跳到主要內容

臺灣博碩士論文加值系統

(54.92.164.9) 您好!臺灣時間:2022/01/23 05:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱雯卉
研究生(外文):Wen-Hui Chiu
論文名稱:環境因子、乙烯與培養基添加物對蝴蝶蘭瓶苗品質的影響
論文名稱(外文):Effects of Environmental Factors、Ethylene and Medium Additives on Quality of Phalaenopsis Plantlets In Vitro
指導教授:林瑞松林瑞松引用關係
指導教授(外文):Ruey-Song Lin
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:143
中文關鍵詞:乙烯二氧化碳
外文關鍵詞:ethyleneCO2
相關次數:
  • 被引用被引用:11
  • 點閱點閱:2793
  • 評分評分:
  • 下載下載:502
  • 收藏至我的研究室書目清單書目收藏:1
本試驗主要探討乙烯、培養基添加物與環境因子對蝴蝶蘭瓶苗品質的影響。以ACC 1mM與Ethrel 10ppm處理的瓶苗,葉片生長較差,有老葉黃化及新葉生長緩慢的現象。但ACC 0.1mM與Ethrel 5ppm處理能增加氣孔的開張,提高氣孔密度,有利於增加二氧化碳的固定,因此可使培殖體內全可溶性糖與澱粉的累積增加。在外觀方面,則會造成莖部短縮及根部的加粗。栽培密度主要的差異在單瓶瓶苗的整齊度及單株鮮重和乾重的不同,並不影響瓶苗的生長與葉綠素含量,建議各生育階段的培養株數為一中母瓶120株,二中母瓶70株,子瓶25株。
香蕉成熟度與香蕉果手位置的試驗結果顯示,香蕉果實內的糖類與澱粉含量,並不會直接影響小植株內的糖類與澱粉含量。添加香蕉成熟度指數1的處理瓶苗二氧化碳與乙烯的含量最高,處理間對小植株的生長影響不大,若以乾物質累積的多寡為考量,可添加成熟度指數3的香蕉,果手位置則以果房較上方的第二及第三果手較佳。在蔗糖對小植株的影響方面,不添加蔗糖或添加過量蔗糖(4%)的處理,小植株的葉綠素含量低,乾物質的累積也較少,若添加2-3%的蔗糖,可提高葉綠素與乾物質的含量,由此可知適度的添加蔗糖,可提升蝴蝶蘭瓶苗的品質。
在5、25、45μmol m -2 s -1的光度試驗顯示,小植株二氧化碳含量以5μmol m -2 s -1光度處理最高,但其二氧化碳在明暗期變化上最不顯著,可知5μmol m -2 s -1光度下,光合作用能力較差,45μmol m -2 s -1光度下,小植株二氧化碳含量於明期降低,暗期增加的趨勢顯著,且在葉綠素含量與澱粉的累積最高,可知提高光度有助於增加光合作用的能力。在溫度對小植株的影響方面,35℃的處理,會造成小植株的白化死亡,不適於瓶苗的生長。25℃的處理,在葉綠素含量,果糖、葡萄糖、蔗糖及澱粉的累積都優於30℃的處理。30℃的處理於培養56天後,二氧化碳含量顯著的降低,顯示其光合作用能力下降,25℃的處理,二氧化碳下降的幅度較小,因此25℃較適於蝴蝶蘭瓶苗的生長。
Effect of ethylene、medium additives and environmental factors on quality phalaenopsis plantlet in vitro was studied. The older leaf yellowed and young leaf growth slowly resulted from ACC 1 mM and Ethrel 10 ppm treatment, but lower concentration ACC and Ethrel treatment could increase stomatal opening, raise stomatal density, advantage increase carbon dioxide fixation, therefore total soluble sugar and starch in plantlets in vitro were accumulate increase. In appearance, ACC and Ethrel treatment causes stem shortened and root swelled. Different of planting density resulted in uniform of plantlets in single bottle and fresh weight and dry weight of single plantlet, there was no effect on chlorophyll contents. It may suggest that number of each growth stage was numbers of 120 in 1st subculture, numbers of 70 in 2nd subculture, numbers of 30 in 3rd subculture.
In banana maturity and fruits hand of banana test, the results represented that the sugar and starch contents in banana fruit had no effect on sugar and starch contents in plantlet. The highest CO2 and ethylene content was found in banana maturity 1, no significance showed among treatments on plantlet growth. The best of dry weight on banana maturity 3, and consequent 2nd and 3rd of banana hands. The sucrose concentration test, lower of chlorophyll content and dry matter accumulate resulted from no additive sucrose or additive sucrose over 4% dosage. Chlorophyll and dry matter content increase if additive 2-3% sucrose. The data showed appropriate sucrose addition promotes phalaenopsis plantlet quality.
The 5、25、45 μmol m-2 s-1 irradiance test, The highest CO2 content was found in 5μmol m-2 s-1 treatment, but 5 μmol m-2 s-1 treatment had no significance changed on CO2 during light period and dark period. The data showed that 5 μmol m-2 s-1 treatment have bad photosynthesis ability. In 45 μmol m-2 s-1 treatment, CO2 concentration decreases during light period and increased trend during dark period, and the highest of chlorophyll and starch content. The elevating irradiance took advantage of increase photosynthesis ability. In temperature test, 35℃ treatment caused etiolation of plantlet and no suitable plantlet growth. Moreover, that chlorophyll content, fructose、glucose、sucrose and starch accumulate under 25℃ condition were better than 30℃ treatment. After 56 days culture, 30℃ treatment, CO2 content decreased significantly, and resulted in photosynthesis ability decreased. The condition of 25℃ treatment, CO2 decreased slightly, therefore the temperature controlled on 25℃ advantage phalaenopsis plantlet growth.
壹、前言(Introduction)………………………………………….……….….…1
貳、前人研究 (Literature review)………………………………….….……...3
一、瓶內氣體成分對培殖體的影響………………………………………….3
(一) 影響瓶苗乙烯生合成的因子………………………………………3
(二) 乙烯對培殖體的影響………………………………………………6
(三) 二氧化碳對培殖體的影響…………………………………………9
二、醣類對培殖體的影響……………………………………………………11
(一) 培殖體之醣類吸收………………………………………………..11
(二) 培殖體之蔗糖代謝………………………………………………..13
(三) 蔗糖對培殖體生長之影響………………………………………..15
(四) 蔗糖與乙烯形成的關係………………………………………..…20
三、環境因子對培殖體的影響……………………………………………...21
(一) 光線……………………………………………………………..…21
(二) 溫度…………………………………………………………….…22
四、香蕉後熟期間碳水化合物的變化………………………………….…..23
參、材料與方法 (Material and methods) …………………………….…….25
一、 試驗材料…………………………………………………………….…25
二、 試驗方法…………………………………………………………….…25
(一) 培養基添加ACC與Ethrel對瓶苗品質的影響…………………25
(二) 栽培密度對瓶苗品質的影響…………………………………..…25
(三) 培養基添加物對瓶苗品質的影響………………………………..26
(四) 環境因子對瓶苗品質的影響……………………………………..27
三、 分析方法……………………………………………………………….28
(一) 二氧化碳及乙烯含量測定………………………………………..28
(二) 葉綠素含量分析…………………………………………………..28
(三) 果糖、葡萄糖及蔗糖分析………………………………………..28
(四) 全可溶性醣與澱粉測定…………………………………………..29
(五) 葉片氣孔數觀察…………………………………………………..30
(六) 石蠟切片觀察……………………………………………………..30
四、 統計分析……………………………………………………………….31
肆、結果 (Results) …………………………………………………………..32
一、培養基添加ACC與Ethrel對瓶苗品質的影響………………………..32
(一) 培養基添加ACC與Ethrel對蝴蝶蘭瓶苗二氧化碳及乙烯含量的影響……………………………………………………………………..32
(二) 培養基添加ACC與Ethrel對蝴蝶蘭瓶苗碳水化合物含量的影響………………………………………………………………………..32
(三) 培養基添加ACC與Ethrel對蝴蝶蘭瓶苗ACC含量的影響………………………………………………………………………...33
(四) 培養基添加ACC與Ethrel對蝴蝶蘭瓶苗葉綠素含量的影響….34
(五) 培養基添加ACC與Ethrel對蝴蝶蘭瓶苗氣孔特性的影響……..34
(六) 培養基添加ACC與Ethrel對蝴蝶蘭瓶苗生長的影響………….34
二、栽培密度對瓶苗品質的影響……………………………………………35
(一) 栽培密度對蝴蝶蘭瓶苗二氧化碳及乙烯含量的影響…………..36
(二) 栽培密度對蝴蝶蘭瓶苗葉綠素含量的影響……………………..36
(三) 栽培密度對蝴蝶蘭瓶苗生長的影響……………………………..36
三、培養基添加物對瓶苗品質的影響…………………………….………...37
(一) 香蕉成熟度對蝴蝶蘭瓶苗品質的影響……………….………….37
(二) 香蕉果手位置對蝴蝶蘭瓶苗品質的影響……………………….39
(三) 蔗糖濃度對蝴蝶蘭瓶苗品質的影響…………………………….41
四、環境因子對瓶苗品質的影響…………………………………………..44
(一) 光度……………………………………………………………….44
(二) 溫度……………………………………………………………….46
伍、討論 (Discussion) ……………………………………………………..117
一、ACC與Ethrel對蝴蝶蘭瓶苗生理與生長的影響……………………117
二、栽培密度對蝴蝶蘭瓶苗生理與生長的影響………………………….118
三、香蕉成熟度對蝴蝶蘭瓶苗生理與生長的影響……………………….120
四、香蕉果手位置對蝴蝶蘭瓶苗生理與生長的影響…………………….121
五、蔗糖對蝴蝶蘭瓶苗生理與生長的影響……………………………….121
六、光度對蝴蝶蘭瓶苗生理與生長的影響……………………………….123
七、溫度對蝴蝶蘭瓶苗生理與生長的影響……………………………….124
陸、中文摘要 (Summary) ………………………………………………….126
柒、英文摘要 (English summary) …………………………………….……128
捌、參考文獻 (Reference) …………………………………………………130
玖、附錄 (Appendix)………………………………………………………..142
朱建鏞、吳安娜. 1997. 蔗糖對玫瑰花組織培養培植體光自營生長的影響. 中國園藝43(2):149-158.
朱德民. 1995. 植物與環境逆境. 國立編譯館主編. 380pp.
吳順宗. 2000. 二氧化碳及乙烯濃度對文心蘭與彩色海芋瓶苗生長之影響. 國立中興大學園藝學研究所碩士論文. 111pp.
吳瓊茹. 1996. 微氣候因子對火鶴花組織培養苗之影響. 國立台灣大學園藝學研究所碩士論文. 87pp.
高景輝. 1998. 植物荷爾蒙生理. 華香園出版社. 535pp.
陳文輝、邱明森、位國慶、楊秀蘭. 1997. 蝴蝶蘭. 亞熱帶地區花卉設施栽培技術 p.220-229.
曾夢蛟. 1990. 溫度逆境生理在園藝育種上之應用. 園藝作物育種講習會專刊 69-79.
蔡淑華. 1975. 植物組織切片技術綱要. 茂昌圖書有限公司. 72pp.
Abe, M., M. Kanechi, N. Inagaki, M. Taniguchi, and S. Maekawa. 1995. Effects of CO2 enrichment on the growth and the photosynthetic rate of in vitro cauliflower plantlets. Acta Hort. 393: 149-156.
Anandarajah, K. and B. D. McKersie. 1990. Enhanced vigor of dry somatic embryos of Medicago sativa L. with increased sucrose. Plant Sci. 71: 261-266.
Appelgren, M., A. Sǽbǿ, and T. Krekling. 1995. Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell Tiss. Org. Cult. 41: 177-185.
Azcon-Bieto, J. 1983. Inhibition of photosynthesis by carbohydrates in wheat leaves. Plant Physiol 73: 681-686.
Azcon-Bieto, J. 1986. The control of photosynthetic gas exchange by assimilate accumulation in wheat. p 231-240. In R. Marcelle, H. Clijsters, and M. Van Pouke. ed. Biological control of photosynthesis. Martinus Nijhoff Publishers, Dordrecht, The Netherland.
Beaudry, R. M., R. F. Severson, C. C. Black, and S. J. Kays. 1989. Banana Ripening : Implications of changes in glycolytic intermediate concentrations, glycolytic and gluconeogenic carbon flux, and fructose 2,6-bisphosphate concentration. Plant Physiol. 91: 1436-1444.
Bermudez, P. P., M. J. Cornejo, and J. Segura. 1985. A morphogenetic role for ethylene in hypocotyl cultures of Digitalis obscura L. Plant Cell Rep. 4: 188-190.
Biahoua, A, L. Bonneau. 1999. Control of in vitro somatic embryogenesis of spindle tree (Eunymus europaeous L.) by the sugar type and the osmotic potential of the culture medium. Plant Cell Rep. 19: 185-190.
Bieniek, M. E. and D.J. Cantliffe. 1995. Enhancement of somatic embryogenesis of Ipomoea batatas for application to a bioreactor production system. Acta Hort. 393: 173-179.
Blazkova, A., J. Ullmann, Z. Josefusova, and I. Machackova. 1989. The influence of gaseous phase on growth of plants in vitro-the effect of different types of stoppers. Acta Hort. 251: 209-214.
Borkowska, B. and J. Szczerba. 1991. Influence of different carbon sources on invertase activity and growth of sour cherry (Prunus cerasus L.) shoot cultures. J. Exp. Bot. 42 (240): 911-915.
Born man, C. H. and I. Staxen. 1990. The cytoskeleton : importance for plant cell and protoplast research. p 421-435. In R. S. Sangwan and B. Sangwan-Norreel. Ed. The impact of biotechnology in agricultrue. Kluwer Academic Press. Dordrecht. The Netherland.
Bouzayen, M., G. Felix., A. Latche, J-C. Pech, and T. Boller. 1991. Iron : an essential cofactor for the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene. Planta 184: 244-247.
Buddendorf-Joosten, J. M. C. and E. J. Woltering. 1994. Components of the gaseous environment and their effects on plant growth and development in vitro. Plant Growth Regul. 15: 1-16.
Cabaleiro, C. and A. S. Economou. 1991. Effect of light on rooting in vitro of petunia microshoots. Acta Hort. 300: 189-196.
Capellades, M., R. Lemeur, and P. Debergh. 1991. Effects of sucrose on starch accumulation and rate of photosynthesis in Rosa cultured in vitro. Plant Cell Tiss. Org. Cult. 25: 21-26.
Chi, G. L., D. G. Barfield, G. E. Sim, and E. C. Pua. 1990. Effect of AgNO3 and aminoethoxyvinylglycine on in vitro shoot and root organogenesis from seedling explants of recalcitrant Brassica genotypes. Plant Cell Rep. 9: 195-198.
De Proft, M. P., L. J. Maene, and P. C. Debergh. 1985. Carbon dioxide and ethylene evolution in the culture atmophere of Magnolia cultured in vitro. Physiol. Plant. 65: 375-379.
Debergh, P. C., J. D. Riek, and A. Piqueras. 1997. Sucrose uptake and metabolism in a double layer system for micropropagaion of Rosa multiflora. Plant Cell Tiss. Org. Cult. 47: 269-278.
Debergh, P., M. Capellades, and R. Lemeur. 1991. Effects of sucrose on starch accumulation and rate of photosynthesis in Rosa cultured in vitro. Plant Cell. Tiss. Orga. Cult. 25: 21-26.
Decout, E., T. Dubois, M. Guedira, J. Dubois, J.-C. Audran, and J. Vasseur. 1994. Role of temperature as a triggering signal for organogenesis or somatic embryogenesis in wounded leaves of chicory cultured in vitro. J. Exp. Bot. 45 (281): 1859-1865.
Desjardins, Y. 1995. Photosynthesis in vitro. On the factors regulating CO2 assimilation in micropropagation system. Acta Hort. 393: 45-61.
Dinar, M. and J. Rudich. Effect of heat stress on assimilate metabolism in tomato flower buds. Ann. Bot. 56: 249-257.
Figueira, A. and J. Janick. 1994. Optimizing carbon dioxide and light levels during in vitro culture of Theobroma cacao. J. Amer. Soc. Hort. Sci. 119(4): 865-871.
Figueira, A., A. Whipkey, and J. Janick. 1991. Increased CO2 and light promote in vitro shoot growth and development of Theobroma cacao. J. Amer. Soc. Hort. Sci. 116(3): 585-589.
Fournioux, J. C. and R. Bessis. 1993. Use of carbon dioxide enrichment to obtain adult morphology of grapevine in vitro. Plant Cell Tiss. Org. Cult. 33: 51-57.
Fujiwara, K., T. Kozai, and I. Watanable. 1988. Development of a photoautotrophic tissue culture system for shoots and/or plantlets at rooting and acclimatization stages. Acta Hort. 230: 153-158.
Gabryszewska, E. and R. M. Rudnicki. 1997. The effects of light quality on the growth and development of shoots and roots of Ficus benjamina in vitro. Acta Hort. 418: 163-167.
Gloria, D. L. V., P. A. Fernando, P. D. Simon, V. J. Mitchell, A. P. Martin, and D. W. Lawlor. 1999. Effects of CO2 and sugars on photosynthesis and composition of avocado leaves grown in vitro. Plant Physiol. Biochem. 37(7/8): 587-595.
Godo, T., K. Matsue, T. Kida, and M. Mii. 1996. Effect of sugar type on the efficiency of plant regeneration from protoplasts isolated from shoot tip-derived meristematic nodular cell clumps of Lilium × formolongi Hort. Plant cell Rep. 15: 401-404.
Goldner, W,m N, Thom, and A. Maretzki. 1991. Sucrose metabolism in sugarcane cell suspension cultures. Plant Sci. 73: 143-147.
Gonzalez, A., L. Arigita, J. Majada, and R. S.Tames. 1997. Ethylene involvement in in vitro organogenesis and plant growth of Populus tremula L. Plant Growth Regulation 22: 1-6.
Goren, R., A. Altman, and I. Giladi. 1979. Role of ethylene in abscisic acid-induced callus formation in Citrus bud culture. Plant Physiol. 63: 280-282.
GroB, U., F. Gilles, L. Bender, P. Berghofer, and K. H. Neumann. 1993. The influence of sucrose and an elevated CO2 concentration on photosynthesis of photoautotrophic peanut (Arachis hypogaea L.) cell cultures. Plant Cell Tiss. Org. Cult. 33: 143-150.
Grodzinski, B., L. Boesel, R. F. Horton. 1982. Ethylene release from leaves of Xanthium strumarum L. and Zea mays L. J. Exp. Bot. 33: 344-354.
Grout, B. W. W. and F. Price. 1987. The establishment of photosynthetic independence in strawberry cultures prior to transplanting. In: G. Ducate, M. Jacobs, and A. Simeon. ed. Plant micropropagation in horticultural industries. Proc. Symposium Florizel 87. Arlon. P 55-60.
Hagen, S. R. and P. Muneta. 1993. Effect of temperature on carbohydrate content, ADP glucose pyrophosphorylase, and ATP- and PPi-dependent phosphofructokinase activity of potato tuber callus tissue. Plant Cell Tiss. Org. Cult. 32: 155-121.
Hdider, C. and Y. Desjardins. 1994. Effects of sucrose on photosynthesis and phosphoenolpyruvate carboxylase activity of in vitro cultured strawberry plantlets. Plant Cell Tiss. Org. Cult. 36: 27-33.
Hill, S. A. and T. A. Rees. 1994. Fluxes of carbohydrate metabolism in ripening bananas. Planta 192 : 52-60.
Hopkins, W. G. 1995. Introduction to plant physiology. John Wiley & Sons. Inc. U.S.A. p. 187-210.
Jeffs, R. A. and D. H. Northcote. 1967. The influence of indol-3yl acetic acid and sugar on the pattern of induced differentiation in plant tissue culture. J. Cell Sci. 2: 77-88.
Johansson, L. and T. Eriksson. 1984. Effect of carbon dioxide in anther cultures. Physiol. Plant. 60: 26-30.
Jones, J. F. and H. Kende. 1979. Auxin-induced ethylene biosynthesis in subapical stem sections of etiolated seedlings of Pisum sativum L. Planta 146: 649-656.
Kanechi, M. and M. Ochi. 1998. The Effects of carbon dioxide enrichment, natural ventilation, and light intensity on growth, photosynthesis, and transpiration of cauliflower plantlets cultured in vitro photoautotrophically and photomixotrophically. J. Amer. Soc. Hort. Sci. 123(2): 176-181.
Kao, C. H. and S. F. Yang. 1982. Light inhibition of the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene in leaves is mediated through carbon dioxide. Planta 155: 261-266.
Kepczynski, J., B. D. Mckersie, and D. C. W. Brown. 1992. Requirement of ethylene for growth of callus and somatic embryogenesis in Medicago sativa L. J. Exp. Bot. 43: 1199-1202.
Kevers, C., M. Coumans, M. F. Coumans-Gilles and Th. Gaspar. 1984. Physiological and biochemical events leading to vitrification of plants cultured in vitro. Physiol. Plant. 61: 69-74.
Komor, E., M. Thom, and A. Maretzki. 1981. The mechanism of sugar uptake by sugarcane suspension cells. Planta 153: 181-192.
Komor, E., R. Wendler, R. Veith, J. Dancer, M. Stitt. 1990. Sucrose storage in cell suspension cultures of Saccharum sp. (sugarcane) is regulated by a cycle of synthesis and degradation. Planta 183: 31-39.
Kortessa, D. T. and A. S. Economou. 1995. Ethylene enhances shoot formation in cultures of the peach rootstock GF-677 (Prunus persica × P. amygdalus). Plant Cell Rep. 15: 87-90.
Kozai, T., K. Iwabuchi, K. Watanabe, and I. Watanabe. 1991. Photoautotrophic and photomixotrophic growth of strawberry plantlets in vitro and changes in nutrient composition of the medium. Plant Cell Tiss. Org. Cult. 25: 107-115.
Kozai, T., K. Watanabe, and B. R. Jeong. 1995. Stem elongation and growth of Solanum tuberosum L. in vitro in response to photosynthetic photon flux, photoperiod and difference in photoperiod and dark period temperatures. Scientia Hort. 64: 1-9.
Kumar, P. P., D. M. Reid, and T. A. Thorpe. 1987. The role of ethylene and carbon dioxide in differentiation of shoot buds in excised cotyledons of Pinus radiata in vitro. Physiol. Plant. 69: 244-252.
Kvaalen, H. and S. V. Arnold. 1991. Effect of various partial pressues of oxygen and carbon dioxide on different stages of somatic embryogenesis in Picea abies. Plant Cell Tiss. Org. Cult. 27: 49-57.
Kwa, S. H., Y. C. Wee, and P. P. Kumar. 1997. Ribulose-1-5-bisphosphate carboxylase and phosphoenolpyruvate carboxylase activities of photoautotrophic callus of Platycerium coronarium (Koening ex O.F. Muell.) Desv. under CO2 enrichment. Plant Cell Tiss. Org. Cult. 50: 75-82.
Langford, P. J., and H. Wainwright. 1988. Influence of sucrose concentration on the photosynthetic ability of in vitro grown rose shoots. Acta Hort. 227: 305-310.
Lau, O. L., and S. F. Yang. 1973. Mechanism of a synergistic effect of kinetin on auxin-induced ethylene production. Plant Physiol. 51: 1011-1014.
Lawlor, D. W., G. D. L. Vina, F. Pliego-Alfaro, S. P. Driscoll, V. J. Mitchell, and M. A. Parry. 1999. Effects of CO2 and sugars on photosynthesis and composition of avocado leaves grown in vitro. Plant Physiol. Biochem. 37 (7/8): 587-595.
Lee, N., H. Y. Wetzstein, and H. E. Sommer. 1985. Effects of quantum flux density on photosynthesis and chloroplasts ultrastructure in tissue cultured plantlets and seedlings of Liquidambar styraciflua (Hamamelidaceae) during acclimatization. Am. J. Bot. 69: 1579-1586.
Lees, R. P., E.H. Evans, and J. R. Nicholas. 1991. Photosynthesis in Clematis, ‘The President’, during growth in vitro and subsequent in vivo acclimatization. J. Expl. Bot. 42: 605-610.
Lin, R. S. 1992. The physiological influence of 1-aminocyclopropane-1- carboxylic acid and Ethrel on phalaenopsis plantlets in virto. J. Agric. Res. China. 41 (2): 178-186.
Magdalita, P. M., I. D. Godwin, R. A. Drew, and S. W. Adkins. 1997. Effect of ethylene and culture environment on development of papaya nodal cultures. Plant Cell Tiss. Org. Cult. 49: 93-100.
Magdalita, P. M., I. D. Godwin, R. A. Drew, and S. W. Adkins. 1997. Effect of ethylene and culture environment on development of papaya nodal cultures. Plant Cell Tiss. Org. Cult. 49: 93-100.
Mohiuddin, A. K. M., M. K. U. Chowdhury, Z. C. Abdullah, and S. Napis. 1997. Influence of silver nitrate (ethylene inhibitior) on cucumber in vitro shoot regeneration. Plant Cell Tiss. Org. Cult. 51: 75-78.
Mukherjee, S. K., B. Rathinasabapathi, and N. Gupta. 1991. Low sugar and osmotic requirements for shoot regeneration from leaf pieces of Solanum melongena L. Plant Cell Tiss. Org. Cult. 25:13-16.
Neuman, K. H. and L. Bender. 1987. Photosynthesis in cell and tissue culture systems. In R. Alan and I. Liss. ed. Plant tissue and cell culture. P 151-165.
Nguyen, Q. T., T. Kozai, and Nguyen U. V. 1999. Effects of sucrose concentration, supporting material and number of air exchanges of the vessel on the growth of in vitro coffee plantlets. Plant Cell Tiss. Org. Cult. 58: 51-57.
Nurit, S. K., D. Mills, and J. C. Merchuk. 2000. Sugar utilization and invertase activity in hairy-root and cell-suspension cultures of Symphytum officinale. Plant Cell Tiss. Org. Cult. 62: 89-94.
Panizza, M., A. M. Sodi, and F. Tognoni. 1988. “In Vitro” propagation of Lavandin: ethylene production during plant development. Acta Hort. 227: 334-339.
Parr, D. R., J. Edelman, and J. S. Hawker. 1976. Growth and sucrose metabolism of carrot callus strains with normal and low acid invertase activity. Physiol. Plant. 37: 223-228.
Philosoph-Hadas, S., S. Meir and N. Aharoni. 1985. Carbohydrates stimulate ethylene production in Tabacco leaf discs. Plant Physiol. 78:139-143.
Pliego-Alfaro, F., R. E. Litz, P. A. Moon, and D. J. Gray. 1996. Effect of abscisic acid, osmolarity and temperature on in vitro development of recalcitrant mango nucellar embryos. Plant Cell Tiss. Org. Cult. 44: 53-61.
Purnhauser, L., P. Medgyesy, M. Czako, P. J. Dix, and L. Marton. 1987. Stimulation of shoot regeneration in Triticum aestivum and Nicotiana plumbaginifolia Viv. Tissue cultures using the ethylene inhibitor AgNO3. Plant Cell Rep. 6: 1-4.
Righetti, B. and O. Facini. 1992. Headspace gas composition in four prunus avium cultivars with differing photosynthetic capabilities. In Vitro Cell. Dev. Biol. 28P : 179-182.
Righetti, B., D. M. Reid, and T. A. Thorpe. 1996. Growth and tissue senescence in Prunus avium shoots grown in vitro at different CO2/O2 ratios. In Vitro Cell. Dev. Biol.- Plant 32 : 290-294.
Righetti, B., E. Magnanini, R. Infante and S. Predieri. 1990. Ethylene, ethanol, acetaldehyde and carbon dioxide released by Prunus avium shoot cultures. Physiol. Plant. 78: 507-510.
Roberts, L. W., A. R. Miller, and D. L. Crawford. 1985. Lignification and xylogenesis in Lactuca pith explant cultured in vitro in the presence of auxin and cytokinin : a role for endogenous ethylene. J. Exp. Bot. 36 (162): 110-118.
Robinson, K. E. P., D. O. Adams, and R. Y. Lee. 1987. Differential physiological and morphological responses of inbred lines to the ethylene precursor 1- aminocyclopropane- 1-carboxylic acid by cultured Helianthus annuus (sunflower) shoot tips. Plant Cell Rep. 6: 405-409.
Roustan, J. P., A. Latche, and J. Fallot. 1989. Stimulation of Daucus carota somatic embryogenesis by inhibitiors of ethylene synthesis: cobalt and nickel. Plant Cell Rep. 8: 182-185.
Roustan, J. P., A. Latche, and J. Fallot. 1990. Control of carrot somatic embryogenesis by AgNO3, an inhibitor of ethylene action : effect on arginine decarboxylase activity. Plant Sci. 67: 89-95.
Shigeta, J. I., K. Sato, S. Tanaka, and M. Nakayama. 1996. Efficient plant regeneration of asparagus by inducing normal roots from in vitro multiplied shoot explants using gellan gum and glucose. Plant Sci. 113: 99-104.
Sisler, E. C. and C. Wood. 1988. Interaction of ethylene and CO2. Physiol. Plant. 73: 440-444.
Smith, K. A. and P. D. Robertson. 1971. Effect of ethylene on the root extension of cereals. Nature 234: 148-149.
Songstad, D. D., D. R. Duncan, and J. M. Widholm. 1988. Effect of 1-aminocyclopropane-1-carboxylic acid, silver nitrate, and norbornadiene on plant regeneration from maize callus cultures. Plant Cell Rep. 7: 262-265.
Suttle, J. C. 1986. Cytokinin-induced ethylene biosynthesis in nonsenescing cotton leaves. Plant Physiol. 82: 930-935.
Tadeo, F. R., T. Darius, and P. M. Eduardo. 1995. 1- aminocyclopropane- 1-carboxylic acid — induced ethylene stimulates callus formation by cell enlargement in the cambial region of internodal explants of Citrus. Plant Sci. 110: 113-119.
Taiz, 1998. Plant Physiology, second edition. Sinauer Associates, Inc. U.S.A. 792pp.
Tanaka, M., D. C. H. Yap, C. K. Y. Ng, and C. S. Hew. 1999. The physiology of Cymbidium plantlets cultured in vitro under conditions of high carbon dioxide and low photosynthetic photon flux density. J. Hort. Sci. Bio. 74(5): 632-638.
Terra, N. N., E. Garcia, and F. M. Lajolo. 1983. Starch-sugar transformation during banana ripening : the behavior of UDP glucose pyrophosphorylase, sucrose synthetase and invertase. J. Food Sci. 48: 1097-1100.
Ticha, I., F. Cap, D. Pacovska, P. Hofman, D. Haisel, V. Capkova, and C. Schafer. 1998. Culture on sugar medium enhances photosynthetic capacity and high light resistance of plantlets grown in vitro. Physiol. Plant. 102: 155-162.
Tisserat, B. and T. Murashige. 1977. Effects of ethephon, ethylene, and 2,4-Dichlorophenoxyacetic acid on asexual embryogenesis In Vitro. Plant Physiol. 60: 437-439.
Wallace, R. H. 1926. The production of intumescences upon apple twigs by ethylene gas. Bull. Torrey Bot. Club 53: 385-402.
Wang, W. C., J. R. Myers, and G. B. Collins. 1989. Establishment of stable long-term photomixotrophic cell cultures of tobacco (Nicotiana tabacum L.). Plant Sci. 61: 145-151.
Wilson, J. W., L. W. Roberts, P. M. W. Wilson, and P. M. Gresshoff. 1994. Stimulatory and inhibitory effects of sucrose concentration on xylogenesis in lettuce pith explants ; possible mediation by ethylene biosynthesis. Ann. Bot. 73: 65-73.
Wilson, S. B., K. Iwabuchi, and N. C. Rajapakse. 1998. Responses of broccoli seedlings to light quality during low-temperature storage in vitro:Ⅱ.sugar content and photosynthetic efficiency. HortScience 33(7): 1258-1261.
Yamagishi, M. 1998. Effects of culture temperature on the enlargement, sugar uptake, starch accumulation, and respiration of in vitro bulblets of Lilium japonicum Thunb. Scientia Hort. 73: 239-247.
Yang, S. F. and N. E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol. 35: 155-189.
Yoshii, H and H. Imaseki. 1981. Biosynthesis of auxin-induced ethylene. Effects of indole-3-acetic acid, benzyladenine and abscisic acid on endogenous levels of 1-aminocyclopropane-1-carboxylic acid (ACC) and ACC synthase. Plant Cell Physiol. 22 (3): 369-379.
Yu, Y. B. and S. F. Yang. 1980. Biosynthesis of wound ethylene. Plant Physiol. 66: 281-285.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top