跳到主要內容

臺灣博碩士論文加值系統

(52.203.18.65) 您好!臺灣時間:2022/01/19 15:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭朝禎
研究生(外文):Chao Jen Kuo
論文名稱:膽鹼性神經系統在制約性自然殺手細胞反應所扮演的角色
論文名稱(外文):The Role of Cholinergic Neuron in the Conditioned Natural Killer Cell Response
指導教授:葛其梅葛其梅引用關係曾志正曾志正引用關係
指導教授(外文):Chi-Mei HsuehJason T. C. Tzen
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農業生物科技學研究所
學門:農業科學學門
學類:農業技術學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:124
中文關鍵詞:乙醯膽鹼乙醯膽鹼轉遞脢自然殺手細胞制約性反應下視丘-腦下腺-腎上腺皮質軸系類鴉片膽鹼性神經系統
外文關鍵詞:acetylcholinecholine acetyltransferasenatural killer cellconditioned responsehypothalamic-pituitary-adrenalHPA axisopioidcholinergic system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本論文之主旨在探討乙醯膽鹼系統對制約性自然殺手(NK)細胞活性反應之重要性。我們早期的研究顯示,自然殺手細胞的活性可以經由制約性的訓練而增強。由於制約性反應本身須仰賴學習記憶之形成;而文獻指出膽鹼性神經系統(cholinergic system)乙醯膽鹼(ACh)對學習、記憶、及認知之形成有極大的關聯性,並且對免疫細胞具有調控的能力。本論文因此想進一步確認膽鹼性神經系統在制約性NK細胞活性反應中之重要性,及其參與調控的地點。我首先觀察兩種不同的乙醯膽鹼受體抑制劑對制約性NK細胞活性反應之影響。而後進一步分析乙醯膽鹼在制約鼠腦部之變化情形。由於乙醯膽鹼的活性在腦組織中極不穩定,乙醯膽鹼轉遞脢(ChAT)是重要的乙醯膽鹼合成酵素,論文中我因此以分析ChAT的變化作為乙醯膽鹼的指標。針對ChAT變化之分析主要以西方墨點法及組織免疫染色法為主。而制約性NK細胞活性之測試則以傳統Cr-51釋放法為主。此外ChAT在腦組織中的活性變化亦在探究範圍之內。結果顯示,當乙醯膽鹼受體(毒蕈性受體及尼古丁受體)活性被抑制時,制約性NK細胞活性反應亦顯現被干擾之現象,初步証明乙醯膽鹼之重要性。同時ChAT蛋白表現在制約鼠的大腦皮質區及海馬迴區均有明顯增加的現象。而利用組織免疫染色法更能明顯証明大腦皮質區、海馬迴區甚至紋狀體區膽鹼性神經細胞的分佈密度也有明顯之增加,反應此三區可能透過乙醯膽鹼對制約性NK細胞活性反應與以調控。此外藉由蛋白被磷酸化的分析發現ChAT在制約鼠大腦皮質區的活性可能有增強之現象。總體而言,本論文証明了ChAT的確在制約性NK細胞反應過程中扮演重要調控之角色。作用點遍及大腦皮質、海馬迴及紋狀體區,尤以大腦皮質區為主。此研究結果進一步增進我對學習記憶作用機轉之了解,同時經由此研究模式,對神經系統如何影響NK細胞活性有進一步之認知。

The primary goal of the proposed study is to confirm the importance of the cholinergic system in regulating the conditioned NK cell response. Previous results showed that an elevation of the natural killer (NK) cell activity can be conditioned by the association of camphor odor as the conditioned stimulus with an injection of poly I:C as the unconditioned stimulus. It has also been reported that acetylcholine (ACh) importantly involved in the formation of the learning and memory, and the cognition process. ACh also appeared to play a crucial role in regulating the immune functions. The fact that conditioned NK cell response is actually a learning process allude us to believe that ACh might also play an important role in regulating this conditioned immune response. In the study, acetylcholine receptor antagonists were first injected into the conditioned brain to see their effects on the conditioned NK cell response. Cr-51 release assay was used to analyze the NK cell activities. The changes of choline acetyltransferase (ChAT) in the conditioned brains were further analyzed by using the western blot and immunohistochemistry analyses. ChAT is a key enzyme for the synthesis of ACh, and is often used as an ACh indicator due to the instability of ACh in the brain. In addition, the activities of ChAT in the conditioned brain were also under the investigation. Results showed that acetylcholine receptor antagonists pre-blockeded the conditioned NK cell response at the conditioned recall stage. That indicated the involvement of acetylcholine in this conditioned response. Western blot and immunohistochemistry analyses further demonstrated the increased expression of ChAT in the cortex, hippocampus, or even striatum of the conditioned brains. These results not only further support the role of acetylcholine in regulating the conditioned NK cell response, but also indicated the possible sites responsible for recall of the conditioned response. In addition, the activities of ChAT also increased in the cortex of the conditioned brain by showing an increased phosphorylation of this protein. In summary, results from the study further confirmed the importance of acetylcholine in the conditioned NK cell response, especially at the recall stage. The action sites of acetylcholine spread at multiple places including the cortex, hippocampus and striatum, particularly at the cortex area. Through the study, the molecular mechanism(s) underlying the learning, memory and the interaction(s) between the CNS and IS were further elucidated.

中文摘要………………………………………………………1
英文摘要………………………………………………………3
壹、前人研究…………………………………………………5
貳、研究動機…………………………………………………21
參、材料方法……………………………………………… 26
1.試劑……………………………………………………………26
2.實驗動物………………………………………………………..27
3.制約性訓練……………………………………………………..28
4.腦部延髓池注射………………………………………………..29
5.乙醯鹼受體拮抗劑對制約性NK細胞活性反應之干擾……..29
6.脾臟細胞分離…………………………………………………..31
7.制約性自然殺手細胞活性反應………………………………..31
8.蛋白質的分析………………………………………………….33
A.蛋白質之萃取……………………………………………..33
B.蛋白質膠體電泳分析……………………………………..34
C.蛋白質之轉漬及墨點法…………………………………..35
9.蛋白質磷酸化分析……………………………………………...36
10.免疫組織染色法……………………………………………….37
A.組織固定…………………………………………………...37
B.組織切片…………………………………………………...38
C.組織免疫染色……………………………………………...39
D.封片………………………………………………………...41
11.統計方法分析………………………………………………….42
肆、結果………………………………………………………43
1、4-DAMP-mustard HCl(M3 muscarinic receptor antagonist)之前注 射會抑制制約性NK細胞活性增強反應…………………..43
2、Methyllycaconitine citrate(nicotinic receptor antagonist)之前注射會抑制制約性NK細胞活性應…………………………44
3、乙醯膽鹼轉遞脢(ChAT)在制約鼠大腦皮質區的表現……….45
4、乙醯膽鹼轉遞脢(ChAT)在制約鼠海馬迴區之表現………….46
5、乙醯膽鹼轉遞脢(ChAT)在制約鼠紋狀體區之表現…………..47
6、乙醯膽鹼轉遞脢(ChAT)在制約鼠小腦區之表現…………….48
7、Poly I:C對乙醯膽鹼轉遞脢(ChAT)蛋白表現之影響………..48
8、磷酸化乙醯膽鹼轉遞脢(ChAT)之表現………………………49
9、膽鹼性神經元(ChAT正反應細胞)在制約鼠大腦皮質區的表
現……………………………………………………………...50
10、膽鹼性神經元(ChAT正反應細胞)在制約鼠大腦紋狀體的表 現……………………………………………………………54
11、膽鹼性神經元(ChAT正反應細胞)在制約鼠大腦海馬迴的表現……………………………………………………………57
伍、討論……………………………………………………..60
陸、未來與展望……………………………………………..72
柒、參考文獻………………………………………………..74
捌、表………………………………………………………..91
玖、圖………………………………………………………..98

柒、參考文獻
1. Larson, E. B., KuKull, W.A., Katzman, R. L., 1992 Cognitive impairment: dementia and Alzheimer’s disease. Annual Review of Public Health. 13: 431-49.
2. Olney, J. W., 1995 NMDA receptor hypofunction, excitotoxicity, and Alzheimer’s disease. Neurobiology of Aging. 16(3): 459-61.
3. Jodar, L., Kaneto, H., 1995 Synaptic plasticity: stairway to memory. Jph J Pharmacol. 68: 359-87.
4. Blokland, A., 1996 Acetylcholine: A neurontranamitter for learning and memory? Brain Res Rew. 21: 285-300.
5. Pan, S. Y., 1991 Influence of intraventricular injection of 6- hydroxydopamine on passive-avoidance response, acetylcholine, and muscarinic receptors in mouse brain. Acta Pharmacologica Sinica. 12: 344-7.
6. Decker, M. W.,McGaugh, J. L., 1991 The role of interactions between the cholinergic and other neuromodulatory systems in learning and memory. Synapse. 7:151-68.
7. Rosenzweig, M. R., Bennett, E. L., 1984 Basic processes and modulatory influences in the stages of memory formation. IN: Neurobiology of Learning and Memory. 263-88.
8. Changeux, J. P., 1993 A critical view of neuroal model of learning and memory. In: Memory Concepts. Andersen P, Hvalby, Paulsen O, Hokfelt B (eds.). Elsevier Science Publisher BV, Netherlands. 413- 33.
9. Drachman, D. A., Leavitt, J., 1974 Human memory and the choli- nergic system: A relationship to aging? Arch Neuro. 30: 113- 21.
10.Paylor, R., Rudy, J. W., 1990 Cholinergic receptor blockde can impair the rat’s performance on both the place learning and cued versions of the Morris water task:The role of age and pool wall brightness. Behav Brain Res. 36: 79-90.
11.Finkelstein, Y. ,Hod, I., 1989 Activation of the cholinergic synapse in the septo-hippocampus under stress conditons. Harefuah. 117 (5- 6):154-7.
12.Gregory, P. M., Jason, B. W., Pedro, V. R., Bartley, G. H., 1995 Extracellular acetylcholine is increased in the nucleus accumbens following the presentation of an aversively conditioned taste stimulus. Brain Res. 688:184-88.
13.Qiu, Y., Peng, Y., Wang, J., 1996 Immunoregulatory role of neuro- transmitters. Advances-in-neuroimmunology. 6(3): 223-31.
14.Hsueh, C. M., Kuo, J. S., Chen, S. F., Huang, H. J., Cheng, F. C., 1999 Involvement of catecholamines in recall of the conditioned NK cell response. Journal of Neuroimmunology. 94:172-181.
15.Hiramoto, R. N., Ghanta, V. K., Lorden, J. F., Solvason, H. B., Soong, S. J., Rogers, C. F., Hsueh, C. M., Hiramoto, N. S., 1992 Conditioning of enhanced natural Killer Cell Activity: effects of changing inter- stimulus intervals and evidence for long-delayed learning. Progress in NeuroEndocrinImmunology. 5:13-20.
16.Hsueh, C. M., Rogers, C. F., Hiramoto, R. N., Ghanta, V. K., 1994 Efferent signals responsible for the condition augmentation of natural killer cell activity. Neuroimmunomodulation. 1:74-81.
17.Hsueh, C. M., Rogers, C. F., Hiramoto, R. N., Ghanta, V. K., 1994 Efferent of dexamethasone on condition enhancement of natural killer cell activity. Neuroimmunomodulation. 1:74-81.
18.Hsueh, C. M., Chen, S. F., Hiramoto, R. N., Ghanta, V. K., 1995 Expression of the condition NK cell activity is β-endorphin dependent. Brain Res. 678:76-82.
19.Solvason, H. B., Ghanta, V. K., Soong, S. J., Rogers, C. F., Hsueh, C. M., Hiramoto, N. S., Hiramoto, R. N., 1992 A simple, signal, trial- learning paradigm for conditioned increase in natural killer cell activity. P.S.E.B.M. 199:199-203.
20.Ghanta, V. K., Rogers, C.F.,Hsueh, C. M., Demissie, S., Hiramoto, N. S., Hiramoto, R. N., 1994 Role of arcuate nucleus of the hypothalamus in the acquisition of association of memory between the CS and US. J. Neuroimmunol. 50:109-114.
21.Ghanta, V. K, Rogers, C. F., Hsueh, C. M., Hiramoto, N. S., Soong, S. J., Hiramoto, R. N., 1991 In vivo enhancement of NK cell activity with met-enkephalin and glycyl-glutamine: their possible role in the conditioned response. Int. J. Neurosci. 61:135-143.
22.Solvason, H. B., Ghanta, V. K., Soong, S. J., Hiramoto, R. N., 1991 Interferon interaction with the CNS is required for the conditioning of the NK cell response. Prog. NeuroEndocrinImmunol. 4:258-264.
23.Solvason, H. B., Ghanta, V. K., Hiramoto, R. N., 1993 The identity of the unconditioned stimulus to the CNS is interferon-β J. Neuro- immunol. 45:75-82.
24.Solvason, H. B., Ghanta, V. K., Hiramoto, R. N., Conditoned augmentation of natural killer cell activity: Independence from nociceptive effects and dependence onβ-interferon. J. Immunol. 140:661-665.
25.Demissie, S., Rogers, C. F., Hiramoto, N. S., Ghanta, V. K., Hiramoto, R. N., 1995 Arecloine a muscarinic cholinergic agent conditions central pathways that modulate natural killer cell activity. J. Neuro- immunol. 59:57-63.
26.張振隆編著, 1995 實用生理學(第一冊),藝軒圖書出版社.
27.劉行哲編譯, 1989 醫用生理學(第13版),南山堂出版社.
28.Rama, S. B., Sadavongvivad, C., 1979 Cholinergic systems in nonnervous tissues. Pharmacol Rev. 30:65.
29.Gonzalez, J. L., Santos-Benito, F. F., 1987 Synthesis of acetylcholine by endothelial cells isolated from rat brain cortex capillaries. Brain Res. 412:148.
30.Rinner, I., Kawashima, K., Schauenstein, K., 1998 Rat lymphocytes produced and Secrete acetylcholine independent [connection of independence] of differentiation and activation. J. Neuroimmunol. 81(1-2):31-7.
31.Freeman, J. J., 1996 Regulatory mechanisms of choline production. Life Sci. 58(22):1921-1927.
32.Gibson, G. E., Blass, J. P., 1979 Proportional inhibition of acetyl- choline synthesis accompanying impairment of 3-hydroxy butyrate oxidation in rat brain. Biochem. Pharmacol. 28:133-139.
33.Gibson, G. E., Shimada, M., 1980 Studies of on the metabolic pathway of the acetyl group for acetylcholine synthesis. Biochem. Pharmacol. 29:167-174.
34.Gibson, G. E., Jope, R., Blass, J. P., 1975 Decreased synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain minces. Biochem. J. 148:17-23.
35.Grewaal, D. A., Quastel, J. H., 1973 Control of synthesis and release of radioactive acetylcholine in brain slices from the rat. Biochem. J. 132:1-14.
36.Sterling, G. H., O’Neill, J. J., 1978 Citrate as the precursor of the acetyl moiety of acetylcholine. J. Neurochem. 31:525-530.
37.Simon, J. R., Kuhar, M. J., 1976 High affinity choline uptake:ionic and energy requirements. J. Neurochem. 27:93-99.
38.Sterri, S. H., Fonnum, F., 1980 Acetyl-coA synthesizing enzymes in cholinergic nerve terminals. J. Neurochem. 35:249-254.
39.Suszkiw, J. B., Beach, R. L., Pilar, G.R., 1976 Choline uptake by cholinergic neuron cell somas. J. Neurochem. 26:1123-1131.
40.Fossier, P., Tauc, L., Baux, G., 1999 Calcium transients and neuro- transmitter release at an identified synapse. Trends in neuro- science. 22(4):161-6.
41.Lonnerberg, P., Lendahl, U., Funakoshi, H., 1995 Regulatory region in choline acetyltransferase gene directs developmental and tissue- specific expression in transgenic mice. Neurobiology. 92:4046-50.
42.Oda, Y., Muroishi, Y., Nakanishi, I., 1996 Translation initiation sites and relative activity of large and small forms of human choline acetyltransferase. Molecular Brain Research. 38:135-138.
43.Schmidt, B. M., Rylett, R. J., 1993 Phosphorylation of rat brain choline acetyltransferase and its relationship to enzyme activity. J. Neurochem. 61(5):1774-81.
44.Bruce, G., Hersh, L. B., 1989 The phosphorylation of choline acetyl- transferase. Neurochem Res. 14(7):613-620.
45.Oda, Y., 1999 Choline acetyltransferase : the structure, distribution and pathologic changes in the central nervous system. Pathology International. 49(11):921-37.
46.Misawa, H., Matsuura, J., Oda, Y., Takahashi, R., Deguchi, Takeo., 1997 Human choline acetyltransferase mRNAs with different 5’- region produce a 69-kDa major translation product. Molecular Brain Research. 44:323-333.
47.Misawa, H., Ishii, K., Deguchi, T., 1992 Gene expression of mouse choline acetyltranferase: Alternative splicing and identification of a highly active promoter region. J. Biol. Chem. 267:20392-20399.
48.Oda, Y., Nakanishi, I., Deguchi, T., 1992 A complementary DNA for human choline acetyltransferase induces two forms of enzyme with different molecular weights in cultured cells. Molecular Brain Research. 16:287-294.
49.Pahud, Gabrielle., Bontron, S., Eder-Colli, L., 2001 Modulation of choline acetyltransferase synthesis by okadaic acid, a phosphatase inhibitor, and KN-62, a CaM kinase inhibitor, in NS-20Y neuroblastoma. Neurochemistry International. 38:75-82.
50.Cooke, L. J., Rylett, R. J., 1997 Inhibitors of serine/threonine phos- phatases increase membrane-bound choline acetyltransferase activity and enhance acetylcholine synthesis. Brain Research. 751:232-238.
51.Hahn, M., Soonjung, L., Hahn, D .M., Tong, H., 1992 Cloning of the rat gene encoding choline acetyltransferase, a cholinergic neuron— specific marker. Neurobiology. 89:4387—4391.
52.Dale, H. H., 1914 The action of certain easters and ethers of choline, and their relation to muscarine. Journal of Pharmacology and Experi- mental Therapeutics. 6:147-190.
53.Albuquerque, E. X., Alkondon, M., Pereira, E. F., Castro, N. G., Schrattenholz, A., Barbosa, C. T., et al 1997 Properties of neuronal nicotinic acetylcholine receptors: Pharmacological characterization and modulation of synaptic function. J Pharmacol Exp Ther 280:1117-1136.
54.Dani, J. A., 2000 Properties underlying the influence of nicotinic receptors on neuronal excitability and epilepsy. Epilepsia 41:1063- 1065.
55.Levin, E. D., 1992 Nicotinic systems and cognitive function. Psychopharmacology-Berl. 108:417-431.
56.Levin, E. D., Simon, B. B., 1998 Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology-Berl. 138(3- 4):217-30.
57.Colquhoun, L. M., Patrick, J. W., 1997 Pharmacology of neuronal nicotinic acetylcholine receptor subtypes. Adv Pharmacol. 39: 191- 220.
58.Castro, N. G., Albuquerque, E. X., 1995 a-Bungarotoxin-sensitive hippocampal nicotinic receptor channel has a high calcium permeability. Biophys J. 68:516-524.
59.Alkondon, M., Pereira, E. F., Wonnacott, S., Albuquerque, E. X., 1992 Blockade of nicotinic currents in hippocampal neurons defines methyllycaconitine as a potent and specific receptor antagonist. Mol Pharmacol 41:802-808.
60.Nishizaki, T., Sumikawa, K., 1998 Nicotinic receptors are regulated by protein kinase C activated via a nicotinic receptors-mediated signaling pathway. Mol. Brain Rev. 61:211-218.
61.Wonnacott, S., 1997 Presynaptic nicotinic ACh receptors. Trends Neurosci. 20:92-98.
62.Bonner, T. I., Buckley, N. J., Young, A. C., Brann, M. R., 1987 Identification of a family of muscarinic acetylcholine receptor genes. Science. 237: 527-532.
63.Bonner, T. I., Young, A. C., Brann, M. R., Buckley, NJ., 1988 Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron. 1:403-410.
64.Buckley, N. J., Bonner, T .I., Buckley,C. M., Brann, M. R., 1989 Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol. Pharmacol. 35:469-476.
65.Wess, J., Blin, N., Mutschler, E. Bluml, K., 1995 Muscarinic acetyl-choline receptors-structural basis of ligand binding and G-protein coupling. Life Sci. 56:915-922.
66.Jones, S.V. P., 1993 Muscarinic receptor subtypes: modulation of ion channels. Life Sci. 52: 457-464.
67.Haga, T., Haga, K., Kameyama, K., Nakata, H., 1993 Phosphorylation of muscarinic receptors: regulation by G protein. Life Sci. 52: 421-428.
68.Berridge, M. J., Irvine, R. F., 1984 Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature. 312: 315-321.
69.Woolf, N. J., 1997 A structural basis for memory storage in mammals. Progress in Neurobiology. 55: 59-57.
70.Azzi, A., Boscoboinik, D., Hensey, C., 1992 The protein kinase C family. Eur. J. Biochem. 208: 547-557.
71.Habecker, B. A., Tietje, K. M., van Koppen, C. J., Creason, S. A., Goldman, P. S., Migeon, J. C., Parenteau, L.A., Nathanson, N. M., 1993 Regulation of expression and function of muscarinic receptors. Life Sci. 52:429-432.
72.Malinow, R., Schulman, H., Tsien,R.W., 1989 Inhibition of post- synaptic PKC or CaMKII blocks induction but not expression of LTP. Science. 245:862- 866.
73.Erondu, N. E., Kennedy, M., 1985 Regional distribution of type Ⅱ Ca2+/ calmodulin-dependent protein kinase in rat brain. J. Neurosci. 5:3270-3277.
74.Walaas, S. I., Narin, A. C., Greengard, P., 1983 Regional distribution of calcium- and cyclic adenosine monophosphate regulated protein phosphorylation systems in mammalian brain. J. Neurosci. 3:291-311.
75.Bruce, G., Hersh, L. B., 1989 The phosphorylation of choline acetyl-transferase. Neurochem Res. 14(7):613-620.
76.Li, M., Yasusa, R. P., Wall, S. J., Wellstein, A., Wolfe, B. B., 1991 Distribution of m2 muscarinic receptors in rat brain using antisera selective for m2 receptors. Mol. Pharmacol. 40:28.
77.Bartolini, A., Ghelardini, C., Gualtieri, F., Malcangio, M., Malmberg-Aiello, P., Romanelli, N., Giotti, A., 1989 I.c.v. injected AF-DX116 induces analgesia only when administered at very low doses. Trends Pharmacol. Sci. 10(Suppl.): 99.
78.Gulya, K., Budai, D., Kasa, P., 1989 Muscarinic autoreceptors are differentially affected by selective muscarinic antagonists in rat hippocampus. Neurochem. Int. 15:153.
79.Lapchak, P. A., Araujo, D. M., Quirion, R., Collier, B., 1989 Binding sites for [3H]AF-DX 116 and effect of AF-DX 116 on endogenous acetylcholine release from rat brain slices. Brain Res. 496:285.
80.Janeway, C. A., 1989 Natural killer cells: a primitive immune system. Nature. 341: 108.
81.Trinchieri, G., Perussia, B., 1984 Human natural killer cells: biologic and pathologic aspects. Lab. Invest. 50: 489-513.
82.Scott, P., Trinchieri, G., 1995 The role of natural killer cells in host-parasite interactions. Anesthesiology. 7: 34-40.
83.Ritz, J., 1989 The role of natural killer cells in immune surveillance [editorial]. New Engl. J. Med. 320: 1748-9.
84.Ritz, J., Schmidt, R. E., Michon, J., Hercend, T., Schlossman, S. F., 1988 Characterization of functional surface structures on human natural killer cells. Adv. Immunol. 42: 181-211.
85.Biron, C. A., Byron, K. S., Sullivan, J. L., 1986 Severe herpesvirus infections in an adolescent without natural killer cells. New Engl. J. Med. 320: 1731-5.
86.Trinchieri, G., 1989 Biology of natural killer cells. Adv. Immunol. 47: 187-376.
87.Stern, A. S., Magram, J., Presky, D. H., 1996 Interleukin-12: an integral cytokine in the immune response. Life Sciences. 58:639- 654.
88.Seder, R. A., Gazzinelli, R. A., Paul, W. E., 1993 Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon gamma production and diminishes interleukin 4 inhibition of such priming. Proc. Natl. Acad. Sci. USA 90:10188-10192.
89.Herberman, R. B., Ortaldo, J. R., Timonen, T., Reynolds, C. W., Djeu, J. Y., Pestka, S., Stanton, J., 1981-82 Interferon and natural killer (NK) cells. Tex. Rep. Biol. Med. 41: 590-5.
90.Weiskrantz, L., 1987 Neuroanatomy of memory and amnesia: a case for multiple memory systems. Human Neurobiol. 6: 93-105.
91.楊國樞, 1994 心理學, 桂冠圖書股份有限公司 208-246.
92.邵郊, 1993 生理心理學, 五南圖書出版有限公司 435-445.
93.徐嘉宏、洪裕宏、梁庚辰、張復、張震東、嚴震東著, 1998 心與腦, 心理出版社.
94.二木宏明, 1990 腦與心理學, 東方出版社 201-209.
95.Abrams, T. W., Kandel, E. R., 1988 Is contiguity detection in classical conditioning a system or a cellular property? learning in aplysia suggests a possible molecular site. Trends Neurosci. 11:128-135.
96.Yagi, H., Katoh, S., Akiguchi, I., Takeda, T., 1988 Age-related deterioration of ability of acquisition in memory and animal model of disturbance in recent memory. Brain Res. 474: 86-93.
97.梅錦榮, 1994 神經心理學, 桂冠圖書股份有限公司 204-209.
98.巴夫洛夫著, 閻坤譯, 1998 制約反射, 桂冠圖書公司.
99.Kuo, J.S., Chen, S.F., Huang, H.J., Yang, C.H.,Tsai, P.J., Hsueh, C.M., 2001 The involvement of glutamate in recall of the conditioned NK cell response. Journal of Neuroimmunology. 118:245-255.
100.林指宏, 1995 兔腦血管脈叢終端器官之一氧化氮合成酵素及環氧化酵素的生成在熱原性發燒中所扮演的角色,國立成功大學基礎醫學研究所博士論文,台南市。
101.Zola-Morgan, S., Squire, L. R., Clower, R. P., 1993 Damage to the perirhinal cortex exacerbates memory impairment following lesions to the hippocampal formation. J. Neurosci. 13:252-265.
102.Thompson, R. F., 1986 The neurobiology of learning and memory. Sci. 233: 941-947.
103.Christian, K., John, M., 2001 Induction of Fos-like I mmunoreactivity in the ventral thalamus after electrical or chemical stimulation of various subcortical centres of rats. Neuroscience Letters. 301(3): 195-198.
104.Hsu, K.S., Huang, C.C., Gean, P.W., 1995 Muscarinic depression of excitatory synaptic transmission mediated by the presynaptic M3 receptors in the rat neostriatum. Neuroscience Letters. 197(2): 141-144.
105.Bradford, M.M., 1976 A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
106.Bhatnagar, S., Smythe, J.W., Murphy, D., Timothy, C., Costall, B., 1996 Muscarinic antagonists are anxiogenic in rats tested in the black - white box. Pharmacology Biochemistry&Behavior. 54: 57-63.
107.Calogero, A.E.,Bernardini, R., Gold, P.W., Chrousos, G.P., 1988 Regulation of rat hypothalamic corticotropin-releasing hormone secretion in vitro: potential clinical implications. Advances-in-experimental-medicine-and-biology. 245: 167-81.
108.Feuerstein, T.J., Gleichauf, O., Peckys, D., Landwehrmeyer, G.B., Scheremet, R., Jackisch, R., 1996 Opioid receptor-mediated control of acetylcholine release in human neocortex tissue. Naunyn-Schmiedeberg’s Arch. Pharmacol. 354: 586-592.
109.Gazyakan, E., Hennegriff, M., Haaf, A., Landwehrmeyer, G.B., Feuerstein, T.J., Jackisch, R., 2001 Characterization of opioid receptor types modulating acetylcholine release in septal regions of the rat brain. Naunyn-Schmiedeberg’s Arch. Pharmacol. 362: 32-40.
110.Kubota, Y., Leung, E., Vincent, S.R., 1992 Ultrastructure of cholinergic neurons in the laterodorsal tegmental nucleus of the rat: in interaction with catecholamine fibers. Brain-research-bulletin. 29(3-4): 479-91.
111.Dijk, S.N., Francis, P.T.,Stratman, G.C., Bowen,D.M., 1995 Cholinomimetics increase glutamate outflow via an action on the corticostriatal pathway: Implications for Alzheimer’s disease. J. Neurochem. 65: 2165-2169.
112. Martunez-Pinero, M.G., Milanes, M.V., Alcaraz, C., Vargas, M.L., 1994 Catecholaminergic mediation of morphin-induced activation of pituitary-adrenocortical axis in the rat: implication

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top