跳到主要內容

臺灣博碩士論文加值系統

(3.81.172.77) 您好!臺灣時間:2022/01/21 19:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林怡君
研究生(外文):Yi-Chun Lin
論文名稱:百合中三個調控開花起始之AP1groupMADSBox基因的分子選殖與功能分析
論文名稱(外文):Molecular Cloning and Characerization of Three Lily (Lilium longiflorum) AP1 Group of MADS Box Genes in Regulating Floral Initiation
指導教授:楊長賢楊長賢引用關係
指導教授(外文):Chang-Hsien Yang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農業生物科技學研究所
學門:農業科學學門
學類:農業技術學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:96
中文關鍵詞:鐵砲百合開花起始花器形成
外文關鍵詞:Lilium longiflorumAP1MADS BoxFloral Initiation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:360
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在植物中,任何花器的形成皆受到數種homeotic基因交互作用所調節。由於這些基因大都屬於會在N端轉譯出含有保守DNA鍵結區域的MADS box基因蛋白,顯示MADS box基因在花朵發育上扮演著重要的角色。除了參與花器形成外,在擬南芥中的AP1和AGL9之MADS box基因也參與了調節開花時間的啟始。為了研究百合開花之啟始過程,本研究從百合中選殖三個與AP1具有高度相似性的MADS box基因並做進一步的特性分析。LAP1-1可轉譯出一個含252個胺基酸的蛋白與水稻的AP1同源基因OsAP1-like有60%一致性和71%相似性。在MADS box區域方面,LAP1-1與OsAP1-like之間有90% (52/58)的一致性。而LAP1-2和LAP1-3 Δ cDNA皆缺乏5’端的MADS box區域,經由序列比較顯示LAP1-2比LAP1-3更像LAP1-1,此外,三者表現的特徵也很相似。這三個基因之mRNA在花苞、營養葉和花序分生組織皆可被偵測到。在花器中之表現與擬南芥中AP1的表現情形相似,在4個花器皆有表現。有趣的是,LAP1-1與LAP1-2在雌蕊及葉的部分可以觀察到有類似的高表現量。再進一步分析大量表現LAP1-1之轉基因擬南芥植株發現,有提早開花及產生捲曲葉的現象。在花器中有花萼轉型成雌蕊及花瓣轉型成雄蕊的變異。這些結果強烈的顯示LAP1-1的功能除了參與花的形成外,也參與了花的誘導。另外在蛋白質功能分析上,利用酵母雙雜合之交互作用結果顯示LAP1-2會形成homodimer並且會與LAP1-1形成heterodimer,而LAP1-1本身不會形成homodimer。將來透過更進一步分析LAP1-2與LAP1-3的功能,相信不但可以使我們更深入的了解MADS box基因調控花的轉型,而且也可以提供未來有效運用這些基因的策略。

The formation of any flower organs was regulated by the interaction of several classes of homeotic genes in plants. Since most of these genes are MADS box proteins which contained a conserved DNA-binding domain (the MADS box domain) at the N-terminus, indicating the central role for MADS box genes in flower development. In addition to the involvement in the flower formation, MADS box genes such as AP1 and AGL9 of Arabidopsis have also been thought to anticipate in the regulation of floral transition and initiation. To investigate the flower initiation in lily (Lilium longiflorum), three cDNA showed high homology to AP1 group of MADS box genes were isolated and characterized. LAP1-1, encodes a 252 amino acid protein that showed 60% identity and 71% similarity to rice AP1 homologue OsAP1-like. In MADS box domain, 90% (52/58) amino acids are identical or similar between LAP1-1 and OsAP1-like. cDNAs for LAP1-2 and LAP1-3 are partial sequences truncated with 5’ MADS box domain. Sequence comparison indicated that LAP1-2 was more closely related to LAP1-1 than LAP1-3 was. In addition to the sequence similarity, the expression pattern for these three genes was also similar. Messenger RNA for these three genes was detected in floral buds as well as in vegetative leaf and inflorescence meristem. In flower, similar to AP1, they expressed in all four flower organs. Interestingly, similar high expression in carpel and leaves was observed for LAP1-1 and LAP1-2. Ectopic expression of LAP1-1 in transgenic Arabidopsis plants showed novel phenotypes by flowering early and producing curly leaves. Homeotic conversion of sepals to carpelloid and petal to stamen-like structures were also observed in 35S::LAP1-1. These results strongly indicated that the function of LAP1-1 is involved in flower formation as well as in floral induction. Yeast two-hybrid analysis indicated that LAP1-1 truncated with the MADS box domain is able to form heterodimer with LAP1-2. Interestingly, LAP1-2 is also able to strongly form homodimers. By contrast, LAP1-1 is unable to form homodimers. Further functional analysis for LAP1-2 and LAP1-3 should lead not only to a deeper understanding of the MADS box genes in regulating flower transition but also to provide useful strategy to manipulate these genes in the future.

中文摘要
英文摘要
壹、前言 1
貳、材料與方法 9
參、結果 33
肆、討論 44
伍、參考文獻 49
陸、圖 57
柒、表 85
捌、附圖 88

周帛昍 (2000) 擬南芥中調控發育時期轉換相關基因之遺傳探討及分子選殖. 中興大學博士論文
陳星宇 (2000) 洋桔梗中與胚珠發育及花器形成相關MADS Box基因之分子選殖與特性分析. 中興大學碩士論文
施燕玲 (2001) 雌雄同株異花植物─ 矮南瓜(Zucchini squash)中MADS BOX基因之分子選殖與功能分析. 中興大學碩士論文
Amasino, R. (1996). Control of flowering time in plants. Curr. Opin. Genet. Dev. Dev. 6, 480-487.
Angenent, G.C., Busscher, M., Franken, J., Dons, H.J.M., and van Tunen, A.J. (1995a). Functional interaction between the homeotic genes fbp1 and pMADS1 during petunia floral organogenesis. Plant Cell 7, 505-516.
Angenent, G.C., and Colombo, L. (1996). Molecular control of ovule Development. Trends Plant Sci. 1, 228-232.
Angenent, G.C., Franken, J., Busscher, M., van Dijken, A., van Went, J.L., Dons, H.J.M., and van Tunen, A.J. (1995b). A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7, 1569-1582.
Berbel, A., Navarro, C., Ferrándiz, C., Cañas, L.A., Madueño, F., and Beltrán, J-P. (2001). Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species. Plant J 25, 441-451.
Bechtold, N., Ellis, J., and Pelletier, G. (1993). In planta Agrobecterium-
mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci. Ser. III Sci.Vie 316, 1194-1199.
Birnboim, H.C. (1983). A rapid alkaline extraction method for the isolation of plasmid DNA. Meth.Enzymol. 100, 243-255.
Birnboim, H.C., and Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids Res. 7, 1513-1523.
Bowman, J.L., Smyth, D.R., and Meyerowitz, E.M. (1991). Genetic interactions among floral homeotic genes of Arabidopsis. Development 112, 1-20.
Borner, R., Kampmann, G., Chandler, J., Gleißen, R., Wisman, E., Apel, K,. and Melzer, S. (2000). A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J 24, 591-599.
Bradley, D., Carpenter, R., Sommer, H., Hartley, N., and Coen, E. (1993). Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72, 85-95.
Breeden, L., and Nasmyth, K. (1985). Regulation of the yeast HO gene.Cold Spring Harbor Symposium Quant. Biol. 50, 643-650.
Coen, E.S., and Meyerowitz, E.M. (1991). The war of the whorls: genetic interactions controlling flower development. Nature 353, 31-37.
Colombo, L., Franken, J., Alexander, R., van der Krol, R., Wittich, P.E., Dons, H.J.M., and Angenent, G.C. (1997a). Downregulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell 9, 703-715.
Colombo, L., Franken, J., Koetje, E., van Went, J., Dons, H.J.M., Angenent, G.C., and van Tunen, A.J. (1995). The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7, 1859-1868.
Colombo, L., van Tunen, A.J., Dons, H.J.M., and Angenent, G.C. (1997b). Molecular control of flower development in Petunia hybrida. Adv. Bot. Res. 26, 229-250.
Egea-Cortines, M., Saedler, H. and Sommer, H. (1999). Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18, 5370-5379.
Elo, A., Lemmetyinen, J., Turunen, M.L., Tikka, L. and Sopanen, T. (2001). Three MADS-box genes similar to APETALA1 and FRUITFULL from silver birch (Betula pendula).Physiol Plant. 112, 95-103.
Fan, H.Y., Hu, Y., Tudor, M. and Ma, H. (1997). Specific interactions between the K domains of AG and AGLs members of the MADS domain family of DNA binding protein. Plant J. 12, 999-1010.
Flanagan, C.A., Hu, Y., and Ma, H. (1996). Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development. Plant J. 10, 343-353.
Gustafson Brown, C., Savidge, B., and Yanofsky, M.F. (1994). Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell 76, 131-143.
Huijser, P., Klein, J., Lönning, W-E., Meijer, H., Saedler, H., and Sommer, H. (1992). Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J.11, 1239-1249.
Ish-Horowitz, D.and Burke, J.F. (1981). Rapid and efficient cosmid vector cloning. Nucl. Acids Res. 9, 2989.
Jack, T. (2001). Relearning our ABCs: new twists on an old model. Trends Plant Sci. 6, 310-316.
Jack, T. (2001). Plant development going MADS. Plant Mol. Biol. 46, 515-520.
Jang, S., An, K., Lee, S., and An, G. (2002). Characterization of tobacco MADS-box genes involved in floral initiation. Plant Cell Physiol. 43, 230-238.
Kater, M.M., Colombo, L., Franken, J., Busscher, M., Masiero, S., Van Lookeren Campagne, M.M., and Angenent, G.C. (1998). Multiple AGAMOUS horologes from cucumber and petunia differ in their ability to induce reproductive organ fate. Plant Cell. 10, 171-182.
Kotilainen, M., Elomaa, P., Uimari, A., Albert, V.A., Yu, D. and Teeri, T.H. (2000). GRCD1, and AGL2-like MADS box gene, participates in the C function during stamen development in Gerbera hybrida. Plant Cell. 12, 1893-1902.
Koornneef, M.,Alonso-Blanco, C., Peeters, A.J.M.and Soppe W. (1998). Genetic control of flowering time in Arabidopsis. Annu.Rev.Plant.Physiol.Plant Mol.Biol. 49, 345-70.
Kyozuka, J., Harcourt, R., Peacock, W.J. and Dennis, E.S. (1997). Eucalyptus has functional equivalents of the Arabidopsis AP1 gene. Plant Mol. Biol. 35, 573-584.
Kyozuka, J., Kobayashi, T., Morita, M. and Shimamoto, K. (2000). Spatically and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol. 14, 710-718.
Liljegren, S.J., Gustafson-Brown, C., Pinyopich, A., Ditta, G.S., and Yanofsky, M.F. (1999). Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11, 1007-1018.
Miller, J.H. (1992). A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, New York.
Mizukami, Y., and Ma, H. (1992). Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71, 119-131.
Mizukami, Y., and Ma, H. (1995). Separation of AG function in floral meristem determinacy from that in reproductive organ identity by expressing antisense AG RNA. Plant Mol. Biol. 28, 767-784.
Moon, Y.H., Kang, H.G., Jung, J.Y., Jeon, J.S., Sung, S.K. and An, G. (1999). Determination of the motif responsible for interaction between the rice APETALA1 AGAMOUS-LIKE9 family proteins using a yeast two-hybrid system. Plant Physiol. 120, 1193-1203.
Müller, B.M., Saedler, H. and Zachgo, S. (2001). The MADS-box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development. Plant J. 28, 169-179.
Murashige, T., and Skoog, F. (1962) Arevised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473-479.
Nilsson, O. and Weigel, D. (1997). Modulating the timing of flowering. Curr. Opin. Biotech. 8, 195-199.
Okada, K. and Shimura, Y. (1994). Genetic analyses of signaling in flower development using Arabidopsis. Plant Mol. Biol. 26, 1357-1377.
Park, D.H., Somers, D.E., Kim, Y.H., Lim, H.K., Soh, M.S., Kim, H.J., Kay, S.A., and Nam, H.G. (1999). Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285, 1579-1582.
Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. and Yanofsky, M.F. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405, 200-203.
Pnuli, L., Abu-Abeid, M., Zamir, D., Nacken, W., Schwarz-Sommer, Z. and Lifschitz, E. (1991). The MADS box gene family in tomato: temporal expression during floral development conserved secondary structures and homology with homeotic genes from Antirrhinum and Aarabidopsis. Plant J. 1, 255-266.
Purugganan, M.D., Rounsley, S.D., Schmidt, R.J., and Yanofsky, M. (1995). Molecular evolution of flower development: diversification of the plant MADS-box regulation gene family. Genetics 140, 345-356.
Riechmann, J.L., Krizek, B.A. and Meyerowitz, E.M. (1996). Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA 93, 4793-4798.
Riechmann, J.L. and Meyerowitz, E.M. (1997). MADS domain proteins in plant development. Biol. Chem. 378, 1079-1101.
Rounsley, S.D., Ditta, G.S., and Yanofsky, M.F. (1995). Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7, 1259-1269.
Rutledge, R., Regan, S., Nicola, O., Fobert, P., Cote, C., Bosnich, W., Kauffeldt, C., Sunohara, G., Seguin, A., and Stewart, D. (1998). Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. Plant J. 15, 625-634.
Schmidt, R.J., Veit, B., Mandel, M.A., Mena, M., Hake, S., and Yanofsky, M.F. (1993). Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. Plant Cell 5, 729-737.
Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H., and Sommer, H. (1990). Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250, 931-936.
Sheldon, C.C., Rouse, D.T., Finnegan, E.J., Peacock, W.J., and Dennis, E. (2000). The molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC) PNAS 97, 3753-3758.
Shannon, S., and Meeks-Wanger, D.R. (1991). A mutant in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3, 877-892.
Tandre, K., Svenson, M., Svenson, M.E., and Engström, P. (1998). Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms. Plane J. 15, 615-623.
Theißen, G. (2001). Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4, 75-85.
Theißen, G., Kim, J.T. and Saedler, H. (1996). Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphology evolution of eukaryotes. J. Mol. Evol. 43, 484-516.
Theissen, G., Kim, J., and Saedler, H. (1996). Classification and Phylogeny of the MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43, 484-516.
Theissen, G., Becker, A., Rosa, A.D., Kanno, A., Kim, J.T., Münster, T., Winter, K.U., and Saedler, H. (2000). A short history of MADS-box genes in plant. Plant Mol.Biol. 42, 115-194.
Thiessen, G.and Saedler, H. (1995). MADS-box gene in plant ontogeny and phylogeny: Haeckel’s ‘biogenetic law’ revisited. Curr. Opin. Genet. Dev. 5, 628-639.
Tzeng, T-Y. and Yang, C-H. (2001). A MADS box gene from Lily (Lilium Longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant Cell Physiol. 42, 1156-1168.
Weigel, D., Alvarez, J., Smyth, D.R., Yanofsky, M.F. and Meyerowitz, E.M. (1992). LEAFY controls floral meristem identity in Arabidopsis.Cell 69, 843-859.
Weigel, D., and Meyerowitz, E.M. (1994). The ABCs of floral homeotic genes. Cell 78, 203-209.
Weigel, D., and Nilsson, O. (1995). A developmental switch sufficient for flower initiation in diverse plants. Nature 377, 495-500.
Winter, K.U., Becker, A., Münster, T., Kim, J.T., Saedler, H., and Theissen G. (1999). MADS-box genes reveal that genetophytes are more closely related to conifers than to flowering plants. Proc. Natl. Acad. Sci. USA 96, 7342-7347.
Yu, D., Kotilainen, M., Pollanen, E., Mehto, M., Elomaa, P., Helariutta, Y., Albert, V.A., and Terri, T.H. (1999). Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant J. 17, 51-62.
Yu, H., and Goh, C.J. (2000). Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiol. 123, 1325-1336.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top