跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/28 20:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林育如
研究生(外文):Yu-Ru Lin
論文名稱:企業最適廣告媒體分配決策模式之研究
論文名稱(外文):A Study of the Optimal Advertising Media Allocation Model
指導教授:周世玉周世玉引用關係
指導教授(外文):Shihyu Chou
學位類別:碩士
校院名稱:國立中興大學
系所名稱:行銷學系
學門:商業及管理學門
學類:行銷與流通學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:62
中文關鍵詞:廣告媒體分配模擬退火法廣告政策
外文關鍵詞:advertising media allocationsimulated annealingadvertising policy
相關次數:
  • 被引用被引用:3
  • 點閱點閱:7579
  • 評分評分:
  • 下載下載:2330
  • 收藏至我的研究室書目清單書目收藏:10
請參閱摘要(英)

Advertising is the major tool for transmitting information of products to consumers. In this study, we consider an advertising media allocation problem with the objective to maximize the firm’s profit during the planning horizon. To obtain an optimal decision, an appropriate model that incorporates related variables is developed. The Lanchester model is the basis of the advertising media allocation decision model, for it is rich enough to provide a meaningful description of aggregate market profits. We focus on finite and equally-spaced discrete periods in this model.
Since the advertising media allocation model is a non-linear programming model, a simulated annealing algorithm is employed to solve it. Other than presenting the procedure to solve the model with the simulated annealing algorithm, we explore the impacts on the objective function value of various values of the parameters. We also analyze the optimal advertising media allocation decisions against an even policy, advertising pulsing policy and advertising maintenance/pulsing policy implemented by the other major competitor respectively.

CONTENTS
ABSTRACT……………………………………………i
LIST OF TABLES …………………………………v
LIST OF FIGURES…………………………………vi
Chapter 1 Introduction…………………………1
1.1 Advertising Media Allocation………………1
1.2 Research Objectives……………………………4
1.3 Outline of The Thesis…………………………6
Chapter 2 Literature Review………………………7
2.1 The Lanchester model……………………………7
2.1.1 The Original Lanchester Model…………………8
2.1.2 The Extended Lanchester Model……8
2.2 Advertising Models…………………10
2.2.1 Duopoly Models…………10
2.2.2 Oligopoly Models……………………12
Chapter 3 Model Formulation…………………………17
3.1 The Notation and Assumptions……………………17
3.2 The Media Allocation Model………………………19
Chapter 4 Simulated Annealing…………………………22
4.1 Introduction to Simulated Annealing……………22
4.1.1 The Analogy…………………………………………23
4.1.2 The Application of Simulated Annealing………24
4.2 The Algorithm of Simulated Annealing……………25
4.2.1 Local Search Strategies……………………………25
4.2.2 The Simulated Annealing Algorithm………………26
4.3 Cooling Schedule…………………………………………31
4.3.1 The Starting Temperature …………………………31
4.3.2 The Final Temperature ………………………………32
4.3.3 The Cooling Rateα….……………………………33
4.3.4 Number of Iterations at Per Cycle IPC…34
4.3.5 Stopping Criterion θ……………………………………………36
Chapter 5 Empirical Analyses……………………………38
5.1 Sensitivity Analysis of the Parameters…………38
5.1.1 Sensitivity Analysis of the Initial Market Share of Firm 1…41
5.1.2 Sensitivity Analysis of the Marginal Values of Firm 1…43
5.2 Sensitivity Analysis of SA Parameters……………45
5.2.1 Sensitivity Analysis of the Cooling Rateα……………………...45
5.2.2 Sensitivity Analysis of Different Values of the Starting
Acceptance Probability …………………………46
5.2.3 Sensitivity Analysis of Different Combinations of theαand 47
5.3 The Analysis of the Advertising Policies…………49
5.3.1 Even Advertising Policy………………………………54
5.3.2 Advertising Pulsing Policy……………………………56
5.3.3 Advertising Pulsing/Maintenance Policy……………58
Chapter 6 Conclusions and Recommendation………………60
6.1 Conclusions…………………………………………………60
6.2 Recommendation………………………………………………62
References…………………………………………………………63
Appendix……………………………………………………………69

1.Aarts, E. H. L., and Van Larrhoven, P. J. M. “Statistical cooling:a general approach to combinatorial optimization problems.” Philips journal of research, Vol.40(1985),pp.193-126.
2.Ackoff, R. J., and Emshoff, J. R. “Advertising research at Anheuser-Busch, Inc.(1963-68).” Sloan Management Review, Vol.16(1975),pp.1-15.
3.Ali, M. M., and Storey, C. “Aspiration based simulated annealing algorithms.” Journal of global optimization, Vol.11(1997),pp.181-191.
4.Ali, M. M., Torn, A., and Viitanen, S. “A direct search variant of the simulated annealing algorithm for optimization involving continuous variables.” Computer and Operations Research, Vol.29(2002),pp.87-102.
5.Antunes, A., and Peeters, D. “On solving complex multi-period location models using simulated annealing.” European Journal of Operational Research, Vol.130(2001),pp.190-201.
6.Arora, J. S., and Huang, M. W. “Optimal design with discrete variables:some numerical experiments.” International Journal for Numerical Methods in Engineering, Vol.40(1997),pp.165-188.
7.Balling, R. J. “Optimal steel frame design by simulated annealing.” Journal of Structural Engineering, Vol.117(1991),pp.1780-1795.
8.Bennage, W. A., and Dhingra, A. K. “Single and multiobjective structural optimization in discrete-continuous variables using simulated annealing.” International Journal for Numerical Methods in Engineering, Vol.38(1995),pp.2753-2773.
9.Bohachevsky, I. O., Johnson, M. E., and Stein, M. L. “Generalized simulated annealing for function optimization.” Technometrics, Vol.28, No.3(August 1986),pp.209-217.
10.Chen, C. L. S., Stephen, M. H., and Tham, W. M. “A Simulated annealing heuristic for one-dimensional cutting stock problem.” European Journal of Operational Research, Vol.93(1996),pp.522-535.
11.Clarke, D. G. “Econometric measurement of the duration of advertising effects of sales.” Journal of Marketing Research, Vol.13(November 1976),pp.345-357.
12.Cerny, V. “Thermodynamical approach to the traveling salesman problem:an efficient simulation algorithm.” Journal of Optimization Theory and Applications, Vol.45, No.1(January 1985),pp.41-51.
13.Chintagunta, P. K. “Investigating the sensitivity of equilibrium profits to advertising dynamics and competitive effects.” Management Science, Vol.39(September 1993),pp.1146-1162.
14.Chintagunta, P. K., and Vilcassim, N. J. “An empirical investigation of advertising strategies in a dynamic duopoly.” Management Science, Vol.38(September 1992),pp.1230-1244.
15.Chintagunta, P. K., and Vilcassim, N. J. “Marketing investment decisions in a dynamic duopoly:A model and empirical analysis.” International Journal of Research in Marketing, Vol.11(1994),pp.287-306.
16.Danaher, P. J. and Rust, R. T. “Determining the optimal level of media spending.” Journal of Advertising Research, Vol.34, No.1(1994),pp.28-34.
17.Deal, K. “Optimizing advertising expenditures in a dynamic duopoly.” Operations Research, Vol.27(July-August 1979),pp.682-692.
18.Dekkers, A., and Aarts, E. “Global optimization and simulated annealing.” Mathematical Programming, Vol.50(1991),pp.367-393.
19.Eglese, R. W. “Simulated annealing:a tool for operational research.” European Journal of Operational Research, Vol.46(1990),pp.271-281.
20.Elperin, T. “Monte Carlo structural optimization in discrete variables with annealing algorithm.” International Journal for Numerical Methods in Engineering, Vol.26(1988),pp.815-821.
21.Erickson, G. M. “A model of advertising competition.” Journal of Marketing Research, Vol.12(August 1985),pp.297-304.
22.Erickson, G. M. “Empirical analysis of closed-loop duopoly advertising strategies.” Management Science, Vol.38(December 1992),pp.1732-1749.
23.Friedman, J. W.“Advertising and oligopolistic equilibrium.” The Bell Journal of Economics, Vol.14(1983),pp.464-473.
24.Fruchter, E. G., and Kalish, S. “Closed-loop advertising strategies in a duopoly.” Management Science, Vol.43(January 1997),pp.54-63.
25.Fruchter, E. G., and Kalish, S. “Dynamic promotional budgeting and media allocation.” European Journal of Operational Research, Vol.111(1998),pp.15-27.
26.Gasmi, F., and Vuong, Q. H. “An econometric analysis of some duopolistic games in prices and advertising.” Advances in Econometrics, Vol.9(1991),pp.225-254.
27.Hajek, B. “Cooling schedule for optimal annealing.” Mathematics of operations research, Vol.13, No.2(May 1988), pp.311-329.
28.Horsky, D.“An empirical analysis of the optimal advertising policy.”Management Science, Vol.23(June 1977),pp.1037-1049.
29.Horsky, D. “Market share response to advertising:An example of theory testing.” Journal of Marketing Research, Vol.14(February 1977),pp.10-21.
30.Huang, M. W., and Arora, J. “Optimal design with discrete variables:some numerical experiments.”International Journal for Numerical Methods in Engineering, Vol.40(1997),pp.165-188.
31.Ingber, L. “Very fast simulated re-annealing.” Mathematical and computer modeling, Vol.12, No.8(1989), pp.967-973.
32.Ingber, L. “Simulated annealing:practice versus theory.” Mathematical and computer modeling, Vol.18, No.11(1993), pp.29-57.
33.Johnson, D. S., Aragon, C. R., Mcgeoch, L. A., and Schevon, C. “Optimization by simulated annealing:an experimental evaluation; part 1, graph partitioning.” Operations Research, Vol.37, No.6(February 1989),pp.865-892.
34.Kimball, G. E. “Some industrial applications of military operations research methods.” Operations Research, Vol.5(April 1957),pp.201-204.
35.Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. “Optimization by simulated annealing.” Science, Vol.220(May 1983),pp.671-680.
36.Kouvelis, P., Chiang, W. C., and Fitzsimmons, J. “Simulated annealing for machine layout problems in the presence of zoning constraints.” European Journal of Operational Research, Vol.57(1992),pp.203-223.
37.Little, John D. C. “Aggregate advertising models:The state of the art.” Operations Research, Vol.27(July-August 1979),pp.629-667.
38.Lundy, M. “Applications of the annealing algorithm to combinatorial problems in statistics.” Biometrika, Vol.72(1985),pp.191-198.
39.Lundy, M., and Mees, A. “Convergence of an annealing algorithm.” Mathematical Programming, Vol.34(1986)pp.111-124.
40.Mahajan, V., and Muller, E. “Advertising pulsing policies for generating awareness for new products.” Marketing Science, Vol.5, No.2(1986),pp.89-108.
41.Mantrala, M. K., Sinha, P. K., and Zoltners, A. A. “Impact of resource allocation rules on marketing investment-level decisions and profitability.” Journal of Marketing Research, Vol.29(May1992),pp.162-175.
42.May, S. A., and Balling, R. J. “A filtered simulated annealing strategy for discrete optimization of 3D steel frameworks.” Structural Optimization, Vol.4(1992),pp.142-148.
43.Mesak, H. I. “On modeling advertising pulsing decisions.” Decision Sciences, Vol.16(1985),pp.25-42.
44.Mesak, H. I. “An aggregate advertising pulsing model with wearout effects.” Marketing Science, Vol.11, No.3(1992),pp.310-326.
45.Mesak, H. I. and Calloway J. A. “A pulsing model of advertising competition:a game theoretic approach, part A-Theoretical foundation.” European Journal of Operational Research, Vol.86(1995),pp.231-248.
46.Mesak, H. I., and Darrat, A. F. “On comparing alternative advertising policies of pulsation.” Decision Sciences, Vol.23(1992),pp.541-564.
47.Mesak, H. I., and Darrat, A. F. “A competitive advertising model:some theoretical and empirical results.” Journal of the Operational Research, Vol.44, No.5(1993),pp.491-502.
48.Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. “Equation of state calculations by fast computing machines.” The Journal of Chemical Physics, Vol.21(1953),pp.1087-1092.
49.Miniard, P. W., Rose, R. L., Manning, K. C., and Barone, M. J. “Tracking the effects of comparative and noncomparative advertising with relative and nonrelative measures:A further examination of the framing correspondence hypothesis.” Journal of Business Research, Vol.41(1998),pp.137-143.
50.Nerlove, M., and Arrow, K. J. “Optimal advertising policy under dynamic conditions.” Economica, Vol.29(1962),pp.129-142.
51.Park, S., and Hahn, M. “Pulsing in a discrete model of advertising competition.” Journal of Marketing Research, Vol.28(1991),pp.397-405.
52.Parsons, A. J. “Focus and squeeze:consumer marketing in the 90’s.” Marketing Management, Vol.1, No.1(1992),pp.51-55.
53.Quandt, R. E. “Estimating the effectiveness of advertising:Some pitfalls in econometric methods.” Journal of Marketing Research, Vol.2(1964),pp.51-60.
54.Rao, A. G., and Miller, P. B. “Advertising/sales response functions.” Journal of Advertising Research, Vol.15(1975),pp.7-15.
55.Rutenbar, R. A. “Simulated annealing algorithms:an overview.” IEEE circuits devices magazine, (January 1989),pp.19-26.
56.Sasieni, M. W. “Optimal advertising expenditure.” Management Science, Vol.18(December 1971),pp.64-72.
57.Shakun, M. F. “A dynamic model for competitive marketing in coupled markets.” Management Science, Vol.12(August 1966),pp.(B)525-530.
58.Simon, H. “ADPULS:An advertising model with wearout and pulsation.” Journal of Marketing Research, Vol.19(August 1982),pp.352-363.
59.Simon, J. L., and Joseph, B. U. “The advertising budget’s determinants in a market with two competing firms.” Management Science, Vol.28(May 1982),pp.500-519.
60.Sorger, G. “Competitive dynamic advertising:A modification of the case game.” Journal of Economic Dynamics and Control, Vol.13(1989),pp.55-80.
61.Strong, E. C. “The spacing and timing of advertising.” Journal Of Advertising Research, Vol.17, No.6(1977),pp.25-31.
62.Sweeney, D. J., Abad, P., and Dornoff, R. J. “Finding an optimal dynamic advertising policy.” International Journal Of Systems Science, Vol.5(1974),pp.987-994.
63.Vidale, M. L., and Wolfe, H. B. “An operations research study of sales response to advertising.” Operations Research, Vol.5(June 1957),pp.370-381.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top