跳到主要內容

臺灣博碩士論文加值系統

(3.87.33.97) 您好!臺灣時間:2022/01/27 15:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔣本慈
研究生(外文):Ben-Tsu Chiang
論文名稱:竹嵌紋病毒和假單胞菌誘導白藜葉片發生過敏過程中Osmotin-likeprotein及Rubiscoactivase的表現
論文名稱(外文):The Expression of Osmotin-Like Protein and Rubisco Activase during the Hypersensitive Response of Chenopodium quinoa Induced by Bamboo Mosaic Virus-S and Pseudomonas syringae pv. syringae 61
指導教授:黃秀珍黃秀珍引用關係
指導教授(外文):Hsiou-Chen Huang
學位類別:博士
校院名稱:國立中興大學
系所名稱:農業生物科技學研究所
學門:農業科學學門
學類:農業技術學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:101
中文關鍵詞:似滲透壓蛋白菜豆細菌性斑點病菌過敏白藜
外文關鍵詞:Osmotin Like ProteinPseudomonas syringae pv. syringae strain Pss61Rubisco activaseHypersensitive ResponseChenopodium quinoa
相關次數:
  • 被引用被引用:0
  • 點閱點閱:624
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
寄主與病原菌間的關係乃依據寄主對於病原菌的抗病能力分別發生感病或抗病反應。而過敏性反應 (hypersensitive response) 為寄主受病原菌侵入部位誘導產生壞疽的抗病現象。白藜 (Chenopodium quinoa) 受到大部分的病毒如竹嵌紋病毒 (Bamboo mosaic virus;BaMV-S)、細菌如菜豆細菌性斑點病菌 (Pseudomonas syringae pv. syringae strain Pss61) 侵入都會發生過敏性反應。為了探討白藜的過敏現象,本論文採用cDNA subtraction 選殖經竹嵌紋病毒接種白藜誘導過敏反應後第三天的相關之表現基因,共得到300株以上的選殖株。從300株以上的選殖株中,再分別以白藜誘導過敏反應與非過敏反應的cDNA為探針,進行differential colony hybridization,選取結果差異較大的61株選殖株進行DNA定序、並與基因庫內核甘酸序列進行比對,顯示有些選殖株含有具高相似度的基因,例如磷生物合成相關基因(phosphonate biosynthesis related mRNA)、似細胞核去氧核酸結合蛋白基因 (hn-RNP like protein)、ACC氧化酵素、phosphoribulokinase (PPK)、離層酸-壓力成熟蛋白 (ABA-Stress ripening protein)、似滲透壓蛋白-Rubisco活化酵素 (osmotin-like protein fusion Rubisco activase) 及硫化物還原蛋白 (thioredoxin) 等,再以北方墨點術確認這些基因在白藜接種竹嵌紋病毒後RNA量的表現情形。本篇論文選擇以含olp (osmotin-like protein) 及rca (Rubisco activase) 之部份cDNA選殖體 (pTA2-9) 作為以下實驗的起始點。cDNA基因片段 (pTA2-9) 內含三個部份:分別與波菜rca (Rubisco activase)、與Atriplex nummularia似滲透壓蛋白基因 (osmotin-like protein pA9) 有高相似度以及在基因庫中無相似序列之未知片段。
以5’及3’ race之結果設計兩個引子得全長白藜olp-4 (osmotin-like protein 4) cDNA。此OLP為致病過程相關蛋白質 (pathogenesis-related (PR) proteins) 第五群 (簡稱為PR-5) 的蛋白質之一,這類蛋白質功能之分歧度很大,分別具有抗真菌能力、甜味、抗凍能力等等。由OLP-4蛋白質的氨基酸3D立體結構顯示此蛋白質可分為Domain I、 Domain II、 Domain III三個部分,由Domain I及Domain II形成裂縫 (cleft) ,含有Glu、Asp之酸性氨基酸以致裂縫 (cleft) 表面形成帶負電荷狀態,依據此類蛋白質在3D立體結構上的預測顯示白藜OLP-4可能具有抗真菌的潛力。為了證實此蛋白質是否具有抑制真菌生長之活性,選擇在大腸桿菌 (Escherichia coli) 中以T7-RNA-dependent ploymerase系統表現融合成熟似滲透壓蛋白 (OLP-f204)。經由IPTG誘導OLP-f204蛋白質合成,得到不溶性包含體 (inclusion body) 蛋白質,經蛋白質變性成為可溶性蛋白質,加入氧化還原態的glutathione幫助OLP-f204重新摺疊,再以thrombin切除融合氨基酸的序列,得到比成熟OLP-4蛋白質多七個氨基酸殘基的蛋白質稱為OLP-204。 OLP—204與Alternaria brassicicola一起培養於0.5X PDB,在22 oC 14小時環境下,具有抑制真菌孢子發芽管生長的生物特性。經南方墨點術確定以單套基因形式存在白藜基因體內。在竹嵌紋病毒誘發白藜產生過敏反應第三天及菜豆細菌性斑點病菌誘發白藜過敏反應第六個小時後, olp mRNA開始有較顯著的累積量,竹嵌紋病毒誘發及菜豆細菌性斑點病菌發生過敏反應相較於同時間對照組olp mRNA之表現,分別增加為1至2.6倍、1.2 至2倍的表現量。追蹤OLP蛋白質在過敏性反應各時期的表現,在竹嵌紋病毒誘發白藜過敏反應第五天及菜豆細菌性斑點病菌誘發白藜過敏反應第四十八個小時後,其蛋白質的累積量分別為同期對照組的1.9及4倍。
此外,也以上述選殖olp基因的方法得到全長白藜rca的cDNA。RCA為光合作用暗反應中,固定二氧化碳的酵素Rubisco (ribulose-1,5-bisphosphate carboxylase / oxgenase) 的活化子。在白藜由竹嵌紋病毒所誘發的過敏性反應過程中,比較實驗組rca mRNA的表現量為同期之對照組表現量之0.95至0.63倍,但在菜豆細菌性斑點病菌所誘發的過敏性反應過程中,其mRNA的表現量於第6-9小時後開始有顯著下降的趨勢,比較實驗組與同期之對照組rca mRNA的表現量的0.98至0.55倍。經南方墨點術確定以單套基因形式存在白藜基因體內。為了確定rca 的cDNA衍生氨基酸序列為RCA蛋白,將rca cDNA (移去前面58個可轉譯為葉綠體訊號之氨基酸序列) 構築於蛋白質表現載體pT7-7 (文中稱為pT7-7-RCA) ,以大腸桿菌T7-RNA-dependent ploymerase系統表現出相當於植物存在葉綠體中RCA蛋白質的S isoform,經西方墨點術證實rca cDNA之轉譯產物可被水稻的RCA抗體辨識。
Abstract
The partial cDNA fragments, were selected by cDNA subtraction method from the Chenopodium quinoa leaf tissues under the hypersensitive response treatment induced by Bamboo mosaic virus-S (BaMV-S) after 3 days infection, and were obtained for more than 300 colonies. The 61 colonies were selected by significant differential signal between hypersensitive response treatment and non-hypersensitive response treatment cDNA probe by using colony hybridization, sequencing and alignment using NCBI program. They are highly homologous with phosphonate biosynthesis related mRNA, hn-RNP like protein, ACC oxidase, phosphoribulokinase (PPK), ABA-Stress ripening protein, Rubisco activase-osmotin-like protein and thioredoxin gene. The pTA2-9 was selected for further study, base on the increasing of its mRNA expression in hypersensitive response. The cDNA insert in pTA2-9 includes four cDNA fragments, including two-unknown genes, the rca (rubisco activase) and olp (osmotin-like protein) genes.
The 5’and 3’ ends of the osmotin-like protein gene primers are designed from the partial pTA2-9 cDNA sequence. The olp (osmotin-like protein) cDNA were cloned by PCR fragment construction. OLP amino acid sequence is highly homologous with PR-5 protein. The PR-5 contributes a group of unique proteins with diverse functions, including antifungal activity, sweet taste and anti-freeze activity. The prediction of tertiary structure of OLP was composed of domain I、domain II and domain III. The negative charged surface cleft that was presented in domain I and II was common motif with antifungal activity in PR-5 protein. The cDNA region that corresponded to putative mature protein was expressed in Escherichia coli, and cDNA encoded protein was purified to investigate the effect of OLP on the inhibition of fungal germ tube growth. The bacterially expressed OLP-204 in E. coil was designated as OLP-f204. The OLP-f204 was induced by IPTG as an insoluble protein (inclusion body), made it denature form become soluble protein by urea treatment, and refolded by glutathione. The refolded OLP-f204 removed the N-terminal fragment containing 6x His was called OLP-204. OLP-204 retained its biological activity base on the inhibition of antifungal germ tube growth. According to the result of Northern assay, the olp mRNA expression was enhanced after third days and sixth hrs of hypersensitive response to C. quinoa induced respectively by BMV and Pseudomonas syringae pv. syringae strain Pss61. The olp gene is a single copy in genomic DNA according to Southern assay. The OLP level is enhanced in the sixth days and forty-eighth hrs of C. quinoa induced respectively by BMV and P. syringe pv. syringe strain Pss61 base on Western assay.
The full-length cDNA, RCAF2 that encodes the rca (Rubisco activase) was isolated from leaf tissues of C. quinoa using 5’ and 3’ race-PCR cloning. The RCA is an activator of rubisco (ribulose-1, 5-bisphosphate carboxylase / oxgenase) that is a key enzyme of photosynthetic CO2 assimilation. The rca gene is a single copy in genomic DNA according to Southern assay. The Northern assay showed that the rca mRNA expression of C. quinoa started to decline 6-9 hr after the HR (hypersensitive response) to P. s. pv. syringae strain Pss61 infection but no significant difference in rca mRNA expression after HR to BaMV. The RCA protein has been detected to exist L, S isoform (large and small isoform) in C. quinoa.
目 錄
中文摘要------------------------------------------------------------------------------ 1
英文摘要------------------------------------------------------------------------------ 3
背景說明與重要性------------------------------------------------------------------ 5
參考文獻-----------------------------------------------------------------------------12
第壹章、利用cDNA subtraction 選殖白藜經竹嵌紋病毒 (Bamboo mosaic virus) 接種後第三天誘導產生過敏反應相關之基因
摘要-- ------------------------------------------------------------------------------- 18
前言--------------------------------------------------------------------------------- 19
材料與方法
植物材料之製備------------------------------------------------------------ 24
竹嵌紋病毒之接種--------------------------------------------------------- 24
重組DNA之技術---------------------------------------------------------- 24
全RNA的萃取------------------------------------------------------------- 24
poly(A)RNA之純化------------------------------------------------------- 25
Subtracted cDNA之選殖------------------------------------------------- 25
北方轉漬-------------------------------------------------------------------- 27
結果與討論----------------------------------------------------------------------- 29
參考文獻--------------------------------------------------------------------------- 31
第貳章、似滲透壓蛋白(OLP)與白藜過敏性反應間的研究
摘要--------------------------------------------------------------------------------- 35
前言--------------------------------------------------------------------------------- 37
材料與方法
菜豆細菌性斑點病菌Pseudomonas syringae pv. syringae strain Pss61的接種----------------------------------------------------------------- 40
全RNA的萃取-------------------------------------------------------------- 40
poly(A)核酸的分離---------------------------------------------------------- 40
5’ 及3’ race 選殖olp的cDNA選殖株-------------------------------- 41
基因體轉漬分析------------------------------------------------------------- 42
利用T7 RNA polymerase dependent系統表現OLP-f204蛋白----- 43
融合蛋白質OLP-f204 之純化-------------------------------------------- 43
融合蛋白質OLP-f204之重新摺疊及切割----------------------------- 44
抑制真菌Alternaria brassicicola孢子發芽管生長的分析----------- 44
OLP-f204蛋白質之抗血清的製備-------------------------------------- 45
西方墨點術------------------------------------------------------------------- 45
阿拉伯芥的轉殖------------------------------------------------------------- 46
結果
全長OLP (似滲透壓蛋白質) cDNA基因的構築及定序---------- -- 48
olp-4以單套基因形式存在基因組--------------------------------------- 48
白蔾受竹嵌紋病毒、菜豆細菌性斑點病菌所誘發過敏性反應中,olp-4 mRNA的表現---------------------------------------------------------- 48
白蔾受竹嵌紋病毒、菜豆細菌性斑點病菌所誘發過敏性反應中,OLP-4蛋白質的表現-------------------------------------------------------- 48
OLP-4之3D立體結構------------------------------------------------------ 49
大腸桿菌系統表現OLP-f204蛋白質------------------------------------ 49
OLP-204蛋白質抗真菌的活性分析-------------------------------------- 50
轉殖植物阿拉伯芥的抗病表現-------------------------------------------- 50
討論--------------------------------------------------------------------------------- 51
參考文獻--------------------------------------------------------------------------- 55
第參章、白藜的Rubisco activase基因之選殖與特性分析
摘要--------------------------------------------------------------------------------- 59
前言--------------------------------------------------------------------------------- 61
材料與方法
5’ 及3’ race 選殖RCA的cDNA選殖株------------------------------- 64
利用T7 RNA polymerase dependent系統表現RCA蛋白------------ 65
3’ rca cDNA片段之增幅及偵測------------------------------------------ 65
結果
rca (C. quinoa Rubisco activase) cDNA基因的構築及定序---------- 68
rca以單套基因形式存在基因組------------------------------------------ 68
白藜受竹嵌紋病毒及菜豆細菌性斑點菌誘發白蔾過敏性反應環境下,rca mRNA的表現--------------------------------------------------- 68
白藜竹嵌紋病毒、菜豆細菌性斑點病菌誘發白蔾過敏性反應環境下RCA蛋白質的表現------------------------------------------------------ 68
RCAF2片段所轉譯之成熟RCA蛋白質為S isoform----------------- 69
由偵測到兩段不同大小之3’ rca cDNA,證實白藜確實有L、S 兩種isoform的存在------------------------------------------------------------ 69
討論--------------------------------------------------------------------------------- 70
參考文獻--------------------------------------------------------------------------- 72
圖表--------------------------------------------------------------------------------- 74
參考文獻
1.陳煜焜、彭英哲、陳翠妙、陳 紀 (1995) 本省萵苣嵌紋病毒之診斷與血清鑑定. 植物病理會刊 04: 60-68.
2.Alfano, J. R. and Collmer, A. (1996) Bacterial pathogens in plants: life up against the wall. Plant Cell 8:1683-1698.
3.Agrios, G. (1988) Plant Pathology. (San Diego: Academic Press)
4.Barinaga, M. (1996) A shared strategy for virulence. Science 272:1261-1263.
5.Bent, A. F. (1996) Plant disease resistance genes: function meets structure. Plant Cell 8:1757-1771.
6.Bent, A. F., Kunkel, B. N., Dahlbeck, D., Brown, K.L., Schmidt, R. L., Giraudat, J., Leung, J. L. and Staskawicz, B. J. (1994) RPS2 of Arabidopsis thaliana: A leucine-rich repeat class of plant disease resistance genes. Science 265:1856-1860.
7.Bisgrove, S. R., Simonich, M. T., Simth, N. M., Sattler, A. and Innes, R. W. (1994) A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes. Plant cell 6:927-933.
8.Bowles, D. J. (1990) Defense-related proteins in higher plants. Annu. Rev. Biochem. 59:873-907.
9.Carrington, J. C., Kasschau, K. D., Mahajan, S. K. and Schaad, M. C. (1996) Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8:1669-1681.
10.Cassab, G. I. and Varner, J. E. (1988) Cell wall proteins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39: 321-353.
11.Citovsky, V., Knorr, D. and Zambryski, P. (1991) Gene I, a potential cell-to-cell movement locus of cauliflower mosaic virus, encodes an RNA-binding protein. Proc. Natl. Acad. Sci. USA 88: 2476-2480.
12.Citovsky, V., Wong, M. L., Shaw, A. L., Prasad, B. M. V. and Zambryski, P. (1992) Visualization and characterization of tobacco mosaic virus movement protein binding to single-stranded nucleic acids. Plant Cell 4:397-411.
13.Chamnongpol, S., Willekens, H., Moeder, W., Langebartels, C., Sandermann, H., Jr., Montagu, M. V., Inzé, D. and Camp, W. V. (1998) Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc. Natl. Acad. Sci. USA 95:5818-5823.
14.Dangl, J. L., Dietrich, R. A. and Richberg, M. H. (1996) Death don’t have no mercy: cell death programs in plant-microbe interactions. Plant Cell 8:1793-1807.
15.Dixon, M. S., Jones, D. A., Keddie, J. S., Thomas, C. M., Harrison, K. and Jones, J. D. G. (1996) The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84:451-459.
16.Dixon, R. A., Harrison, M. J. and Lamb, C. J. (1994) Early events in the activation of plant defense responses. Annu. Rev. Phytopathol. 32:479-501.
17.Dixon, R. J. and Lamb, C. J. (1990) Molecular communication in interactions between plants and microbial pathogens. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 41: 339-369.
18.Flor, H. H (1971) Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9:275-296.
19.Gabriel, D. W. and Rolfe, B. G. (1990) Working models of specific recognition in plant-microbe interactions. Annu. Rev. Phytopathol. 28:265-391.
20.Ghoshroy, S., Lartey, R., Sheng, J. and Citovsky, V. (1997) Transport of proteins and nucleic acids through plasmodesmata. Annu. Rev. Plant. Physiol. Plant Mol Biol. 48:27-50.
21.Gopalan, S., Bauer, D. W., Alfano, J. R., Loniello, A. O., He, S. Y. and Collmer, A. (1996) Expression of the Pseudomonas syringae avirulence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicity (Hrp) secretion system in eliciting genotype-specific hypersensitive cell death. Plant Cell 8:1095-1105.
22.Grant, M. R., Godiard, L., Straube, E., Ashfield, T., Lewaid, J., Sattler, A., Innes, R. W. and Dangl, J. L. (1995) Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269:843-846.
23.Guo, A., Durner, J. and Klessig, D. F. (1998) Characterization of a tobacco epoxide hydrolase gene induced during the resistance response to TMV. Plant J. 15:647-656.
24.Hahlbrock, K. and Scheel, D. (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 40: 347-369.
25.Hammond-Kosack, K. E. and Jones, J. D. G. (1994a) Incomplete dominance of tomato Cf genes for resistance to Cladosporium fulvum. Mol. Plant-Microbe Interact. 7:58-70.
26.Hammond-Kosack, K. E., Jones, D. A. and Jones, J. D. G. (1994b) Identification of two genes required in tomato for full Cf-9-dependent resistance to Cladosporium fulvum. Plant Cell 6:361-374.
27.Hammond-Kosack, K. E. and Jones, J. D. G. (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773-1791.
28.He S. Y., Huang, H.-C. and Collmer, A. (1993) Pseudomonas syringae pv. syringae Harpinpss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73: 1255-1266.
29.Huang, H.-C., Schuurink, R., Denny, T.P., Atkinson, M.M., Baker, C.J., Yucel, I., Hutcheson, S.W. and Collmer, A. (1988) Molecular cloning of a Psedomonas syringae pv.syringae gene cluster that enables Pseudomonas fluorescens to elicit the hypersensitive response in tobacco. J. Bacteriol. 170: 4748-4756.
30.Jirage, D., Tootle, T. L., Reuber, T. L., Frost, L. N., Feys, B. J., Parker, J. E., Ausubel, F. M. and Glazebrook, J. (1999) Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc. Natl. Acad. Sci. USA 96: 13583-13588.
31.Jones, D. A., Thomas, C. M., Hammond-Kosack, K. E., Balint-Kurti, P.J. and Jones, J. D. G. (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789-793.
32. Jones, J. D. G. (1997) A kinase with keen eyes. Nature 385:397-398.
33.Jones, O. W. T. (1994) The regulation of superoxide production by the NADPH oxidase of neutrophils and other mammalian cells. Bioessays 16:919-923.
34.Karrer, E. E., Beachy, R. N. and Holt, C. A. (1998) Cloning of tobacco genes that elicitor the hypersensitive response. Plant Mol. Biol. 36:681-690.
35.Klessig, D. F., Durner, J., Noad, R., Navarre, D. A., Wendehenne, D., Kumar, D., Zhou, J. M., Shah, J., Zhang, S., Kachroo, P., Trifa, Y., Pontier, D., Lam, E. and Silva, H. (2000) Nitric oxide and salicylic acids signaling in plant defense. Proc. Natl. Acad. Sci. USA. 97: 8849-8855.
36.Kobe, B. and Deisenhofer, J. (1994) The leucine-rich repeat: A versatile binding motif. Trends Biochem. Sci. 19:415-420.
37.Kuno, K. and Matsushima, K. (1994) The IL-1 receptor signaling pathway. J. Leukocyte Biol. 56:542-547.
38.Lawrence, G. J., Finnegan, E. J., Ayliffe, M. A. and Ellis, J. G. (1995) The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell 7:1195-1206.
39.Levine, A., Pennell, R. I., Alvarez, M. E., Palmer, R. and Lamb C. (1996) Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr. Biol. 6:427-437.
40.Lindgren, P. B., Peet, R. C. and Panopoulos, N. J. (1986) Gene cluster of Pseudomonas syningae pv.” phaseolicola” controls pathogenicity of bean plants and hypersensitivity on nonhost plants. J. Bacteriol. 168:512-522.
41.Mach, J. M., Casteillo, A. R., Hoogstraten, R. and Greenberg, J. T. (2001) The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc. Natl. Acad. Sci. USA 98:771-776.
42.Marrou, T. and Messiaen, C. M. (1967) The Chenopodium quinoa test: a critical method for detecting seed transmission of lettuce mosaic virus. Proceedings of the International Seed testing Association 32: 49-57.
43.Martin, G. B., Brommonschenkel, S. H., Chunwongse, J., Frary, A, Ganal, M. W., Spivey, R., Wu, T., Earle, E. D. and Tanksley, S. D. (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432-1436.
44.Mindrinos, M., Katagiri, F., Yu, G, -L. and Ausubel, F. M. (1994) The Arabidopsis thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78:1089-1099.
45.Mittler, R. and Lam, E. (1996) Sacrifice in the face of foes: pathogen-induced programmed cell death in plants. Trends Microbiol. 4:10-15.
46.Morisato, D. and Anderson, K. V. (1995) The signaling pathways that establish dorsal-ventral pattern of the Drosophila embryo. Annu. Rev. Genet. 29:371-399.
47.Niepold, F., Anderson, D. and Mills, D. (1985) Cloning determinants of pathogenesis from Psedomonas syringae pathovar syringae. Proc. Natl. Acad. Sci. USA 82:406-410.
48.Pirhonen, M. U., Lidell, M. C., Rowley, D. L., Lee, S. W., Jin, S., Liang, Y., Silverstone, S., Keen, N. T. and Hutcheson, S. W. (1996) Phenotypic expression of Pseudomonas syringae avr genes in E. coli is linked to the activities of the hrp-encoded secretion system. Mol. Plant-Microbe Interact. 9:252-260.
49.Rate, D. N., Cuenca, J. V., Bowman, G. R., Guttman, D. S. and Greenberg, J. T. (1999) The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth. Plant Cell 11:1695-1708.
50.Rommens, C. M. T., Salmeron, J. M., Baulcombe, D. C. and Staskawicz, B. J. (1995) Use of a gene expression system based on potato virus X to rapidly identify and characterize a tomato Pto homolog that controls fenthion sensitivity. Plant Cell 7:249-257.
51.Rosqvist, R., Magnusson, K. E. and Wolf-Watz, H. (1994) Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J. 13:964-972.
52.Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. (1996) Systemic acquired resistance. Plant Cell 8:1809-1819.
53.Salmeron, J. M., Oldroyd, G. E. D., Rommens, C. M. T., Scofield, S. R., Kim, H.-S., Lavelle, D. T., Dahlbeck, D. and Staskawicz, B. J. (1996) Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86:123-133.
54.Segal, A. W. and Abo, A. (1993) The biochemical basis of the NAPDH oxidase of phagocytes. Trends Biochem. Sci. 18:43-47.
55.Song, W. Y., Wang, G. L., Chen, L. L., Kim, H. S., Pi, L.-Y., Holsten, T., Gardner, J., Wang, B., Zhai, W. X. and Shu, L. H. (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804-1806.
56.van Loon, L. C., Pierpoint, W. S., Boller, T. and Conejero, V. (1994) Recommendations for naming plant pathogenesis-related proteins. Plant Mol. Biol. Reporter 12:245-264.
57.Ward, E. R., Uknes, S. J., Williams, S. C., Dincher, S. S., Wiederhold, D. L., Alexander, D. C., Ahl-Goy, P., Métraux, J.-P. and Ryals, J. A. (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085-1094.
58.Whitham, S., Dinesh-Kumar, S. P., Choi, D., Hehl, R., Corr, C. and Baker, B (1994) The product of the tobacco mosaic virus resistance gene N: Similarity to Toll and the interleukin-1 receptor. Cell 78:1101-1115.
59.Yang, K-Y., Liu, Y. and Zhang, S. (2001) Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc. Natl. Acad. Sci. USA 98:741-746.
60.Yang, Y. and Klessig, D. F. (1996) Isolation and characterization of a tobacco mosaic virus-inducible myb oncogene homology from tobacco. Proc. Natl. Acad. Sci. USA 93: 14972-14977.
61.Zambryski P. C. (1992) Chronicles from the Agrobacterium-plant cell DNA transfer story. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 43: 465-490.
62.Zhang, S. and Klessig, D. F. (1998) Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection. Proc. Natl. Acad. Sci. USA 95:7433-7438.
63.Zhang, Y., Fan, W., Kinkema, M., Li, X. and Dong, X. (1999) Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc. Natl. Acad. Sci. USA 96:6523-6528.
64.Zhou, J., Loh, Y. -T., Bressan, R. A. and Martin, G. B. (1995) The tomato gene Pti1 encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell 83:925-953.
65.Zhou, J. -M., Trifa, Y., Silva, H., Pontier, D., Lam, E., Shah, J and Klessig, D. F. (2000) NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol. Plant-Microbe Interact. 13: 191-202.
66.Zhou, N., Tootle, T. L., Tsui, F., Klessig, D. F. and Glazebrook, J. (1998) PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. Plant Cell 10:1021-1030.
參考文獻
1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215:403-410.
2. Bendahmane, A., Köhn, B. A., Dedi, C. and Baulcombe, D. C. (1995) The coat protein of potato virus X is a strain-specific elicitor of Rx1-mediated virus resistance in potato. Plant J. 8:933-941.
3. Bendahmane, A., Kanyuka, K. and Baulcombe, D. C. (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11: 781-791.
4. Boyes, D. C., Nam, J. and Dangl, J. L. (1998) The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc. Natl. Acad. Sci. USA 95:15849-15854.
5. Chamnongpol, S., Willekens, H., Moeder, W., Langebartels, C., Sandermann, H., Jr., Montagu, M. V., Inzé, D. and Camp, W. V., (1998) Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc. Natl. Acad. Sci. USA 95:5818-5823.
6. Chisholm, S. T., Mahajan, S. K., Whitham, S. A., Yamamoto, M. L. and Carrington, J. C. (2000) Cloning of the Arabidopsis RTM1 gene, which controls restriction of long-distance movement of tobacco etch virus. Proc. Natl. Acad. Sci. USA 97:489-494.
7. Clarke, J. D., Liu, Y., Klessig, D. F. and Dong, X. (1998) Uncoupling PR gene expression from NPR1 and bacterial resistance: characterization of the dominant Arabidopsis cpr6-1 mutant. Plant cell 10:557-569.
8. Dangl, J. L., Dietrich, R. A. and Richberg, M. H. (1996) Death don’t have no mercy: cell death programs in plant-microbe interactions. Plant Cell 8: 1793-1807.
9. Erickson, F. L., Holzberg, S., Calderon-Urrea, A., Handley, V., Axtell, M., Corr, C. and Bakker, B. (1999) The helicase domain of the TMV replicase proteins induces the N-mediated defense response in tobacco. Plant J. 18:67-75.
10. Frye, C. A., Tang, D. and Innes, R. W. (2001) Negative regulation of defense responses in plants by conserved MAPKK kinase. Proc. Natl. Acad. Sci. USA 98:373-378.
11. Furukawa, Y., Piwnica-Worms, H., Emst, T. J., Kanakura, Y. and Griffin, J. D. (1990) cdc2 gene expression at the G1 to S transition in human T lymphocytes. Science 250:805-8.
12. Guo, A., Durner, J. and Klessig, D. F., (1998) Characterization of a tobacco epoxide hydrolase gene induced during the resistance response to TMV. Plant J. 15:647-656.
13. Hammond-Kosack, K. E. and Jones, J. D. G. (1996) Resistance gene-dependent plant defense response. Plant cell 8:1773-1791.
14. Hassfeld, W., Chan, E. K. L., Mathison, D. A., Portman, D., Dreyfuss, G., Steiner, G. and Tan, E. M. (1998) Molecular definition of heterogeneous nuclear ribonucleoprotein R (hnRNP R) using autoimmune antibody: immunological relationship with hnRNP P. Nucleic Acids Research 26:439-445.
15. He, S. Y., Huang H. -C. and Collmer, A. (1993) Psudomonas syringae pv. syringae Harpinpss: A protein that is secreted via the Hrp pathway and elicits that hypersensitive response in plants. Cell 73:1255-1266.
16. Hunt, M. D., Delaney, T. P., Dietrich, R. A., Weymann, K. B., Dangl, J. L. and Ryals, J. A. (1997) Salicylate —independent lesion formation in Arabidopsis lsd mutants. Mol. Plant-Microbe Interact. 10:5 531-536.
17. Jakobek, J. L., Smith-Becker, J. A. and Lindgren, P. B. (1999) A bean cDNA expressed during a hypersensitive reaction encodes a putative calcium-binding protein. Mol. Plant-Microbe Interact. 12:712-719
18. Jirage, D., Tootle, T. L., Reuber, T. L., Frost, L. N., Feys, B. J., Parker, J. E., Ausubel, F. M. and Glazebrook, J. (1999) Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc. Natl. Acad. Sci. USA 96:13583-13588.
19. Jung, H. W. and Hwang, B. K. (2000) Isolation partial sequencing, and expression of pathogenesis-related cDNA genes from pepper leaves infected by Xanthomonas campestris pv. vesicatoria. Mol. Plant-Microbe Interact. 13:136-142.
20. Karrer, E. E., Beachy, R. N. and Holt, C. A. (1998) Cloning of tobacco genes that elicitor the hypersensitive response. Plant Mol. Biol. 36:681-690.
21. Klessig, D. F., Durner, J., Noad, R., Navarre, D. A., Wendehenne, D., Kumar, D., Zhou, J. M., Shah, J., Zhang, S., Kachroo, P., Trifa, Y., Pontier, D., Lam, E. and Silva, H. (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc. Natl. Acad. Sci. USA 97:8849-8855.
22. Lacomme, C. and Cruz, S. S. (1999) Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc. Natl. Acad. Sci. USA 96:7956-7961.
23. Levine, A., Pennell, R. I., Alvarez, M. E., Palmer, R. and Lamb, C. (1996) Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr. Biol. 6:427-437.
24. Lin, N. -S., Lin, B. -Y., Lo, N. -W., Hu, C. -C., Chow, T. -Y. and Hsu, Y. -H.(1994) Nucleotide sequence of the genomic RNA of bamboo mosaic potexvirus. J. Gen. Virol. 75:2513-2518.
25. Mach, J. M., Casteillo, A. R., Hoogstraten, R. and Greenberg, J. T. (2001) The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc. Natl. Acad. Sci. USA 98:771-776.
26. Murdjeva, M., Tanaka,Y., Norton, T and Kioussis, D. (1996) The programmed cell death of an immature thymocyte cell line transgenic for an alpha beta TCR and the c-myc proto-oncogene. Dev. Immunol. 4:279-288.
27. Rate, D. N., Cuenca, J. V., Bowman, G. R., Guttman, D. S. and Greenberg, J. T. (1999) The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth. Plant cell 11:1695-1708.
28. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) Molecular Cloning. Cold Spring Harbor Laboratory Press.
29. Shah, J., Kachroo, P. and Klessig, D. F. (1999) The Arabidopsis ssi1 mutation restores pathogenesis-related gene expression in npr1 plants and renders defensin gene expression salicylic acid dependent. Plant cell 11:191-206.
30. Seth, A., Alvarez, E., Gupta, S. and Davis, R. J. (1991) A phosphorylation site located in the NH2-terminal domain of c-Myc increases transactivation of gene expression. J. Biol. Chem. 266:23521-23524.
31. Studzinski, G. P., Brelvi, Z. S., Feldman, S. C. and Watt, R. A. (1986) Participation of c-Myc protein in DNA synthesis of human cells. Science 234: 467-470
32. Tagaya, Y., Maeda, Y., Mitsui, A., Kondo, N., Matsui, H., Hamuro, J., Brown, N., Arai, K. I., Yokota, T., Wakasugi, H. and Yodoi, J. (1989) ATL-derived factor (ADF) an IL2-receptor/Tac inducer homologous to thioredoxin; possible involvement of dithiol-reduction in the IL-2 receptor induction. EMBO J. 8:757-764.
33. Wang, H., Brandt, A. S. and Woodson, W. R. (1993) A flower senescence-related mRNA from carnation encodes a novel protein related to enzymes involved in phosphonate biosynthesis. Plant Mol. Biol. 22:719-724
34. Whitham, S. A., Yamamoto, M. L. and Carrington, J. C. (1999) Selectable viruses and altered susceptibility mutants in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 96:772-777.
35. Whitham, S. A., Anderberg, R. J., Chisholm, S. T. and Carrington, J. C. (2000) Arabidopsis RTM2 gene is necessary for specific restriction of tobacco etch virus and encodes an unusual small heat shock-like protein. Plant cell 12:569-582.
36. Yang, K. -Y., Liu, Y. and Zhang, S. (2001) Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc. Natl. Acad. Sci. USA 98:741-746
37. Yang, Y. and Klessig, D. F. (1996) Isolation and characterization of a tobacco mosaic virus-inducible myb oncogene homolog from tobacco. Proc. Natl. Acad. Sci. USA 93:14972-14977.
38. Zhang, S. and Klessig, D. F. (1998) Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection. Proc. Natl. Acad. Sci. USA 95:7433-7438
39. Zhang, Y., Fan, W., Kinkema, M., Li, X. and Dong, X. (1999) Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc. Natl. Acad. Sci. USA 96:6523-6528.
40. Zhou, J. -M., Trifa, Y., Silva, H., Pontier, D., Lam, E., Shah, J and Klessig, D. F. (2000) NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol. Plant-Microbe Interact. 13:191-202.
41. Zhou, N., Tootle, T. L., Tsui, F., Klessig, D. F. and Glazebrook, J. (1998) PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. Plant cell 10:1021-1030
參考文獻
1. Albrecht, H., van de Rhee, M. D. and Bol, J. F. (1992) Analysis of cis-regulatory elements involved in induction of a tobacco PR-5 gene by virus infection. Plant Mol. Biol. 18: 155-158.
2. Chen, R., Wang, F. and Smith, A. G. (1996) A flower-specific gene encoding an osmotin-like protein from Lycopersicon esculentum. Gene 179: 301-302.
3. Coca, M. A., Damsz, B., Yun, D. -J., Hasegawa, P. M., Bressan, R. A. and Narasimhan, M. L. (2000) Heterotrimeric G-proteins of a filamentous fungus regulate cell wall composition and susceptibility to a plant PR-5 protein. Plant J. 22: 61-69.
4. Cornelissen, B. J. C., Hooft van Huijsduijnen, R. A. M. H. and Bol, J. F. (1986) A tobacco mosaic virus-induced tobacco protein is homologous to the sweet-testing protein thaumatin. Nature 321: 531-532
5. Dangl, J. L., Dietrich, R. A. and Richberg, M. H. (1996) Death don’t have no mercy: Cell death programs in plant-microbe interactions. Plant Cell 8: 1793-1809.
6. Edelbaum, O., Sher, N., Rubinstein, M., Novick, D., Tal, N., Moyer, M., Ward, E., Ryals, J. and Sela, I. (1991) Two antiviral proteins, gp35 and gp22, correspond toβ-1, 3-glucanse and an isoform of PR-5. Plant Mol. Biol. 17: 171-173.
7. Hammond-Kosack, K. E. and Jones, J. D. G. (1996) Resistance gene-dependent plant defense responses. Plant Cell 8: 1773-1791.
8. Helleboid, S., Hendriks, T., Bauw, G., Inzé, D., Vasseur, J. and Hilbert, J. -L. (2000) Three major somatic embryogenesis related proteins in Cichorium identified as PR proteins. J. Exp. Bot. 51: 1189-1200.
9. He, S. Y., Huang H. -C. and Collmer, A. (1993) Psudomonas syringae pv. syringae Harpinpss: A protein that is secreted via the Hrp pathway and elicits that hypersensitive response in plants. Cell 73:1255-1266.
10. Hu, X. and Reddy, A. S. N. (1997) Cloning and expression of a PR5-like protein from Arabidopsis: inhibition of fungal growth by bacteirally expressed protein. Plant Mol. Biol. 34: 949-959
11. Ibeas, J. I., Lee, H., Damsz, B., Prasad, D. T., Pardo, J. M., Hasegawa, P. M., Bressan, R. A. and Narasimhan, M. L. (2000) Fungal cell wall phosphomannans facilitate the toxic activity of a plant PR-5 protein. Plant J. 23: 375-383.
12. Ibeas, J. I., Yun, D. -J., Damsz, B., Narasimhan, M. L., Uesono, Y., Ribas, J. C., Lee, H., Hasegawa, P. M., Bressan, R. A. and Pardo, J. M. (2001) Resistance to the plant PR-5 protein osmotin in the model fungus Saccharomyces cerevisiae is mediated by the regulatory effects of SSD1 on cell wall composition. Plant J. 25: 271-280.
13. King, E. O., Ward, M. K. and Raney, D. E. (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44:301-307.
14. Koiwa, H., Kato, H., Nakatsu, T., Oda, J., Yamada, Y. and Sato, F. (1999) Crystal structure of tobacco PR-5d protein at 1.8A resolution reveals a conserved acidic cleft structure in antifungal thaumatin-like proteins. J. Mol. Biol. 286: 1137-1145.
15. Kumar, V. and Spencer, M. E. (1992) Nucleotide sequence of an osmotin cDNA from the Nicotiana tabacum cv. White Burley generated by the polymerase chain reaction. Plant Mol. Biol. 18: 621-622.
16. Lin, N. -S., Lin, B. -Y., Lo, N. -W., Hu, C. -C., and Chow, T. -Y. and Hsu, Y. -H. (1994) Nucleotide sequence of the genomic RNA of bamboo mosaic potexvirus. J. Gen. Virol. 75:2513-2518.
17. Liu, D., Rhodes, D., D’Urzo, M. P., Xu, Y., Narasimhan, M. L., Hasegawa, P. M., Bressan, R. A. and Abad, L. (1996) In vivo and in vitro activity of truncated osmotin that is secreted into the extracellular matrix. Plant Sci. 121: 123-131.
18. Marrou, T., and Messiaen, C. M. (1967) The Chenopodium quinoa test: a critical method for detecting seed transmission of lettuce mosaic virus. Proceedings of the International Seed testing Association 32: 49-57.
19. Melchers, L. S., Sela-Burrlage, M. B., Vloemans, S. A., Woloshuk, C. P., Van Roekel, J. S. C., Pen, J., van den Elzen, P. J. M.and Cornelissen, B. J. C. (1993) Extracellular targeting of the vacuolar tobacco proteins AP24, chitinase and β-1, 3-glucanase in transgenic plants. Plant Mol. Biol. 21: 583-593.
20. Midoro-Horituti, T., Goldblum, R. M., Kurosky, A., Wood, T. G. and Brooks E. G. (2000) Variable expression of pathogenesis-related protein allergen in moutain cedar (Juniperus ashei) pollen. J. Immunol. 164: 2188-2192.
21. Narasimhan, M. L., Damsz, B., Coca, M. A., Ibeas, J. I., Yun, D. -J., Pardo, J. M., Hasegawa, P. M. and Bressan, R. A. (2001) A plant defense response effector induces microbial apoptosis. Mol. Cell 8: 921-930.
22. Nelson, D. E., Raghothama, K. G., Singh, N. K., Hasegawa, P. M. and Bressan, R. A. (1992) Analysis of structure and transcriptional activation of an osmotin gene. Plant Mol. Biol. 19:577-588.
23. Newton, S. S. and Duman, J. G. (2000) An osmotin-like cryoprotective protein from the bittersweet nightshade Solanum dulcamara. Plant Mol. Biol. 44: 581-589.
24. Raghothama, K. G., Liu, D., Nelson, D. E., Hasegawa, P. M. and Bressan, R. A. (1993) Analysis of an osmotically regulated pathogenesis-related osmotin gene promoter. Plant Mol. Biol. 23:1117-1128
25. Rompf, R. and Kahl G. (1997) mRNA differential display in agarose gels. BioTechniques 23: 28-32.
26. Ruiz-Medrano, R., Jimenz-Moraila, B., Herrea-Estrella, L. and Rivera-Bustamante, R. F. (1992) Nucleotide sequence of an osmotin-like cDNA induced in tomato during viroid infection. Plant Mol. Biol. 20: 1199-1202.
27. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) Molecular Cloning. Cold Spring Harbor Laboratory Press.
28. Shih, C. -Y. T., Wu, J., Jia, S., Khan, A. A., Ting, K. -L.H. and Shih, D. S. (2001) Purification of an osmotin-like protien from the seeds of Benincasa hispida and cloning of the gene encoding this protein. Plant Sci. 160: 817-826.
29. Soman, K. V., Midoro-Horituti, T., Ferreon, J. C., Goldblum, R. M., Brooks E. G., Kurosky, A., Braun, W. and Schein C. H. (2000) Homology modeling and characterization of IgE binding epitopes of mountain cedar allergen Jun a 3. Biophysical J. 79:1601-1609.
30. van der Wel, H. and Loeve, K. (1972) Isolation and characterization of thaumatin I and II, the sweet-tasting protein from Thaumatococcus daniellii Benth. Eur. J. Biochem. 31:221-225.
31. van Loon, L. C., Pierpoint, W. S., Boller, T. and Conejero, V. (1994) Recommendations for naming plant pathogenesis-related proteins. Plant Mol. Biol. Reporter 12: 245-264.
32. Vigers, A. J., Roberts, W. K. and Selitrennikoff, C. P. (1991) A new family of plant antifungal proteins. Mol. Plant-Microbe Interact. 4: 315-323.
33. Wang, X., Zafian, P., Choudhary, M. and Lawtom, M. (1996) The PR5k receptor protein kinase from Arabidopsis thaliana is structurally related to a family of plant defense proteins. Proc. Natl. Acad. Sci. USA 93: 2598-2602
34. Ye, X. Y., Wang, H. X. and Ng, T. B. (1999) Frist chromatograhic isolation of an antifungal thaumatin-like protein from French bean legumes and demonstration of its antifungal activity. Biochem. Biophy. Res. Commun. 263: 130-134.
35. Yun, D. -J., Zhao, Y., Pardo, J. M., Narasimhan, M. L., Damsz, B., Lee, H., Abad, L. R., D’Urzo, M. P., Hasegawa, P. M. and Bressan, R. A. (1997) Stress proteins on the yeast cell surface determine resistance to osmotin, a plant antifungal protein. Proc. Natl. Acad. Sci. USA 94: 7082-7087.
36. Yun D. -J., Ibeas, J. I., Lee, H., Coca, M. A., Narasimhan, M. L., Uesono, Y., Hasegawa, P. M., Parado, J. M. and Bressan, R. A. (1998) Osmotin, a plant antifungal protein, suberts signal transduction to enhance fungal cell susceptibility. Mol. Cell 1:807-817.
37. Zhu, B., Chen, T. H. H. and Li, P. H. (1993) Expression of an ABA-responsive osmotin-like gene during the induction of freezing tolerance in Solanum commersonii. Plant Mol. Biol. 21: 729-735.
38. Zhu, B., Chen, T. H. H. and Li, P. H. (1995) Expression of three osmotin-like protein genes in response to osmotic stress and fungal infection in potato. Plant Mol. Biol. 28: 17-26.
參考文獻
1. Crafts-Brandner, S. J., Klein, R. R., Klein, P., Nőlzer, R. and Feller, U. (1996) Coordination of protein and mRNA abundances of stromal enzymes and mRNA abundances of the Clp protease subunits during senescence of Phaseolus vulgaris(L.) leaves. Planta 200: 312-318.
2. Crafts-Brandner, S. J. and Salvucci, M. E. (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc. Natl. Acad. Sci. USA 97: 13430-13435.
3. de Jiménez, E. S., Medrano, L. and Martínez-Barajas, E. (1995) Rubisco activase, a possible new member of the molecular chaperone family. Biochem. 34: 2826-2831.
4. Feller, U., Crafts-Brandner, S. J. and Salvucci, M. E. (1998) Moderately high temperature inhibit ribulose-1, 5-bisphosphate carboxylase/oxgenase(rubisco) activase-mediated activation of rubisco. Plant Physiol. 116: 539-546.
5. He, S. Y., Huang H. -C. and Collmer, A. (1993) Psudomonas syringae pv. syringae Harpinpss: A protein that is secreted via the Hrp pathway and elicits that hypersensitive response in plants. Cell 73:1255-1266.
6. He, Z., von Caemmerer, S., Hudson, G. S., Price, G. D., Badger, M. R. and Andrews, T. J. (1997) Ribulose-1, 5-bisphosphate carboxylase/oxygenase activase deficiency delays senescence of ribulose-1, 5-bisphosphate carboxylase/oxygenase but progressively impairs its catalysis during tobacco leaf development. Plant Physiol. 115: 1569-1580.
7. Jensen, R.G. (2000) Activation of Rubisco regulates photosynthesis at high temperature and CO2. Proc. Natl. Acad. Sci. USA 97: 12937-12938.
8. Kallis, R. P., Ewy, R. G. and Portis, A. R., Jr. (2000) Alteration of the adenine nucleotide response and increased Rubisco activation activity of arabidopsis Rubisco activase by site-directed mutagenesis. Plant Physiol. 123: 1077-1086.
9. Law, R. D. and Crafts-Brandner, S. J. (1999) Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant physiol. 120: 173-181.
10. Law, R. D. and Crafts-Brandner, S. J. (2001) High temperature stress increase the expression of wheat leaf Ribulose-1, 5-bisphosphate carboxylase/oxygenase activase protein. Arch. Biochem. Biophy. 386: 261-267.
11. Motohashi, K., Kondoh, A., Stumpp, M. T. and Hisabori, T. (2001) Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proc. Natl. Acad. Sci. USA 98: 11224-11229.
12. Okubara, P. A., Pawlowski, K., Murphy, T. M. and Berry, A. M. (1999) Symbiotic root nodules of the actinorhizal plant Datisca glomerata express rubisco activase mRNA. Plant physiol. 120:411-420.
13. Portis A. R., Jr. (1990) Rubisco activase. Biochim. Biophys. Acta. 1015: 15-28.
14. Rokka A., Zhang, L. and Aro, E. -M. (2001) Rubisco activase: an enzyme with a temperature-dependent dual function? Plant J. 25: 463-471.
15. Salvucci, M. E., Werneke, J. M., Ogren, W. L. and Poritis, A. R., Jr. (1987) Purification and species distribution of rubisco activase. Plant physiol. 84: 930-936.
16. Salvucci, M. E., Osteryoung, K. W., Crafts-Brandner, S. J. and Vierling, E. (2001) Exceptional sensitivity of rubisco activase to thermal denaturation in vitro and in vivo. Plant Physiol. 127:1053-1064.
17. To, K. -Y., Suen, D. -F. and Chen, S. -C. G. (1999) Molecular characterization of ribulose-1, 5- bisphosphate carboxylase/oxygenase activase in rice leaves. Planta 209: 66-76.
18. van de Loo F. J. and Salvucci, M. E. (1996) Activation of Ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) involves rubisco activase Trp16. Biochem. 35: 8143-8148.
19. Werneke, J. M., Zielinski, R. E. and Ogren, W. L. (1988) Structure and expression of spinach leaf cDNA encoding ribulosebisphosphate carboxylase/oxygenase activase. Proc. Natl. Acad. Sci. USA 85: 787-791.
20. Werneke, J. M., Chatfield, J. M. and Ogren, W. L. (1989) Alternative mRNA splicing generates the two ribulosebisphosphate carboxylase/oxygenase activase polypeptides in spinach and Arabidopsis. Plant Cell 1: 815-825.
21. Wolosiuk, R. A., Ballicora, M. A. and Hagelin, K. (1993) The reductive pentose phosphate cycle for photosynthetic CO2 assimilation: enzyme modulation. FASEB 7: 622-637.
22. Zhang, N. and Portis, A. R., Jr. (1999) Mechanism of light regulation of rubisco: a specific role for the larger rubisco activase isoform involving reductive activation by thioredoxin-f. Proc. Natl. Acad. Sci. USA 96: 9438-9443.
23. Zhang, N., Kallis, R. P., Ewy, R. G. and Portis A. R., Jr. (2002) Light modulation of rubisco in Arabidopsis requires a capacity for redox regulation of the larger rubisco activase isoform. Proc. Natl. Acad. Sci. USA 99: 3330-3334.
24. Zhang, Z. and Komatsu, S. (2000) Molecular cloning and characterization of cDNAs encoding two isoforms of Ribulose-1, 5-bisphosphate carboxylase/oxygenase activase in rice (Oryza sativa L.) J. Biochem. 128: 383-389.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文