跳到主要內容

臺灣博碩士論文加值系統

(3.87.250.158) 您好!臺灣時間:2022/01/25 18:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪宗志
研究生(外文):Tzung-Zhi Hong
論文名稱:菜豆細菌性斑點病菌HrcN、HrpE與HrcU蛋白質間的相互作用之分析
論文名稱(外文):Interactions among HrcN, HrpE, and HrcU proteins of Pseudomonas syringae pv. syringae 61
指導教授:黃秀珍黃秀珍引用關係
指導教授(外文):Hsiou-Chen Huang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農業生物科技學研究所
學門:農業科學學門
學類:農業技術學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:61
中文關鍵詞:菜豆細菌性斑點病菌第三型分泌系統相互反應
外文關鍵詞:Pseudomonas syringae pv. syringae 61HrcNHrpEHrcUinteractiontype III secretion (TTS) system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:503
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
細菌的生活週期中有許多時候需要將蛋白質分泌至胞外,例如:胞器的生合成、營養獲取與毒性因子的表現。許多植物病原細菌利用第三型分泌系統將特定蛋白送入植物體內,導致其寄主植物致病,以及在非寄主植物中產生過敏性反應。在菜豆細菌性斑點病菌中,第三型分泌系統是由一段25 kb的hrp/hrc基因組所編譯而成的。本論文的目的是去尋找不同Hrp/Hrc蛋白質間有無相互反應。首先利用yeast two-hybrid system進行實驗,發現HrcN與HrpE的組合會使reporter gene有較高的表現量,此外也發現HrpE會與自己反應。接著在HrcN、HrpE與HrcU蛋白質的C端結合一段FLAG序列以方便偵測,並製備anti-HrcN與anti-HrpE的抗血清。進一步利用anti-HrcN or HrpE抗血清進行protein affinity blotting以證實yeast two-hybrid system的結果,由這些結果可知HrcN與HrpE之間有專一性的鍵結。另外,利用HrcU-FLAG同樣進行protein affinity blotting的分析,也發現HrcU與HrcN、HrpE間有專一性的鍵結。而在His-tag column binding的實驗中觀察到HrcN-FLAG或HrcU-FLAG可藉由HrpE-His與resin結合而共同純化下來。分析HrpE的胺基酸序列可發現和ATPase的b subunit與鞭毛的FliH蛋白質具有同源性。推測HrpE可能和ATPase的b subunit與鞭毛的FliH蛋白質一樣會形成homodimer,並且對HrcN的穩定與 HrcN ATPase活性的調控扮演重要的角色。至於HrcU則可能扮演兩種功能:一是直接構成分泌胞器;另一則是間接調控基因轉錄。綜合這些結果與前人的研究,推測 HrcN與HrpE 一起形成一個 (HrpE)2HrcN與ATPase相似的複合體,並與第三型分泌胞器的內膜蛋白HrcU結合,以便在蛋白質分泌與分泌胞器組合時提供能量。

Protein secretion is required for numerous aspects of the bacterial life cycle, including organelle biogenesis, nutrient acquistion, and virulence-factor expression. Plant pathogenic bacteria translocate proteins into plant cells, which cause diseases on the host plants and elicit the hypersensitive response (HR) in nonhost plants, by type III secretion (TTS) system. In Pseudomonas syringae pv. syringae 61(Pss61), a 25 kb hrp/hrc gene cluster encodes a TTS system. The aim of this study is to understand the interactions among Hrp/Hrc proteins of the Pss61 TTS apparatus. In yeast two-hybrid system, hrcN or hrpE gene constructed either in pGADT7 or pGBKT7 resulted in high levels of reporter gene activation, and HrpE could interact to itself. For convenience to detect target protein, a FLAG peptide was fused to the C-terminus of HrcN, HrpE, or HrcU proteins. Also, rabbit antisera against HrcN and HrpE were generated. In order to confirm the interactions between HrcN and HrpE, the protein affinity blotting was performed using HrcN and HrpE as probes. The results suggest that HrcN specifically recognizes and binds to HrpE. In addition, we performed protein affinity blotting using FLAG-tagged HrcU as a probe, which can be detected by the commercial monoclonal antibody M2. These data showed that HrcU specifically recognizes and binds to HrpE and HrcN. In column binding experiments, either HrcN-FLAG or HrcU-FLAG could be copurified with HrpE-His. Besides, base on sequence analysis, HrpE exhibits amino acid similarity with subunit b of ATPase and FliH of flagellar. It suggested that HrpE may form homodimer similar to its homologs subunit b of ATPase and FliH of flagellar, and may play an important role to regulate ATPase activity of HrcN and protect HrcN. HrcU seems to play a dual role: a direct one in secretion and a probable indirect one on transcription. According to these results and previous data, we propose that the cytoplasmic HrcN and HrpE together form a (HrpE)2HrcN ATPase-like complex and then bind to HrcU, an inner membrane protein of the TTS apparatus, to energize secretion or to provide the energy for assembly of the secretion apparatus.

Contents
I) Abstract (Chinese) ------------------------------ 2
II) Abstract (English) ------------------------------ 4
III) Introduction ------------------------------------ 6
IV) Materials and methods ----------------------- 13
V) Results ------------------------------------------ 24
VI) Discussion ------------------------------------- 29
VII) References ------------------------------------ 36
VIII) Figures and tables --------------------------- 44
IX) Appendix --------------------------------------- 61

Abrahams, J. P., A. G. Leslie, R. Lutter, and J. E. Walker (1994). Structure at 2.8Å resolution of F1-ATPase from bovine heart mitochondria. Nature, 370:621-628.
Allaoui, A., S. Woestyn, C. Sluiters, and G. R. Cornelis (1994). YscU, a Yersinia enterocolitica inner membrane protein involved in Yop secretion. J. Bacteriol., 176:4534-4342.
Altendorf, K., W. D. Stalz, J. C. Greie, and G. Deckers-Hebestreit (2000). Structure and function of the F0 complex of the ATP synthase from Escherichia coli. J. Exp. Biol., 203:19-28.
Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25:3389-3402.
Anderson, D. M., and O. Schneewind (1997). A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. Science, 278:1140-1143.
Anderson, D. M., and O. Schneewind (1999). Yersinia enterocolitica type III secretion: an mRNA signal that couples translation and secretion of YopQ. Mol. Microbiol., 31:1139-1148.
Anderson, D. M., K. S. Ramamurthi, C. Tam, and O. Schneewind (2002). YopD and LcrH regulate Expression of Yersinia enterocolitica YopQ by a posttranscriptional mechanism and bind to yopQ RNA. J. Bacteriol., 184:1287-1295.
Aris, J. P. and R. D. Simoni (1983). Cross-linking and labeling of the Escherichia coli F0F1-ATP synthase reveal a compact hydrophilic portion of F0 close to an F1 catalytic subunit. J. Biol. Chem., 258:14599-14609.
Arlat, M., F. Van Gijsegem, J. C. Huet, J. C. Pernollet, and C. A. Boucher (1994). PopA1, a protein which induced a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearm. EMBO J., 13:543-553.
Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. E. Struhl (1995). Short protocols in molecular ciology, 3rd ed. John Wiley & Sons, New York , N. Y.
Baker, C. J., M. M. Atkinson, and A. Collmer (1987). Concurrent loss in Tn5 mutants of Pseudomonas syringae pv. syringae of the ability to induce the hypersensitive response and host plasma membrane K+/H+ exchange in tobacco. Phytopathology, 77:1268-1272.
Binet, R., S. Letoffe, J. M. Ghigo, P. Delepelaire, and C. Wandersman (1997). Protein secretion by Gram-negative bacterial ABC exporters. Gene., 192:7-11.
Blocker, A., P. Gounon, E. Larquet, K. Niebuhr, V. Cabiaux, C. Parsot, and P. Sansonetti (1999). The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J. Cell Biol., 147:683-693.
Bogdanove, A. J., S. V. Beer, U. Bonas, C. A. Boucher, A. Collmer, D. L. Coplin, G. R. Cornelis, H. C. Huang, S. W. Hutcheson, N. J. Panopoulos, and F. Gijsegem (1996). Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol. Microbiol., 20:681-683.
Boyer, P. D. (1997). The ATP synthase — a splendid molecular machine. Annu. Rev. Biochem., 66:717-749.
Charkowski, A. O., H. C. Huang, and A. Collmer (1997). Altered localization of HrpZ in Pseudomonas syringae pv. syringae hrp mutants suggest that different components of the type III secretion pathway control protein translocation across the inner and outer membranes of Gram-negative bacteria. J. Bacteriol., 179:3866-3874.
Covacci, A., S. Falkow, D. E. Berg, and R. Rappuouli (1997). Did the ingeritance of a pathogenicity island modify the virulence of Helicobacter pylori? Trands Microbiol., 5:205-208.
Dang, T. A., X. R. Zhou, B. Graf, and P. J. Christie (1999). Dimerization of the Agrobacterium tumerfaciens VirB4 ATPase and the effect of ATP-binding cassette mutations on the assembly and function of the T-DNA transporter. Mol. Microbiol., 32:1239-1253.
Day, J. B. and G. V. Plano (2000). The Yersinia pestis YscY protein directly binds YscX, a secreted component of the Type III secretion machinery. J. Bacteriol., 182:1834-1843.
Deckers-Hebestreit, G. and K. Altendorf (1996). The F0F1-type ATP synthases of bacteria: Structure and function of the F0 complex. Annu. Rev. Biochem., 50:791-824.
Deng, W. L., G. Preston, A. Collmer, C. J. Chang, and H. C. Huang (1998). Characterization of the hrpC and hrpRS operons of Pseudomonas syringae pathovars syringae, tomato, and glycinea and analysis of the ability of hrpF, hrpG, hrcC, hrpT, and hrpV mutants to elicit the hypersensitive response and disease in plants. J. Bacteriol., 180:4523-4531.
Deng, W. L., and H. C. Huang (1999). Cellular locations of Pseudomonas syringae pv. syringae HrcC and HrcJ proteins, required for Harpin secretion via the Type III pathway. J. Bacteriol., 181:2298-2301.
Ditta, G., S. Stanfield, D. Corbin, and D. R. Helinski (1980). Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc. Natl. Acad. Sci. USA, 77:7347-7351.
Dunn, S. D. (1992). The polar domain of the b subunit of Escherichia coli F1F0-ATPase forms an elongated dimer that interacts with the F1 sector. J. Biol. Chem., 267: 7630-7636.
Ebel, F., T. Podzadel, M. Rohde, A. U. Kresse, S. Kramer, C. Deibel, C. A. Guzman, and T. Chakraborty (1998). Initial binding of Shiga toxin-producing Escherichia coli to host cells and subsequent induction of actin rearrangements depend on filamentous EspA-containing surface appendages. Mol. Microbiol., 30:147-161.
Engelbrecht, S. and W. Junge (1997). ATP synthase: a tentative structural model. FEBS Lett., 414:485-491.
Fath, M. J., and R. Kolter (1993). ABC transporters: bacterial exporters. Microbiol. Rev., 57:995-1017.
Fillingame, R. H., P. C. Jones, W. Jiang, F. I. Valiyaveetil, and O. Y. Dmitriev (1998). Subunit organization and structure in the F0 sector of Escherichia coli F0F1 ATP synthase. Biochim. Biophys. Acta, 1365:135-142.
Galan, J. E. and A. Collmer (1999). Type III secretion machines: bacterial devices for protein delivery into host cells. Science, 284: 1322-1328.
Ginocchio, C. C., S. B. Olmsted, C L. Wells, and J. E. Galan (1994). Contact with epithelial cells induces the formation of surface appendages on Salmonella typhimurium. Cell, 76:717-724
Grimm, C. and N. J. Panopoulos (1989). The predicted protein product of a pathogenicity locus from Pseudomonas syringae pv. phaseolicola is homologous to a highly conserved domain of several prokaryotic regulatory proteins. J. Bacteriol., 171:5031-5038.
Grimm, C., W. Aufsatz, and N. J. Panopoulos (1995). The hrpRS locus of Pseudomonas syringae pv. phaseolicola constitutes a complex regulatory unit. Mol. Microbiol., 15:155-165.
Groisman, E. A., and H. Ochman (1993). Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. EMBO J., 12:3779-3787.
Harlow, E. and D. Lane (1988). Antibodies: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
He, S. Y., H. C. Huang, and A. Collmer (1993). Pseudomonas syringae pv. syringae HarpinPss: A protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell, 73:1255-1266.
Hobbs, M., and J. S. Mattick (1993). Common components in the assembly of type IV fimbriae, DNA transfer system, filamentous phage and protine-secretion apparatus: for the formation of surface-associated protein complexes. Mol. Microbiol., 10:233-243.
Hoiczyk, E., and G. Blobel (2001). Polymerization of a single protein of the pathogen Yersinia enterocolitica into needles punctures eukaryotic cells. Proc. Natl. Acad. Sci. USA, 98:4669-4674.
Huang, H. C., R. Schuurink, T. P. Denny, M. M. Atkinson, C. J. Baker, I. Yucel, S. W. Hutcheson, and A. Collmer (1988). Molecular cloning of a Pseudomonas syringae pv. syringae gene cluster that enables Pseudomonas fluorescens to elicit the hypersensitive response in tobacoo. J. Bacteriol., 170:4748-4756.
Huang, H. C., S. Y. He, D. W. Bauer, and A. Collmer (1992). The Pseudomonas syringae pv. syringae 61 hrpH product: an envelope protein required for elicitation of the hypersensitive response in plants. J. Bacteriol., 174:6878-6885.
Huang, H. C., R. W. Lin, C. J. Chang, A. Collmer, and W. L. Deng (1995). The complete hrp gene cluster of Pseudomonas syringae pv. syringae 61 includes two blocks of genes required for HarpinPss secretion that are arranged colineraly with Yersinia ysc homologues. Mol. Plant-Microbe Interact., 8:733-746.
Hueck, C. J. (1998). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev., 62:379-433.
Huynh, T. V., D. Dahlbeck, and B. J. Staskawicz (1989). Baterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science, 245:1374-1377.
Innis, M. A., D. H. Gelfand, J. J. Sninsky, and T. J. White (1990). PCR protocols. San Diego: Academic Press.
Jackson, M. W. and G. V. Plano (2000). Interactions between type III secretion apparatus components from Yersinaia pestis detected using the yeast two-hybrid system. FEMS Microbiol. Lett., 186:85-90.
Jin, Q., and S. Y. He (2001). Role of the Hrp pilus in type III protein secretion in Pseudomonas syringae. Science, 294:2566-2558.
Keen, N. T. (1990). Gene-for-gene complementarity in plant-pathogen interaction. Annu. Rev. Genet., 24: 447-463.
Kimbrough, T. G., and S. I. Miller (2000). Contribution of Salmonella typhimurium type III secretion components to needle complex formation. Proc. Natl. Acad. Sci. USA, 97:11008-11013.
King, E. O., M. K. Ward, and D. E. Raney (1954). Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med., 22:301-307.
Klement, Z. (1982). Hypersensitivity, p.149-177. In M. S. Mount and G. H. Lacy (ed.), Phytopathogenic prokaryotes, vol. 2. Academic press, New York.
Knutton, S., L. Rosenshine, M. J. Pallen, I. Nisan, B. C. Neves, C. Bain, C. Wolff, G. Dougan, and G. Frankel (1998). A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocationinto epithelial cell. EMBO J., 17:2166-2176.
Krause, S., W. Pansegrau, R. Lurz, F. de la Cruz, and E. Lanka (2000). Enzymology of type IV macromolecule secretion systems: the conjugative transfer regions of plasmids PR4 and R3888 and the cag pathogenicity island of Helicobacter pylon encode structurally and functionally related nucleoside triphosphate hydrolases. J. Bacteriol., 182:2761-2770.
Kubori, T., Y. Matsushima, D. Nakamura, J. Uralil, M. Lara-Tejero, A., sukhan, J. E. Galan, and S. L., Aizawa (1998). Supramolecular structure of the Salmonella typhimurium typeIII protein secretion system. Sceince, 280:602-608.
Kubori, T., A. Sukhan, S. I. Aizawa, and J. E. Galan (2000). Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc. Natl. Acad. Sci. USA, 97:10225-10230.
Labes, M., A. Puhler, and R. Simon (1990). A new family of RSF1010-derived expression and lac-fusion broad-host-range vectors for Gram-negative bacteria. Gene, 89:37-46.
Li, C. M., I. Brown, J. Mansfield, C. Stevens, T. Boureau, M. Romantschuk, and S. Taira (2002). The Hrp pilus of Pseudomonas syringae elongates from its tip and acts as a conduit for translocation of the effector HrpZ. EMBO J., 21:1909-1915.
Lidell, M. C. and S. W. Hutcheson (1994). Characterization of the hrpJ and hrpU operons of Pseudomonas syringae pv. syringae Pss61: similarity with components of enteric bacteria involved in flagellar biogenesis and demonstration of their role in harpinpss secretion. Mol. Plant-Microbe Interact., 7:488-497.
Lindgren, P. B., R. C. Peet, and N. J. Panopoulos (1986). Gene cluster of Pseudomonas syringae pv. “phaseolicola” controls pathogenicity of bean plants and hypersensitivity of nonhost plants. J. Bacteriol., 168:512-522.
Ma, J. and M. Ptashne (1987). A new class of yeast transcriptional activators. Cell, 51:113-119.
Magdalena, J., A. Hachani, M. Chamekh, N. Jouihri, P. Gounon, A. Blocker, and A. Allaoui (2002). Spa32 regulates a switch in substrate specificity of the type III secreton of Shigella flexneri form needle components to Ipa proteins. J. Bacteriol., 184:3433-3441.
Macnab, R. M. (1999). The bacterial flagellum: reversible rotary propellor and type III export apparatus. J. Bacteriol., 181:7149-7153.
Minamino, T. and R. M. Macnab (2000a). FliH, a soluble component of the type III flagellar export apparatus of Salmonella, forms a complex with FliI and inhibits its ATPase activity. Mol. Microbiol., 37:1494-1503.
Minamino, T. and R. M. Macnab (2000b). Domain structure of Salmonella FlhB, a flagellar export component responsible for substrate specificity switching. J. Bacteriol., 182:4906-4914.
Minamino, T., J. R. H. Tame, K. Namva, and R. M. Macnab (2001). Proteolytic analysis of the FliH/FliI complex, the ATPase component of the type III Flagellar export apparatus of Salmonella. J. Mol. Biol., 312:1027-1036.
Mori, H. and K. Ito (2001). The Sec protein-translocation pathway. Trends in Microbiol., 9:494-500.
Mudgett, M. B. and B. J. Staskawicz (1999). Characterization of the Pseudomonas syringae pv. tomato AvrRpt2 protein: demonstration of secretion and processing during bacterial pathogenesis. Mol. Microbiol., 32:927-941.
Nguyen, L., I. T. Paulsen, J. Tchieu, C. J. Hueck, and M. H. Saier (2000). Phylogenetic analyses of the constituents of type III protein secretion systems. J. Mol. Microbiol. Biotechnol., 2:125-144.
Niepold, F., D. Anderson, and D. Mills (1985). Cloning determinants of pathogenesis from Pseudomonas pathovar syringae. Proc. Natl. Acad. Sci. UAS, 82:406-410.
Plano, G. V., J. B. Day, and F. ferraccl (2001). Type III export: new uses for an old pathway. Mol. Microbiol., 40:284-293.
Preston, G., W. L. Deng, H. C. Huang, and A. Collmer (1998). Negative regulation of hrp genes in Pseudomonas syringae by HrpV. J. Bacteriol., 180:4532-4537.
Possot, O. and A. P. Pugsley (1994). Molecular characterization of PulE, a protein required for pullulanase secretion. Mol Microbiol., 12:287-99.
Pugsley, A. P. (1993). The complete general protein secretory pathway in gram-negative bacteria. Microbiol. Rev., 57:50-108.
Roine, E., W. Wei, J. Yuan, E. L. Nurmiaho-Lassila, N. Kalkkimen, M. Romantschuk, and S. Y. He (1997). Hrp pilus: an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA, 94:3459-3464.
Ruden, D. M., J. Ma, Y. Li, K. Wood, and M. Ptashne (1991). Generating yeast transcriptional activators containing no yeast protein sequences. Nature, 351:250-251.
Ruden, D. M. (1992). Activating regions of yeast transcription factors must have both acidic and hydrophobic amino acids. Chromosoma, 101:342-348.
Salmond, G. P. C. and P. J. Reeves (1993). Membrane traffic wardens and protein secretion in gram-negative bacteria. Trends Biochem. Sci., 18:7-12
Sambrook, J. and D. W. Russell (2001). Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Habor Laboratory Press, Cold Spring Habor, NY.
Studier, W. F., A. H. Rosenberg, J. J. Dunn, and J. W. Dubendorff (1990). Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol., 185:60-89.
Sukhan, A., T. Kubori, J. Wilson, and J. E. Galan (2001). Genetic analysis of assembly of the Salmonella enterica serovar typhimurium type III secretion-associated needle complex. J. Bacteriol., 183:1159-1167.
Tabor, S. and C. C. Richardson (1985). A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA, 82:1074-1078.
Tamano, K., S. I. Aizawa, E. Katayama, T. Nonaka, S. Imajoh-Ohmi, A. Kuwae, S. Nagai, and C. Sasakawa (2000). Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. EMBO J., 19:3876-3887.
Thanassi, D. G., and S. J. Hultgren (2000). Multiple pathways allow protein secretion across the bacterial out membrane. Curr. Opin. Cell Biol., 12:420-430.
Van Aelst, L., M. Barr, S. Marcus, A. Polverino, and M. Wigler (1993). Complex formation between RAS and RAF and other protein kinases. Proc. Natl. Acad. Sci. USA, 90:6213-6217.
Van Dijk, K., D. E. Fouts, A. H. Rehm, A. R. Hill, A. Collmer, and J. R. Alfano (1999). The Avr (Effector) proteins HrmA (HopPsyA) and AvrPto are secreted in culture from Pseudomonas syringae pathovars via the Hrp (Type III) protein secretion system in a temperature- and pH-sensitive manner. J. Bacteriol., 181:4790-4797.
Wei, Z. M., R. J. Laby, C. H. Zumoff, D.W. Bauer, S. Y. He, A. Collmer, and S. Beer (1992). Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science, 257:85-88.
Wei, Z. M. and S. V. Beer (1993). HrpI of Erwinia amylovora functions in secretion of Harpin and is a member of a new protein family. J. Bacteriol., 175:7958-7967.
Weiss, A. A., F. D. Johnson, and D. L. Bums (1993). Molecular charaterization of an operon required for pertussis toxin secretion. Proc. Natl. Acad. Sci. USA, 90:2970-2974.
Willis, D. K., J. J. Rich, and E. M. Hrabak (1991). hrp genes of Phytopathogenic bacteria. Mol. Plant Microbe Interac., 4:132-138.
Xiao, Y., S. Heu, J. Yi, L. Lu, and S. W. Hutcheson (1994). Identification of a putative alternate sigma factor and characterization of multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes. J. Bacteriol., 176:1025-1036.
Xiao, Y. and S. Hutcheson (1994). A single promoter sequence recognized by a newly identified alternate sigma factor directs expression of pathogenicity and host range determinants in Pseudomonas syringae. J. Bacteriol., 176:3089-3091.
Yeo, H. J., S. N. Savvides, A. B. Herr, E. Lanka, and G. Waksman (2000). Crystal structure of the hexameric traffic ATPase of the Helicobacter pylon typeIV secretion system. Mol. Cell., 6:1461-1472.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top