………..109
(二) Aminotriazole(ATA)、malonic acid (malonate)、proline預措對經低溫冷藏後玫瑰切花生理、品質及壽命之影響……………….………………...……….111
三、 ATA處理對玫瑰切花瓶插品質及乙烯生成與呼吸率之影響..…………………………...……………………112
(一) 以ATA瓶插與預措之影響…………………….112
(二) 比較kinetin以及外加auxin對玫瑰切花以ATA處理效果之影響. ……………………………...…..112
陸、 中文摘要(Summary)…………………………………115
柒、 英文摘要(English summary)…………..…………….117
捌、 參考文獻(References)……………..…….….………..119
玖、 附錄……………………………………..…………...133
圖 目 錄
圖1. ‘Grand Gala’(A)、‘Noblesse’(B)、‘Super baby’(C)3品種玫
瑰切花在5、10、15與25 ℃下瓶插之鮮重變化………………52
圖2. ‘Grand Gala’(A)、‘Noblesse’(B)、‘Super baby’(C)3品種玫
瑰切花在5、10、15與25 ℃下瓶插之吸水量變化……………53
圖3. ‘Grand Gala’(A)、‘Noblesse’(B)、‘Super baby’(C)3品種玫
瑰切花在5、10、15與25 ℃下瓶插之花朵直徑變化…………54
圖4. ‘Grand Gala’、‘Noblesse’、‘Super baby’以藥劑於15 ℃預措8小
時後,移至5、15 ℃下瓶插八天對玫瑰切花外觀品質之影響….55
圖5. 採收後離水時間對‘Grand Gala’瓶插時呼吸率(A、B)及乙烯
生成量(C、D)之影響……………………………………………..60
圖6. 採收後離水時間對‘Grand Gala’瓶插時鮮重變化(A、B)及吸
水量(C、D)之影響……………………………………………..61
圖7. 採收後離水時間對‘Grand Gala’瓶插時花朵直徑之影
響…………………………………………………………………..63
圖8. 外加糖類對不同玫瑰切花品種瓶插時鮮重變化之影響……….66
圖9. 外加糖類對不同玫瑰切花品種瓶插時吸水量之影響………….67
圖10. 外加糖類對不同玫瑰切花品種瓶插時花朵直徑之影響……...69
圖11. 不同藥劑瓶插處理對‘Grand Gala’玫瑰切花呼吸率之影響…..75
圖12. ‘Grand Gala’玫瑰切花以不同藥劑瓶插處理對乙烯生成量之影
響………………………………………………………………..76
圖13. ‘Grand Gala’玫瑰切花以不同藥劑瓶插處理對鮮重變化之影
響………………………………………………………………. 77
圖14. ‘Grand Gala’玫瑰切花以不同藥劑瓶插處理對吸水量變化之影
響………………………………………………………………..78
圖15. ‘Grand Gala’玫瑰切花以20 mM ATA混合不同濃度Malonate處
理藥劑瓶插五天對其外觀品質之影響………………………..82
圖16. ‘Grand Gala’玫瑰切花以20 mM ATA混合不同濃度Proline處理
藥劑瓶插五天對其外觀品質之影響…………………………..83
圖17. ‘Grand Gala’玫瑰切花於15 ℃以藥劑預措不同時間對鮮重變化
之影響…………………………………………………………..85
圖18. ‘Grand Gala’玫瑰切花於15 ℃以藥劑預措不同時間對其吸水量
變化之影響……………………………………………………..86
圖19. ‘Grand Gala’玫瑰切花於15 ℃以不同藥劑預措經5 ℃冷藏3週
後對瓶插時鮮重之變化………………………………………..87
圖20. ‘Grand Gala’玫瑰切花於15 ℃以不同藥劑預措經5 ℃冷藏3週
後對瓶插時吸水量之變化……………………………………..88
圖21. ‘Grand Gala’、‘Super baby’玫瑰切花以不同濃度ATA瓶插處理
之鮮重、吸水量變化……………………………………………92
圖22. ‘Grand Gala’玫瑰切花以不同濃度ATA在15 ℃下預措不同時間
後對鮮重變化的影響…………………………………………..93
圖23. ‘Grand Gala’玫瑰切花以不同濃度ATA在15 ℃下預措不同時間
後對瓶插吸水量變化的影響…………………………………..94
圖24. ‘Grand Gala’、‘Super baby’玫瑰切花以不同濃度kinetin瓶插處理之鮮重、吸水量變化………………………………………..96
圖25. ‘Grand Gala’、‘Super baby’玫瑰切花以不同濃度kinetin瓶插處理之呼吸率乙烯生成量之變化………………………………..97
圖26. ‘Grand Gala’、‘Super baby’玫瑰切花以不同濃度kinetin瓶插處理對花朵直徑之影響…………………………………………..99
圖27. ‘Grand Gala’、‘Super baby’玫瑰切花以不同濃度IAA混合20 mM ATA瓶插處理之鮮重、吸水量變化…………………...…100
圖28. ‘Grand Gala’、‘Super baby’玫瑰切花以不同濃度IAA混合20 mM ATA瓶插處理之呼吸率乙烯生成量之變化…………….101
圖29.‘Grand Gala’、‘Superbaby’以不同濃度IAA混合20 mM ATA瓶
插處理對花朵直徑之影響……………………………………103
表 目 錄
表1. 不同瓶插溫度對不同玫瑰切花花瓣L、a、b值之影響…………..56
表2. 不同瓶插溫度對玫瑰切花瓶插壽命的影響…………………….57
表3. 不同瓶插溫度對不同玫瑰切花花瓣澱粉含量之影響…………58
表4. 不同瓶插溫度對不同玫瑰切花花瓣全可溶性糖含量之影響…59
表5. 離水時間與花莖重剪對‘Grand Gala’玫瑰切花瓶插壽命的影
響………………………………………………………………..62
表6. 不同離水時間處理對‘Grand Gala’玫瑰切花花瓣澱粉含量之影
響……………………………………………………..……………64
表7. 不同離水時間處理對‘Grand Gala’玫瑰切花花瓣全可溶性糖含量
之影響……………………………………………………………64
表8. 不同離水時間處理對‘Grand Gala’玫瑰切花花瓣L、a、b值之影
響…………………………………………………………………65
表9. 不同離水時間處理對‘Grand Gala’玫瑰切花花瓣電質質滲漏之影
響…………………………………………………………………65
表10. 外加糖類對不同品種玫瑰切花瓶插壽命的影響……………...68
表11. 外加糖類處理對‘Grand Gala’玫瑰切花花瓣糖類含量之影響..70
表12. 外加糖類處理對‘Noblesse’玫瑰切花花瓣糖類含量之影響….71
表13. 外加糖類處理對‘Superbaby’玫瑰切花花瓣糖類含量之影響...72
表14. 外加糖類處理對‘Grand Gala’、‘Noblesse’、‘Super baby’3品種
玫瑰切花花瓣L、a、b值之影響……………………………...73
表15. 外加糖類處理對玫瑰切花花瓣電解質滲漏之影響…………...74
表16. 不同藥劑瓶插處理對‘Grand Gala’玫瑰切花花瓣澱粉含量之影
響…...………….………………………………………………..79
表17. 不同藥劑瓶插處理對‘Grand Gala’玫瑰切花花瓣全可溶性糖含
量之影響………………………………………………………..80
表18. 不同藥劑瓶插處理對‘Grand Gala’玫瑰切花瓶插壽命的影響..81
表19. 不同藥劑瓶插處理對‘Grand Gala’玫瑰切花花瓣L、a、b值之
影響………………………………..………………..…………..84
表20. ‘Grand Gala’玫瑰切花以不同藥劑於15 ℃預措不同時間對其瓶
插壽命之影響…………………………………………………..89
表21. ‘Grand Gala’玫瑰切花以不同藥劑於15 ℃預措不同時間後以5
℃冷藏3週對其瓶插壽命之影響……………………………...89
表22.‘Grand Gala’玫瑰切花以不同藥劑於15 ℃預措不同時間對其花
瓣L、a、b值之影響…………………………………………..90
表23. ‘Grand Gala’玫瑰切花以不同藥劑於15 ℃預措不同時間冷藏3
週對其花瓣Lab之影響………………………………………...91
表24. 不同濃度ATA瓶插處理對玫瑰切花瓶插壽命的影響………..95
表25. 不同ATA預措處理對‘Grand Gala’玫瑰切花瓶插壽命的影
響…………….………………………………………………….95
表26. 不同ATA預措處理對‘Superbaby’玫瑰切花瓶插壽命的影響..95
表27. 不同濃度kinetin處理對玫瑰切花瓶插壽命的影響…………..98
表28. 不同濃度IAA處理對玫瑰切花瓶插壽命的影響……………102
李哖. 1975. 切花之採收後生理. 中國園藝21(5): 211-221.
林偵祐 2000. 玫瑰的產銷歷程(下).台灣花卉圓藝 161:10-12
林傳琦、高景輝. 2001. 脯胺酸與植物鹽分逆境. 科學農業. 49(1,2):27-31.
林瑞松、謝美蓮、賴淑芬 2001. 外加乙烯及乙烯抑制劑對玫瑰‘Grand Gala’及‘Golden Medal’切花生理之影響. 中國園藝 47(3):281-290.
林瑞松. 1996. 玫瑰切花採收後生理及保鮮處理. 興大農業 19:1-5.
邱輝龍、范明仁. 1998. 花青素與色素的表現. 中國園藝 44(2):102-115.
連程翔、李哖. 1992. 預措及低溫貯運對唐菖蒲切花品質之影響. 中國園藝. 38(2):72-79.
黃肇家. 1995. 蝴蝶蘭切花低溫生理障礙之研究. 國立台灣大學園藝學研究所博士論文. 170pp.
農業統計年報. 2001版. 行政院農業委員會編印.
蔡智賢、郭銀港、鄭仔秀、李堂察. 1999. 洋桔梗花瓣老化過程中維繫構造之變化. 中國園藝:45(4):305-316.
盧美君、黃鵬林. 1994. 花瓣老化之乙烯生成及基因表現. 中國園藝 40(4):235-242.
謝美蓮. 1999. 乙烯、貯藏溫度及藥劑處理預措對玫瑰切花生理之應響. 國立中興大學園藝學研究所碩士論文 117pp.
Abraham, H. H., A. M. Kofranek, and S. T. Besemer. 1978. Postharvest handling methods for bird-of-paradise flowers (Strelitzia reginae Ait.). J. Amer. Soc. Hort. Sci. 103(2):165-169.
Acock, B. and R. Nichols. 1979. Effects of sucrose on water relation of cut, senescing, carnation flowers. Ann. Bot. 44:221-230.
Adam, Z., A. Borochov, S. Mayak, and A. H. Halevy. 1983. Correlative changes in sucrose uptake, ATPase activity and membrane fluidity in carnation petals during senescence. Physiol. Plant. 58:257-262.
Altman, S. A. and T. Solomos. 1993. 3-amino-1,2,4-triazole prolongs carnation vase life. HortScience. 28:201-203.
Altman, S. A. and T. Solomos. 1994. Inhibition of Ethylene biosynthesis and action in cut carnations (Dianthus caryophyllus L.) by aminotriazole. J. Amer. Soc. Hort. Sci. 119(2):282-287.
Asen, S., K. H. Norrist, and R. N. Stewart. 1969. Absorption spectra and color
of aluminum-cyanidin 3-glucoside complexes as influenced by pH. Phytochem. 8:653 -659.
Asen, S., K. H. Norrist, and R. N. Stewart. 1971. Effect of pH and concentration of the anthocyanin-flavonol co-pigment complex on the color of ‘Better Times’ roses. J. Amer. Soc. Hort. Sci. 96(6):770-773.
Asen, S., R. N. Stewart, and K. H. Norrist. 1972. Co-pigmentation of anthocyanins in plant tissues and its effect on color. Phytochem. 11:1139-1144.
Asen, S. 1976. Known factors responsible for infini flow color variations. Acta Hort. 63:217-223.
Barthe, P., V. Vaillant, and S. Gudin. 1991a. Definition of indicators of senescence in the rose: effect of the application of plant hormones. Acta Hort. 298: 61-68.
Barthe, P., V. Vaillant, and S. Gudin. 1991b. PH of cell sap and vacuolar pH during senescence of the rose petal. Acta Hort. 298: 135-139.
Berkholst, C. M. 1989. High starch content in ‘Sonia’ rose corollas at picking may add quality to vase life. Gartenbauwisseneschaft. 54(1):9-10.
Biran. I. and A. H. Halevy. 1974a. Effect of varying light intensities and temperature treatments applied to whole plants, or locally to leaves or flower buds, on growth and pigmentation of ‘Baccara’ rose. Physiol. Plant. 31:175-179.
Biran. I. and A. H. Halevy. 1974b. Effects of short-term heat and shade treatments on petal colour of ‘Baccara’ rose. Physiol. Plant. 31:180-185.
Biran. I., H. Z. Enoch., N. Zieslin, and A. H. Halevy. 1973. The influence of light intensity temperature and carbon dioxide concentration on anthocyanin content and blueing of ‘Baccara’ rose. Sci. Hort. 1:157-164.
Bogges, S. F., C. R. Stewart, D. Aspinall and L. G. Paleg. 1976. Effect of water stressed on proline synthesis from radioactive precursors. Plant Physiol. 58: 398-401.
Borochov, A., S. Mayak, and A. H. Halevy. 1976a. Combined effects of abscisic acid and sucrose on growth and senescence of rose flowers. Physiol. Plant. 36:221-224.
Borochov, A., T. Tirosh, and A. H. Halevy. 1976b. Abscisic acid content of senescing petals on cut rose flowers as affected by sucrose and water stress. Plant physiol. 58:175-178.
Borochov, A., A. H. Halevy, H. Borochov, and M. Shinitzky. 1978. Microviscosity of plasmalemmas in rose petals as affected by age and environmental factors. Plant Physiol. 61:812-815.
Borochov, A., A. H. Halevy, and M. Shinitzky. 1982a. Senescence and the fluidity of rose petal mrmbranes. Plant Physiol. 69:296-299.
Borochov, A., S . Mayak, and R. Broun. 1982b. The involvement of water stress and ethylene in senescence of cut carnation flowers. J. Exp. Bot. 33:1202-1209.
Borochov, A. and W. R. Woodson. 1989. Physiology and biochemistry of flower petal senescence. Hort. Rev. 11:15-43.
Borochov, A., H. Spiegelstein, and R. Porat. 1995. Membrane lipids involved in the regulation of flower senescence. Acta Hort. 405: 240-245.
Bosse, C. A, and J. Van Staden. 1989. Cytokins in cut carnation flowers. V. Effect of cytokinin type, concentration and mode of application on flower longevity. J. Plant Physiol. 135:155-159.
Boyer, J. S., A. J. Cavalieri, and E. -D. Schulze. 1985. Control of the rate of cell enlargement: excision, wall relaxation, and growth-induved water potential. Planta. 163:527-543.
Burdett, A. N. 1970. The cause of bent neck in cut roses. J. Amer. Soc. Hort. Sci. 95(4):427-431.
Chin, CK. and J. N. Sacalis. 1977.Metabolism of sucrose in cut roses. Ⅱmovement and inversion of sucrose absorbed by cut rose stems. J. Amer. Soc. Hort. Sci. 102(5):537-540.
Coker, T., S. Mayak, and J. E. Thompson. 1985. Effect of water stress on ethylene production and on membrane microviscosity in carnation flowers. Sci. Hort. 27:317-324.
Cook, D., M. Rasche, and W. Eisinger. 1985. Regulation of ethylene biosynthesis and action in cut carnation flower senescence by cytokinins. J. Amer. Soc. Hort. Sci. 110(1):24-27.
Coorts, G. D., J. B. Gartner, and J. P. McCollum. 1965. Effect of senescence and preservation on respiration in cut flowers of Rosa hybrida, ‘Velvet Times’. Proc. Amer. Soc. Hort. Sci. 86:779-790.
Coorts, G. D. 1973. Internal metabolic changes in cut flower. HortScience. 8:195-198.
Drory, A., A. Borochov, and S. Mayak. 1992. Transient water stress and phospholipid turnover in carnation flowers. J. plant physiol. 140:116-120.
Drory, A., S. Beja-Tal, A. Borochov,and E. Gindin, S. Mayak. 1995. Transient water stress in carnation flowers:effects of cycloheximide. Sci. Hort. 64:167-175.
Dubois, M.. 1956. Colorimetric method for determination of sugar and related substances. Anal. Chem. 28:350-356.
Durkin, D. and R. Kuc. 1966. Vascular blockage and senescence of the cut rose flower. Proc. Amer. Soc. Hort. Sci. 89:683-688.
Durkin, D. J. 1979. Effect of millipore filtration, citric acid, and sucrose on peduncle water potential of cut rose. J. Amer. Soc. Hort. Sci. 104(6):860-863.
Durkin, D., V. Vaillant., L. Arene, and P. Barthe. 1991. Effect of preservative solutions on some indicators of senescence in cut rose flowers. Acta Hort. 298:141-144.
Evans, R. Y. and M. S. Reid. 1986. Control of petal expansion during diurnal opening of roses. Acta Hort. 181:55-63.
Evans, R. Y. and M. S. Reid. 1988. Changes in carbohydrates and osmotic potential during rhythmic expansion of rose petals. J. Amer. Soc. Hort. Sci. 133:884-888.
Faragher, J. D., A. Borochov, V. Keren-Paz, Z. Adam, and A. H. Halevy. 1984a. Changes in parameters of cell senescence in carnation flowers after cold storage. Sci. Hort. 22:295-302.
Faragher, J. D., S. Mayak, T. Tirosh, and A. H. Halevy. 1984b. Cold storage of rose flowers: effects of cold storage and water loss on opening and vase life of ‘Mercedes’ roses. Sci. Hort. 24:369-378.
Faragher, J. D. and S. Mayak. 1984. Physiological response of cut rose flowers to exposure to low temoerature: changes in membrane permeability and ethylene production. J. Expt. Bot. 35(156):963-974.
Faragher, J. D., S. Mayak, and T. Tirosh. 1986. Physiological response of cut rose flowers to cold storage . Physiol. Plant. 67:205-210.
Faragher, J. D., E. Wachtel, and S. Mayak. 1987. Changes in the physical state of membrane lipids during senescence of rose petals. Physiol. Plant. 83:1037-1042.
Fuchs, Y. and M. Lieberman. 1968. Effectd of kinetin, IAA, and giberellin on ethylene production, and their interactions in growth of seedlings. Plant. Physiol. 43:2029-2036.
Goatley, J. M. and R. E. Schmidt. 1990.Anti-senescence activity of chemicals applied to kentucky bluegrass. J. Amer. Soc. Hort. Sci. 115(4):654-656.
Goszczynska, D. and R. M. Rudnicki. 1982. Long-term storage of cut carnation cut at green-bud stage. Sci. Hort. 17:289-297.
Goszczynska, D. and M. S. Reid. 1985. Studies on the development of tight cut rose buds. Acta Hort. 167:101-108.
Goszczynska, D. M. and R. M. Rudnicki. 1988. Storage of cut flower. Hort. Rev. 10:35-62.
Goszczynska, D., H. Itzhaki, A. Borochov, and A. H. Halevy. 1990. Effects of sugar on physical and compositional properties of rose petal membranes. Sci. Hort. 43:313-320.
Halevy, A. H. 1976. Treatments to improve water balance of cut flowers. Acta Hort. 64:223-230.
Halevy, A. H. and S. Mayak. 1979. Senescence and postharvest physiology of cut flowers, Part 1. Hort. Rev. 1:204-236.
Halevy, A. H. and S. Mayak. 1981. Senescence and postharvest physiology of cut flowers, Part 2. Hort. Rev. 3:59-143.
Halevy, A. H. 1986. Flower senescence. In Y. Y. Leshem, A. H. Halevy, and C. Frenkel, eds. Process and control of plant senescence. Elsevier Science Pub. p.142-161.
Hammond, B. W. 1982. Changes in amylase activity during rose bud opening. Sci. Hort. 16:283-289.
Handa, S., A. K. Handa, P. M. Hasegawa, and R. A. Bressan. 1986. Proline accumlation and adaptation of cultured plant cells to water stress. Plant Physiol. 80:938-945.
Hanebuth, W. F., R. M. Chasson, and D. Pittman. 1974. Sulfate uptake and respiration of aging potato discs modified by malonic acid and ultraviolet radiation. Physiol. Plant. 30:273-278.
Hanley, K. M., S. Meir, and W. J. Bramlage. 1989. Activity of ageing carnation flower parts and the effects of 1-(malonylamino)cyclopropane-1-carboxylic acid-induced ethylene. Plant Physiol. 91(3):1126-1130.
Hare, P. D. and W. A. Cress. 1997. Metabolic implications of stress-induced proline accumlation in plants. Plant Growth Regul. 21:79-102.
Ho, L. C. and R. Nichols. 1977. Translocation of 14C-sucrose in relation to changes in carbohydrate content in rose corollas cut at different stages of development. Ann. Bot. 41:227-242.
Hoffman, N. E., Y. Liu, and S. F. Yang. 1983. Changes in 1-(malonylamino)cyclopropane-1-caroxylic acid content in wilted wheat leaves in relation to their ethylene production rates and 1-amioncyclopropane-1-caroxylic acid content. Planta. 157:518-823.
Hu, Y., M. Doi, and H. Imanishi. 1998.Competitive water relations between leaves and flower bud during transport of cut rose. J. Japan. Soc. Hort. Sci. 67(4):532-536.
Hu, Y., M. Doi, and H. Imanishi. 1998b. Improving the longevity of cut roses by cool and wet transport. J. Japan. Soc. Hort. Sci. 67(5):681-684.
Ichimura, K. and K. Suto. 1999. Effects of the time of sucrose treatment on vase life, soluble carbohydrate concentrations and ethylene production in cut sweet pea flowers. Plant Growth Regul. 28:117-122.
Ichimura, K., K. Kojima, and R. Goto. 1999a. Effects of temperature, 8-hydroxyquinoline sulphate and sucrose on the vase life of cut rose flowers. Post. Bio.Tech. 15:33-40.
Ichimura, K., S. Ueyama, and R. Goto. 1999b. The roles of soluble carbohydrate constituents in cut rose flowers. J. Japan. Soc. Hort. Sci. 68(3):534-539.
Ichimura, K., Y. Mukasa, T. Fujiwara, K. Kohata, R. Doto, and K. Suto. 1999c. Possible roles of methyl glucoside and myo-inositol in the opening of cut rose. Ann. Bot. 83:551-557.
Ichimura, K., K. Kojima, and R. Goto. 2000. Soluble carbohydrates in Delphinium and their influence on sepal abscission in cut flowers. Physiol. Plant. 108:307-313.
Jiao, XZ., S. Philosoph-Hadas, LL. Su, and S. F. Yang. 1986. The conversion of 1-(malonylamino)cyclopropane-1-caroxylic acid to 1-amioncyclopropane-1-caroxylic acid in plant tissue. Plant Physiol. 81:637-641.
Jones, R. B. and M. Hill. 1993. The effect of germicides on the longevity of cut flowers. J. Amer. Soc. Hort. Sci. 118(3):350-354.
Kaltaler, R. E. L. and P. L. Steponkus. 1974. Uptake and metabolism of sucrose in cut roses. J. Amer. Soc. Hort. Sci. 99(6):490-493.
Kaltaler, R. E. L. and P. L. Steponkus. 1976. Factors affecting respiration in cut roses. J. Amer. Soc. Hort. Sci. 101(4):352-354.
Kandpal, R. P. and N. A. Rao. 1985. Alterations in the biosynthesis of proteins and nucleic acids in finger millet (Eleucine coracana) seedlings during water stress and the effect of proline on protein on biosynthesis. Plant Sci. 40:73-79.
Kavi Kishor, P. B., Z. Hong, G-H. Miao, C-A A. Hu, and D. P. S. Verma. 1995. Overexpression of △1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108:1387-1394.
Kofranek, A. M. and M. S. Reid. 1983. Environmental factors influencing the opening of bud-cut flowers. Acta Hort. 138:291-297.
Koing, R. E. 1986. The role of ethylene in corolla unfolding in Ipomoea nil (Convulvulaceae). Amer. J. Bot. 73:152-155.
Kuiper, D., H. S. Van Reenen, and S. A. Ribot. 1991. Effect of gibberellic acid on suger transport into petals of ‘madelon’ rose flowers during bud opening. Acta Hort. 298:93-98.
Kuiper, D., S. A. Ribot., H. S. Van Reenen, and N. Marissen. 1995. The effect of sucrose on the flower bud opening of Madelon cut roses. Sci. Hort. 60:325-336.
Kuiper, D., H. S. Van Reenen, and S. A. Ribot. 1996.Characterisation of flower bud opening in rose; a comparison of Madelon and Sonia roses. Post. Bio. Tech. 9:75-86.
Lineberger, R. D. and P. L. Steponkus. 1976. Identification and localization of vascular occlusions in cut roses. J. Amer. Soc. Hort. Sci. 101(3):246-250.
Lukaszewska, A. J., G. R. Dreise, F. J. Perezzuniga, and N. Goria. 1989. Effect of cold storage on changes in the content of total and individual free amino acids in corollas from cut ‘Sonia’ roses. J. Amer. Soc. Hort. Sci. 114(2):293-297.
Maekawa, S., M. Terabun, and N. Nakamura. 1980. Effects of ultraviolet and visible light on flower pigmentation of ‘Ehigasa’ roses. J. Japan. Soc. Hort. Sci. 49(2):251-259.
Marousky, F. J. 1969. Vascular blockage, water absorption, stomatal opening, and respiration of cut ‘Better Times’ roses treated with 8-hydroxyquinolin citrate and sucrose. J. Amer. Soc. Hort. Sci. 94:223-226.
Marousky, F. J. 1971. Inhibition of vascular blockage and increased moisture retention in cut roses induced by pH, 8-hydroxyquinolin citrate, and sucrose. J. Amer. Soc. Hort. Sci. 96(1):38-41.
Matile, P. and F. Winkenbach. 1971. Function of lysosomes and lysosomal enzymes in the senescing corolla of the morning glory. J. Exp. Bot. 22:759-771.
Maxie, E. C., D. S. Farnham, F. G. Mitchell, N. F. Sommer, R. A. Parsons, R. G. Snyder, and H. L. Rae. 1973. Temperature and ethylene effects on cut flowers of carnation(Dianthus carophyllus L.) J. Amer. Soc. Hort. Sci. 98(6):568-572.
Mayak, S. and A. H. Halevy. 1974. The action of kinetin in improving the water balance and delaying senescence processes of cut rose flowers. Physiol. Plant. 32:330-336.
Mayak, S., A. H. Halevy, S. Sagie, A. Bar-Yoseph, and B. Bravdo. 1974. The water blance of cut rose flowers. Physiol. Plant. 31:15-22.
Mayak, S., Y. Vaadia, and D. R. Dilley. 1977. Regulation of senescence in carnation (Dianthus caryophyllus) by ethylene. Plant Physiol. 59:591-593.
Mayak, S., A. Borochov, and T. Tirosh. 1985. Transient water stress in carnation flowers: effect of amino-oxyacetic acid. J. Exp. Bot. 36(166):800-806.
Mayak, S., S. Meir, and H. Ben-Sade. 2001. The effect of transient water stress on sugar metabolism and development of cut flowers. Acta. Hort. 543:191-197.
Midoh, N., Y. Saijou, K. Matsumoto, and M. Iwata. 1996. Effects of 1,1-dimethyl-4-(phenylsulfonyl)semicarbazide (DPSS) on carnation flower longevity. Plant Growth Regul. 20:195-199.
Mor, Y., F. Johnson, And J. D. Faragher. 1989a. Long term storage of roses. Acta Hort. 261:271-281.
Mor, Y., F. Johnson, And J. D. Faragher. 1989b. Preserving the quality of cold-stored rose flowers with ethylene antagonists. HortSciene. 24(4):640-641.
Onoue, T., M. Mikami, T. Yoshioka, T. Hashiba, and S. Satoh. 2000. Characteristics of the inhibitory action of 1,1-dimethyl-4-(phenylsulfonyl)semicarbazide (DPSS) on ethylene production in carnation (Dianthus caryophyllus L.) flowers. Plant Growth Regul. 30:201-207.
Oren-Shamir, M., G. Dela, R. Ovadia, A. Nissim-Levi, S. Philosoph-Hadas, and S. Meir. 2001. Differentiation between petal blueing and senescence of cut ‘Mercedes’ rose flowers. J. Hort. Sci. Biotech. 76(2):195-200.
Partichard, M. K., C. S. Hew, and H. Wang. 1991. Low-temperature storage effects on suger countent, respiration and quality of anthurium flowers. J. Hort. Sci. 66(2):209-214.
Podd, L. A. and J. Van Staden. 1999. The use of acetaldehyde to control carnation flower longevity. Plant Growth Regul. 28:175-178.
Put, H. M. C. and F. M. Rombouts. 1989. The influence of purified microbial pectic enzymes on the xylem anatomy, water uptake and vase life of rosa cultivar ‘sonia’. Sci. Hort. 38:147-160.
Reid, M. S. and R. Y. Evans. 1986. Control of cut flower opening. Acta. Hort. 181:45-54.
Reid, M. S. 1989. The role of ethylene in flower senescence. Acta Hort. 261:157-169.
Reid, M. S., R. Y. Evans, and L. L. Dodge. 1989. Ethylene and silver thiosulfacte influence opening of cut rose floweers. J. Amer. Soc. Hort. Sci. 114(3):436-440.
Rogers, M. N. 1973. An historical and critical review of postharvest physiology research on cut flowers. Hortscience. 8(3):3-8.
Rudolph, A. S., J. H. Crowe, and L. M. Crowe. 1986. Effects of three stablizing agent — proline, betaine and trehalose — on membrane phopspholipids. Arch. Biochem. Biophys. 245:134-143.
Savin, K. W., S. C. Baudinette, M. W.Graham, M. Z. Michael, G. D. Nugent, C. Y. Lu, S. T. Chandler, and E. C. Cornish. 1995. Antisense ACC oxidase RNA delays cornation petal senescence. Hortscience 30(5): 970-972.
Sacalis, J. N. and D. Durkin. 1972. Movement of 14C in cut roses and carnations after uptake of 14C-sucrose. J. Amer. Soc. Hort. Sci. 97:481-484.
Serrano, M., F. Romojaro, J. L. Casas, J. A. Delrio, and M. Acosta. 1990. Action and mechanism of α-aminoisobutyric acid as a retardant of cut carnation senescence. Sci. Hortic. 44:127-134.
Serrano, M., G. Martinez, M. T. Pretel, F. Riquelme, and F. Romojaro. 1992. Cold storage of rose flowers (Rosa hybrida, M. cultivar ‘Visa’) :physiological alterations. Sci. Hort. 51:129-137.
Serrano, M., Ma C. Martinez-Madrid, and F. Romojaro. 1999. Ethylene biosynthesis and polyamine and ABA levels in cut carnations treated with aminotriazole. J. Amer. Soc. Hort. Sci. 124(1):81-85.
Serrano, M., A. Amoros, M. T. Pretel, M. C. Martinez-Madrid, and F. Romojaro. 2001. Preservative solutions containing boric acid delay senescence of carnation flowers. Post. Biol. Tech. 23:133-142.
Shimamura, M. , A. Ito, K. Suto, H. Okabayashi, and K. Ichimura. 1997. Effects of α-aminoisobutyric acid and sucrose on the vase life of hybrid Limonium. Post. Bio. Tech. 12:247-253.
Sisler, E. C. and M. Serek. 1999. Compounds controlling the ethylene receptor. Bot. Bull. Acad. Sin. 40:1-7.
Smith, M. T., Y. Saks, and J. Van Staden. 1992. Ultrastructural changes in the petals of senescing flowers of Dianthus caryophyllus L. Ann. Bot. 69:277-285.
Solomon, A., S. Beer, Y. Waisel, G. P. Jones, and L. G. Paleg. 1994. Effects of NaCl on the carboxylating activity of rubisco from Tamarix jordanis in the presence and absence of proline-related compatible solutes. Physiol. Plant. 90:198-204.
Thompson, J. E., S. Mayak, M. Shinitzky, and A. H. Halevy. 1982. Acceleration of membrane senescence in cut carnation flowers by treatment with ethylene. Plant Physiol. 69:859-863.
Tonecki, J., A. J. Lukaszewska, and N. Gorin. 1989. Effect of L-proline, l-hydroxyproline and gamma-amino butryic acid on vase life of cut ‘Sonia’ roses. Gartenbauwisseneschaft. 54(2):82-85.
Ueyama, S. and K. Ichimura. 1998. Effects of 2-hydroxy-3-ionene chloride polymer on the vase life of cut rose flowers. Post. Bio. Tech. 14:65-70.
Van Doorn, W. G., H. C. M. de Stigter, and Y. de Witte. 1986. Effect of exogenous bacterial concentrations on water relations of cut rose flowers Ⅱ. bacteria in the vase life. Acta Hort. 181:463-465.
Van Doorn, W. G. 1989. Role of physiological processes, microorganisms, and air embolism in vascular blockage of cut rose flowers. Acta Hort. 261:27-34.
Van Doorn, W. G. 1990. Aspiration of air at the cut surface of roses stems and its effect on the uptake of water. J. Plant. Physiol. 137:160-164.
Van Doorn, W. G. and R. R. J. Perik. 1990. Hydroxyquinoline citrate and low pH prevent vascular blockage in stems of cut rose flowers by reducing the number of bacteria. J. Amer. Soc. Hort. Sci. 115(6):979-981.
Van Doorn, W. G., Y. de Witte, and R. R. J. Perik. 1990. Effect of antimicrobial compounds on the number of bacteria in stems of cut rose flowers. J. Applied Bacteriol. 68:117-122.
Van Doorn, W. G., G. Groenewegen., P. A. Van De Pol, and C. E. M. Berkholst. 1991a. Efects of carbohydrate and water status on flower opening of Madelon roses. Post. Biol. Tech. 1:47-57.
Van Doorn, W. G., H. C. M. de Stigter., Y. de Witte, and A. Boekestein. 1991b. Micro-organisms at the cut surface and in xylem vessels of rose stems: a scanning electron microscope study. J. Applied Bactriol. 70:34-39.
Van Doorn, W. G. and Y. de Witte. 1991. Effect of dry storage on bacterial counts in stems of cut rose flowers. Hortscience. 26(12):1521-1522.
Van Doorn, W. G. 1995. Vascular occlusion in cut rose flowers: a survey. Acta Hort. 405:58-66.
Van Doorn, W. G. and M. S. Reid. 1995. Vascular occlusion in stems of cut rose flowers exposed to air: role of xylem anatomy and rates of transpiration. Physiol. Plant. 93:624-629.
Van Doorn, W. G. and E. Otma. 1995. Vascular occlusion in cut flowering rose stems exposed to air: role of water entry into the lumina of the xylem conduits opened by cutting. J. Plant. Physiol. 145:78-82.
Van Doorn, W. G., Y. de Witte, and H. Harkema. 1995. Effect of high numbers and longevity of cut carnation flowers.
Van Doorn, W. G. and V. Suiro. 1996. Relationship between cavitation and water uptake in rose stems. Physiol. Plant. 96:305-311.
Van Doorn, W. G. 1997. Water relations of cut flower. Hort. Rev. 18:1-85.
Wang, H. and W. R. Woodson. 1989. Reversible inhibition of ethylene action and interruption of petal senescence in carnation flowers by norbornadiene. Plant Physiol. 89:434-438.
Woltering, E. J. and W. G. Van Doorn. 1988. Role of ethylene in senescence of petals morphological and taxonomical relationships. J. Exp. Bot. 39(208):1605-1616.
Woodson, W. R. and H. Wang. 1987. Invertases of carnation petals. Partial purification, characterization and changes in activity during petal growth. Physiol. Plant. 71:224-228.
Wulster, G., J. Sacalis, and H. Janes. 1982. The effect of inhibitors of proteins synthesis on ethylene-induced senescence in isolated carnation petals. 107(1):112-115.
Yamamoto, K., Y. Yokoo, Y. Makimoto, Y. Arima, and K. Oshima. 1995. Prolongation of the vase life of cut carnation flowers by treatment with a combination of cis-propenylphosphonic acid andα-aminoisobutyric acid. Acta Hort. 394:289-295.
Yang, S. F. and N. E. Hoffman. 1984. Ethylene biosynthesis and it’s regulation in higher plant. Ann. Rev. Plant Physiol. 35:155-189.
Yoram, M., F. Johnson, and J. D. Faragher. 1989. Preserving the quality of cold-stored rose flowers with ethylene antagonists. Hortscience. 24(4):640-641.
Yoshiba, Y., T. Kiyosue, K. Nakashima, K. Yamaguchi-shinozaki, and K. Shinozaki. 1997. Regulation of levels of proline as an osmolyte in plants under water stress. Plant cell physiol. 38(10):1095-1102.
Yoshii, H. and H. Imaseki. 1981. Biosynthesis of auxin-induced ethylene. Effects of indole-3-acetic acid, benzyladenine and 1-amioncyclopropane-1-caroxylic acid (ACC) and ACC synthase. Plant and Cell Physiol. 22(3):369-379.
Zieslin, N., I. Biran, and A. H. Halevy. 1974. The effect of growth regulators on the growth and pigmentation of ‘Baccara’ rose. Plant Cell Physiol. 15:341-349.
Zieslin, N., H. C. Kohl. Jr., A. M. Kofranek, and A. H. Halevy. 1978. Changes in the water status of cut roses and its relationship to bent-neck phenomenon. J. Amer. Soc. Hort. Sci. 103(2):176-179.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top