跳到主要內容

臺灣博碩士論文加值系統

(54.225.48.56) 您好!臺灣時間:2022/01/19 22:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾才郁
研究生(外文):Tsai-Yu Tzeng
論文名稱:百合中參與調控花朵發育基因及其機制之研究
論文名稱(外文):The Investigation of Genes Regulating Flower Development in Lily (Lilium longiflorum)
指導教授:楊長賢楊長賢引用關係
指導教授(外文):Chang-Hsien Yang
學位類別:博士
校院名稱:國立中興大學
系所名稱:農業生物科技學研究所
學門:農業科學學門
學類:農業技術學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:262
中文關鍵詞:鐵砲百合百合MADS box 基因開花誘導花器起始花器形成花朵發育調控
外文關鍵詞:Lilium longiflorumlilyMADS box genefloral inductionfloral initiationfloral formationflower developmentregulate
相關次數:
  • 被引用被引用:4
  • 點閱點閱:814
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
百合是世界切花市場中非常重要的作物花卉,但是有關百合開花發育的研究卻不多。本研究從百合中選殖出四個MADS box基因和一個蛋白質激酶,並對這些基因的功能作深入的分析。
首先由百合中選殖到一個原始的B-function 基因,LMADS1。LMADS1,在序列分析上屬於AP3家族,且具有與低等雙子葉植物及單子葉植物相同的paleoAP3 motif。當LMADS1刪除MADS box 區域在擬南芥 (Arabidopsis) 中大量表現時造成植物產生ap3—like dominant negative mutation,使得轉基因植物的花瓣轉變成為花萼狀的結構,雄蕊則變為雌蕊狀的結構。此外,在yeast two-hybrid分析中LMADS1不同於其他B-function基因具有形成homodimers的能力。顯示LMADS1確實為原始形態的B-function基因,且極有可能以homodimers形式調控百合花瓣和雄蕊的發育 (第二章)。
由胺基酸序列分析推測LMADS1不同於其他B-function基因具有形成homodimers的能力可能與LMADS1胺基酸序列C端三個motif有關。利用yeast two-hybrid系統,分析LMADS1胺基酸序列C端三個motif。結果發現當LMADS1去除C端paleoAP3 motif時,其形成homodimers的能力會下降,若是同時去除C端三個motif,則LMADS1會失去形成homodimers的能力。進一步將LMADS1胺基酸序列C端與典型的B-function 基因AP3 (擬南芥) 的C端進行置換,結果可以成功的使其具有形成homodimers的能力。由此可證實LMADS1胺基酸序列C端與其具有形成homodimers的能力有直接的關係 (第三章)。
在大量表現百合另外兩個MADS box基因LMADS2或LMADS3的轉基因擬南芥植物中都出現了植株極度早開花和花序減少的性狀。在分析轉基因植物中與開花時間相關基因CO、FT、LD及AP1的表現時期提前及表現量明顯增加。當大量表現LMADS2或LMADS3在晚開花突變株中可救回gi、co而對於ft及fwa則無效。在in vitro結合試驗中發現LMADS2和LMADS3蛋白對於CO和FT調控區的CArG box序列具有結合能力。綜合以上結果LMADS2或LMADS3促使植株極度早開花現象應是促使轉基因植物中晚開花基因表現時期提前及表現量增加造成的結果 (第四章)。
在擬南芥中大量表現百合p70核醣體S6激酶 (LS6K1) 會抑制花瓣及雄蕊細胞延展造成花瓣及雄蕊縮短的性狀。分析轉基因植物中基因表現情況發現一個AP3和PI下游的基因NAP明顯大量表現。更進一步發現AP3、PI和SUP在5’端有一oligopyrimidine 序列,此一序列可能可轉錄形成5’TOP mRNA而受p70核醣體S6激酶所調控。進一步將這些oligopyrimidine 序列接上螢光蛋白 (GFP) 送入動物細胞株中證實此一序列確為轉譯調控區。這個結果指出p70核醣體S6激酶是藉由轉譯層面來調控AP3、PI和SUP參與花瓣及雄蕊的生長和發育 (第五章)。
本研究最後從百合花苞中選殖出另一MADS box基因之全長cDNA與 AGL2次群的高度相似基因,並命名為LMADS4。LMADS4在各個花器與年輕之花苞均有表現,但在營養葉中也有微量之表現。在轉基因擬南芥 (A. thaliana) 中異位表現這個基因,初步並沒有觀察到明顯的性狀,未來將以其他的方式來研究LMADS4真正的功能 (第六章)。
綜合以上結果,可以更加清楚瞭解MADS box 基因在單子葉植物花朵發育機制中扮演的角色。
Abstract
Although lilies are among the most important plants in flower markets around the world, relatively little research has been conducted on lily flower development. In this research, four MADS box genes and one protein kinase gene were cloned and characterized from lily (Lilium longiflorum).
LMADS1, with sequence homology to the AP3 family of genes, contains complete consensus sequence of the paleoAP3 motif found in the AP3 family of genes from the low eudicot, magnolid dicot and monocot species. Ectopic expression of LMADS1 cDNA truncated with the MADS box domain in Arabidopsis generated the ap3-like dominant negative mutation in which the petals were converted into sepal-like structures and the stamens were converted into carpel-like structures. Different from other B functional genes, LMADS1 is able to form homodimers through yeast two-hybrid analysis. These results indicated that LMADS1 represents an ancestral form of the B function gene, which retains the ability to form homodimers in regulating petal and stamen development in lily (Charper 2).
Based on amino acid sequence, three motifs in C-terminal region of LMADS1 may involve in the formation of homodimers for LMADS1. The ability for LMADS1 to form homodimers was decreased once C-terminal paleoAP3 motif was deleted. When three motifs in C-terminal region were deleted, the ability for LMADS1 to form homodimers was completely abolished. Furthermore, Arabidopsis AP3 was able to form homodimers once C-terminal region was replaced by that of LMADS1. This result indicated that three motifs in C-terminal region of LMADS1 were responsible for the formation of homodimers in ancestral form of the B function gene (Charper 3).
Transgenic Arabidopsis ectopically expressed two lily MADS box genes LMADS2 or LMADS3 showed similar novel phenotypes by flowering extremely early and losing inflorescence indeterminacy. The expression of flowering time genes CO, LD, FT and AP1 was significantly up-regulated in these transgenic plants. Ectopically expressed these two genes rescued late-flowering phenotype for co, gi but not for ft and fwa. In vitro binding assay indicated that LMADS2 and LMADS3 proteins bound efficiently to CArG box region identified in the regulatory region of CO and FT. These data provided first evidence to support that early-flowering phenotype generated by ectopic expression of MADS box genes is due to the positive interaction between MADS box and flowering time genes in transgenic Arabidopsis (Charper 4).
Transgenic Arabidopsis plants ectopically expressed lily p70 ribosomal S6 kinases homologue LS6K1 significantly reduced the length of petals and stamens by inhibiting cell expansion. The expression of NAP, a downstream gene for AP3 and PI, was significantly upregulated by ectopic expression of LS6K1. Furthermore, oligopyrimidine tract sequences were identified in 5’ untranslated region of AP3, PI and SUP cDNA. This indicated that they were potentially encoded 5’TOP mRNAs and were translationally controlled by phosphoryated 40S ribosomal protein S6. This assumption was supported by the fact that GFP proceeded by these oligopyrimidine tract sequences was translationally regulated in human 293 cells in response to mitogen stimulation. These results revealed a novel role for p70 ribosomal S6 kinases in regulating petal and stamen growth and development by translational up-regulation of AP3, PI, and SUP (Charper 5).
Finally, LMADS4 showing high homology to the AGL2 subgroup of MADS box genes was isolated and characterized in lily. LMADS4 encodes a 246 amino acid protein that showed 61% identity and 73% similarity to cucumber AGL2 (CAGL2). The amount of LMADS4 mRNA detected in floral buds of different developmental stages, was higher that of in vegetative leaves, inflorescence and floral meristems , but was absent in stems. In flowers, similar to AGL2 and AGL4, LMADS4 was expressed in all four flower organs, sepal, petal, stamen and carpel. These results indicate that LMADS4 is a putative AGL2 homologue of lily and functions in regulating the flower formation as well as the floral initiation (Charper 6).
The characterization of genes in this study indicated that the MADS box genes also play important role in the flower development in monocots. These results should be very useful in understanding the mechanism controlling floral transition and floral formation among higher plant species.
目 錄
第一章 緒言
- 花朵的發育 (floral development) 2
- 開花誘導 (floral induction) 過程之調控 2
- 花器起始 (floral initiation) 過程之調控 5
- 花器形成 (floral formation) 過程之調控 7
- 已選殖出之花器分化相關基因之蛋白質結構 9
- 其他參與花朵發育基因之研究 10
- 鐵砲百合 (Lilium longiflorum) 12
- 參考文獻 14
第二章 選殖及特性分析百合中一個原始的B function基因
- 摘要 28
- 前言 29
- 材料與方法 32
- 結果 68
- 討論 75
- 參考文獻 82
第三章 百合中LMADS1胺基酸序列C端motif與形成homodimers能力之分析
- 摘要 106
- 前言 107
- 材料與方法 111
- 結果 112
- 討論 116
- 參考文獻 122
第四章 百合LMADS2及LMADS3基因與植物開花起始關係之分析
- 摘要 135
- 前言 136
- 材料與方法 140
- 結果 144
- 討論 152
- 參考文獻 159
第五章 百合p70核醣體S6激酶 (LS6K1) 參與調控花器形成之研究
- 摘要 181
- 前言 182
- 材料與方法 187
- 結果 189
- 討論 195
- 參考文獻 204
第六章 百合中一AGL2-like MADS基因之選殖分析
- 摘要 222
- 前言 223
- 材料與方法 225
- 結果 228
- 討論 231
- 參考文獻 235
第七章 結論與未來展望
- 結論 245
- 未來展望 251
- 參考文獻 255 圖 表 目 錄
表2-1第二章中PCR反應所使用引子的序列 99
表3-1第三章中PCR反應所使用引子的序列 134
表4-1第四章中PCR反應所使用引子的序列 178
表5-1第五章中PCR反應所使用引子的序列 216
表6-1第六章中PCR反應所使用引子的序列 243
圖1-1完全花剖面圖 24
圖1-2植物的生長週期 25
圖1-3花器分化之調控模式 26
圖1-4植物中的MADS box基因其蛋白質結構 27
圖2-1鐵砲百合的外觀圖 89
圖2-2 LMADS1 胺基酸序列分析 90
圖2-3植物中B function MADS box基因演化樹的分析 91
圖2-4 LMADS1之北方墨漬法分析 92
圖2-5西方墨漬法分析 93
圖2-6在擬南芥異位大量表現LMADS1 或 LMADS1 cDNA去除MADS box 區域轉基因植物性狀分析 95
圖2-7以掃瞄式電子顯微鏡 (SEM) 分析35S::LMADS1-∆MADS轉基因植物中各個花器 96
圖2-8 35S::LMADS1-∆MADS 轉基因植物與擬南芥野生型中LMADS1、AP3和PI 基因表現情形 97
圖2-9利用yeast two-hybrid 來分析LMADS1-∆MADS 蛋白質與擬南芥PI 蛋白質間的交互作用 98
圖3-1 AP3 C端與LMADS1 C端置換圖 127
圖3-2 paleoAP3 motif和PI derived motif去除的構築體 128
圖3-3植物中B function MADS box基因演化樹的分析 129
圖3-4 LMADS1與植物中PI相似蛋白質的的C端基酸序列比對 130
圖3-5 LMADS1與植物中AP3相似蛋白質的C端基酸序列比對 131
圖3-6利用yeast two-hybrid 來分析LMADS1胺機酸序列C端與形成homodimer的關係 132
圖3-7利用yeast two-hybrid 來分析homodimer的關係 133
圖4-1 LMADS2與LMADS3 胺基酸序列比對 166
圖4-2植物中A、C、D及E function MADS box基因演化樹的分析167
圖4-3 LMADS2與LMADS3北方墨漬法分析 168
圖4-4在擬南芥異位大量表現LMADS2或LMADS3轉基因植物性狀分析 170
圖4-5以掃瞄式電子顯微鏡 (SEM) 分析35S::LMADS2轉基因植物中各個花器 171
圖4-6 LMADS2 或 LMADS3轉基因植物中開花時間相關基因表現情形 172
圖4-7在晚開花突變株擬南芥中異位大量表現LMADS2或LMADS3轉基因植物性狀分析 173
圖4-8 LMADS1、LMADS2或LMADS3 與CO之CArG box序列結合分析 (in vitro DNA binding assays) 174
圖4-9 LMADS1、LMADS2或LMADS3 與FT之CArG box序列結合分析(in vitro DNA binding assays) 175
圖4-10大量表現LMADS2或LMADS3造成轉基因植物早開花的路徑 176
圖4-11 Polycomb基因調控植物由營養期轉換至生殖期的路徑 177
圖5-1偵測正常野生型及35S::LS6K1轉基因植物中LS6K1、NAP、PI、AP3 和 SUP基因的表現情形 210
圖5-2 AP3、PI和SUP基因5’ UTR 之Oligopyrimidine 序列分析 211
圖5-3 AP3、PI 和SUP在5’ UTR的 oligopyrimidine 序列 212
圖5-4在人類 293 cells (Human 293 cells)中偵測帶有不oligopyrimidine序列的螢光蛋白質的轉譯情形 213
圖5-5 p70核醣體S6激酶 (p70s6k) 訊息路徑參與調控花瓣和雄蕊發育的模式 214
圖5-6 SEP1、SEP2 、UFO、ASK1和ASK2基因5’ UTR 之Oligopyrimidine 序列分析 215
圖6-1LMADS4與A及E function基因胺基酸序列比對 238
圖6-2植物中A、E function MADS box基因演化樹的分析 239
圖6-3 LMADS4之基因表現情形 240
圖6-4 LMADS4-M之構築體在E.coli BL21-DE3中經誘導後蛋白質表現情形 241
圖6-5 LMADS4-M蛋白質在細菌中表現之西方墨漬分析 242
附圖2-1 pGEM®-T Easy vector圖譜與其上限制酶切位 100
附圖2-2 pBI121之圖譜 101
附圖2-3 pGEX-4T-1之圖譜 102
附圖2-4 pET 29a之圖譜 103
附圖2-5 pGADT7之圖譜 104
附圖2-6 pGBKT7之圖譜 105
附圖4-1晚開花基因的調控開花路徑可分為三種 180
附圖5-1 LS6K1大量表現之轉基因植物性狀觀察 217
附圖5-2正常野生型與35S::LS6K1轉基因植物花器以掃瞄式電子顯微鏡(SEM) 觀察 218
附圖5-3 pEGFP-N3之圖譜 219
附圖5-4 pBI101之圖譜 220
附圖5-5 LS6K1基因表現情形 221
附圖6-1 pET-32a (+) 之圖譜與其上限制酶切位 244
附錄一 本論文所使用的擬南芥突變體、遺傳背景與性狀一覽表 260
參考文獻
Alvarezm J., Guli, C.L., Yu, X.H., and Smyth, D.R. (1992). Terminal flower: a gene affecting inflorescence development in Arabidopsis thaliana. Plant J. 2: 103-116.
Amasino, R.M. (1996). Control of flowering time in plant. Current Opinion in Genetics and Development. 6: 480-487.
Angenent, G.C., Busscher, M., Franken, J., Dons, H.J.M., and van Tunen, A.J. (1995a). Functional interaction between the homeotic genes fbp1 and pMADS1 during petunia floral organogenesis. Plant Cell 7: 505-516.
Angenent, G.C., Franken, J., Busscher, M., van Dijken, A., van Went, J.L., Dons, H.J.M., and van Tunen, A.J. (1995b). A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7: 1569-1582.
Angenent, G.C., and Colombo, L. (1996). Molecular control of ovule development. Trends Plant Sci. 1: 228-232.
Araki, T., and Komeda, Y. (1993). Analysis of the role of the late-Flowering locus, GI, in the flowering of Arabidopsis thaliana. Plant J. 3: 231-239.
Aubert, D., Chen, L., Moon, Y-H., Martin, D., Castle, L. A., Yang, C-H., Sung, Z-R. (2001). EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis. Plant Cell 13: 1865-1875.
Aukerman, M.J., Lee, I., Weigel, D., and Amasino, R.M. (1999). The Arabidopsis flowering-time gene LUMINIDEPENDENS is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFY expression. Plant J. 18: 195-203.
Bowman, J.L., Smyth, D.R., and Meyerowitz., E.M. (1991). Genetic interaction among floral homeotic genes of Arabidopsis. Development 112: 1-20.
Bowman, J.L., Alvarez, J., Meyerowitz, E.M., and Smyth, D.R. (1993). Control of flower development in Arabidopsis thaliana by APETALA1and interacting gene. Development 119: 721-743.
Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R., and Coen, E. (1997). Inflorescence commitment and architecture in Arabidopsis. Science 275: 80-83.
Clarke, J.H. and Dean, C. (1994). Mapping FRI, a locus controlling flowering time and vernalization response. Mol. Gen. Genet. 242: 81-89.
Clarke, J.H., Mithen, R., Brown, J.K.M., and Dean, C. (1995). QTL analysis of flowering time in Arabidopsis thaliana. Mol. Gen. Genet. 248: 278-286.
Coen, E.S., Romero, J.M., Doyle, S., Elliott, R., Murphy, G., and Carpenter, R. (1990). floricaula: a homeotic gene required for flower development in antirrhinum majus. Cell 63: 1311-1322.
Coen, E.S., and Meyerowitz, E.M. (1991). The war of the whorls: genetic interactions controlling flower development. Naure 353: 31-37.
Colombo, L., Franken, J., Koetje, E., van Went, J., Dons, H.J.M., Angenent, G.C., and van Tunen, A.J.(1995). The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7: 1859-1868.
Colombo, L., Franken, J., Alexander, R., van der Krol, R., Wittich, P.E., Dons, H.J.M., and Angenent, G.C. (1997a). Down regulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell 9: 703-715.
Colombo, L., van Tunen, A.J., Dons, H.J.M., and Angenent, G.C. (1997b). Molecular control of flower development in Petunia hybrida. Adv. Bot. Res. 26: 229-250.
Crone, W., and Lord, E.M. (1991). A kinematic analysis of gynoecial growth in Lilium longiflorum: surface growth patterns in all floral organs are triphasic. Dev. Biol. 143: 408-417.
Coupland, G. (1995). Genetic and environmental control of flowering time in Arabidopsis. Trends Genet. 11: 393-397.
Drews, G.N., Bowman, J.L., and Meyerowitz, E.M. (1991). Negative regulation of the Arabidopsis thaliana gene Agamous by the Apetal2 product. Cell 65: 991-1002 .
Egea-Cortines, M., Saedler, H., and Sommer, H. (1999). Ternary complex formation between MADS-box proteins SQUAMOSA, DEFICIENS, and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18: 5370-5379.
Eimert, K., Wang, S-W., Lue, W-L., and Chen, J. (1995). Monogenic recessive mutations causing both late floral initiation and excess starch accumulation in Arabidopsis. Plant Cell 7: 1703-1712.
Flanagan, C.A., Hu, Y., and Ma, H. (1996). Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development. Plant J. 10: 343-353.
Goto, K., and Meyerowitz, E.M. (1994). Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8: 1548-1560.
Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B., Coupland, G., and Putterill, J. (1999). GIGANTEA: a circadian clock controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane spanning domains. EMBO J. 18: 4679-4688.
Guo, H., Yang, H., Mockler, T.C., and Lin, C. (1998). Regulation of flowering time by Arabidopsis photoreceptors. Science 279: 1360-1363.
Gustafson-Bown C., Savidge B., and Yanofasky, M.F. (1994). Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell 76: 131-143 .
Hanks, S.K., Quinn, A.M., and Hunter, T. (1988). The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42-52.
Hicks, K.A., Albertson, T.M., Wagner, D.R. (2001). EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis. Plant Cell 13:1281-1292.
Hirayama, T., and Oka, A. (1992). Novel protein kinase of Arabidopsis thaliana (APK1) that phosphorylates tyrosine, serine, and threonine. Plant Mol. Biol. 20: 653-662.
Honma, T., and Goto, K. (2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525-529.
Huang, H., Mizukami, Y., Hu, Y., and Ma, H. (1993). Isolation and characterization of the binding sequences for the product of the Arabidopsis floral homeotic gene AGAMOUS. Nucl. Acids Res. 21: 4769-4776.
Hwang, I., and Goodman, H.M. (1995). An Arabidopsis thanliana root-specific kinase homolog is induced by dehydration, ABA, and NaCl. Plant J. 8: 37-43
Ito, T., Takahashi, N., Shimura, Y., and Okada, K. (1997). A serine/threonine protein kinase gene isolated by an in vivo binding procedure using the Arabidopsis floral homeotic gene product, AGAMOUS. Plant Cell Physiol. 38: 248-258
Irish, V.F., and Sussex, I.M. (1990). Function of the apetal-1 gene during Arabidopsis floral development. Plant Cell 2: 741-753.
Jack, T., Brockman, L.L., and Meyerowitz, E.M. (1992). The homeotic gene APETAL3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683-688.
Jack, T. (2001a). Plant development going MADS. Plant Mol Biol. 46: 515-520.
Jack, T. (2001b). Relearning our ABCs: new twists on an old model. Trends Plant Sci. 6: 310-316.
Jofuku, K.D., den Boer, B.G., Montagn, E.M., and Okamuro, J.K. (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETAL2. Plant Cell 6: 1211-1225.
Jonak, C., H-Bors, E., and Hirt, H. (1995). Inflorescence-specific expression of AtK-1, anovel Arabidopsis thaliana homologue of shaggy/glycogen kinase-3. Plant Mol. Biol. 27: 217-221.
Kempin, S.A., Savidge, B., and Yanofsky, M.F. (1995). Molecular Basis of the cauliflower phenotype in Arabidopsis. Science 267: 522-525.
Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., and Araki, T. (1999). A pair of related genes with antagonistic roles in mediating flowering signals. Science 286: 1960-1962.
Koornneef, M., Hanhart, C.J., and van der Veen, J.H. (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229: 57-66.
Koornneef, M., Alonso-Blanco, Peeters, A.J., and Soppe, W. (1998). Genetic control of flowering time in Arabidopsis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 345-370.
Kvarnheden, A., Tandre, K., and Engstrom, P. (1995). A cdc2 homologue and closely related processed retropseudogenes from Norway spruce. Plant Mol. Biol. 27: 391-403.
Lee, I., Bleecker, A. and Amasino, R.M. (1993). Analysis of naturally occurring late flowering in Arabidopsis thaliana. Mol. Gen. Genet. 237: 171-176.
Lee, I., Aukerman, M.J., Gore, S.L., Lohman, K.N., Michaels, S.D., Weaver, L.M., John, M.C., Feldmann, K.A., and Amasino, R.M. (1994). Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell 6: 75-83.
Levy, Y.Y. and Dean, C. (1998). The transition to flowering. Plant Cell 10: 1973-1990.
Liljegren, S.J., Gustafson-Brown, C., Pinyopich, A., Ditta, G.S., and Yanofsky, M.F. (1999). Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11: 1007-1018.
Mandel, M.A., Gustafson-Brown, C., Savidge, B., and Yanofsky, M.F. (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273-277.
Mandel, M.A., and Yanofsky, M.F. (1995). A gene triggering flower formation in Arabidopsis. Nature 377: 522-524.
Macknight, R., Bancroft, I., Page, T., Lister, C., Schmidt, R., Love, K., Westphal, L., Murphy, G., Sherson, S., Cobbett, C., and Dean, C. (1997). FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domain. Cell 89: 737-745.
Martinez-Zapater, J.M., Coupland, G., Dean, C., and Koornneef, M. (1994). The transition to flowering in Arabidopsis. In “Arabidopsis” (C.R. Somerville and E. M. Meyerowitz, Eds.), pp.403-434. Cold Spring Harbor Laboratory Press, New York.
Martinez-Zapater, J.M., Jarillo, J.A., Cruz-Alvarez, M., Roldan, M., and Salinas, J. (1995). Arabidopsis late-flowering fve mutants are affected in both vegetative and reproductive development. Plant J. 7: 543-551.
McDaniel, C.N., Singer, S.R., and Smith, S.M.E. (1992). Development states associated with the floral transition. Dev. Biol. 153: 59-69.
Mizukami, Y., and Ma, H. (1997). Determination of Arabidopsis floral meristem identity by AGAMOUS. Plant Cell 9: 393-408.
Modrusan, Z., Reiser, L., Feldmann K.A., Fischer, R.L., and Haughn, G. W. (1994). Homeotic transfromation of ovules into carpel-like structure in Arabidopsis. Plant Cell 6: 333-349.
Nakayasu, T., Yokota, E., and Shimmen, T. (1998). Purification of an actin-binding protein composed of 115-kDa polypeptide from pollen tubes of lily. Biochem. Biophs. Res. Commun. 249: 61-65.
Okada, K., and Shimura, Y. (1994). Genetic analyses of signaling in flower development using Arabidosis. Plant Mol. Biol. 26: 1357-1377.
Ohshima, S., Murata, M., Sakamoto, W., Ogura, Y., and Motoyoshi, F. (1997). Cloning and molecular analysis of the Arabidopsis gene Terminal Flower 1. Mol. Gen. Genet. 254: 186-194.
Page, T., Macknight, R., Yang, C-H. and Dean, C. (1999). Genetic interactions of the Arabidopsis flowering time gene FCA, with genes regulating floral initiation. Plant J. 17: 231-239.
Park, D.H., Somers, D.E., Kim, Y.S., Choy, Y.H., Lim, H.K., Soh, M.S., Kim, H.J., Kay, S.A., and Nam, H.G. (1999). Control of circadian rhythms and photoperiodic control of flowering by the Arabidopsis GIGANTEA gene. Science 285: 1579-1581.
Park, S.Y., Jauh, G.Y., Mollet, J.C., Eckard, K.J., Nothnagel, E.A., Walling, L.L., and Lord, E.M. (2000). A lipid transfer-like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12: 151-163.
Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., and Yanofsky, M.F. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200-203.
Pnueli, L., Hareven, D., Rounsley, S.D., Yanofsky, M.F., and Lifschitz, E. (1994). Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgentic plants. Plant Cell 6: 163-173.
Poethig, R.S. (1990). Phase change and the regulation of shoot morphogenesis in plant. Science 150: 923-930.
Putterill, J., Robson, F., Lee, K., Simon, R., and Coupland, G. (1995). The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinic finger transcription factors. Cell 80: 847-857.
Riechmann, J.L., Krizek, B.A., and Meyerowitz, E.M. (1996). Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA. 93: 4793-4798.
Riechmann, J.L., and Meyerowitz, E.M. (1997). MADS domain proteins in plant development. Biol Chem. 378: 1079-1101.
Roe, J.L., Rivin, C.J., Sessions, R.A., Feldmann, K.A., and Zambryski, P.C. (1993). The Tousled gene in A. thaliana encodes a protein kinase homolog that is required for leaf and flower development. Cell 75: 939-950.
Rounsley, S.D., Ditta, G.S., and Yanofsky, M.F. (1995). Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7: 1259-1269.
Ruiz-Garcia, L., Madueno, F., Wilkinson, M., Haughn, G., Salinas, J., and Martinez-Zapater, J.M. (1997). Different roles of flowering time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell 9: 1921-1934.
Sanda, S.L., and Amasino, R.M. (1996). Ecotype-specific expression of a flowering mutant phenotype in Arabidopsis thaliana. Plant Physiol. 111: 641-744.
Schmidt, R.J., Veit, B., Mandel, M.A., Mena, M., Hake, S., and Yanofsky, MF.(1993). Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. Plant Cell 5: 729-737.
Schomburg, F.M., Patton, D.A., Meinke, D.W., and Amasino, R.M. (2001). FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell 13: 1427-1436.
Schultz, E.A., and Haughn, G. W. (1993). Genetic analysis of the floral initiation process (FLIP) in Arabidopsis. Development 119: 745-765.
Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H., and Sommer, H. (1990). Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250: 931-936.
Shannon, S. and Meeks-Wagner, D.R. (1991). A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3: 877-892.
Shannon, S., and Meeks-Wanger, D. R. (1993). Genetic interactions that regulate inflorescence development in Arabidopsis. Plant Cell 5: 639-655.
Shiraishi, H., Okada, K., and Shimura, Y. (1993). Nucleotide sequences recognized by the AGAMOUS MADS domain of Arabidopsis thaliana in vitro. Plant J. 4: 385-398.
Shore, P., and Sharrocks, A.D. (1995). The MADS-box family of transcription factors. Eur J Biochem. 229: 1-13.
Simon, R., Igeno, M.I., and Coupland, G. (1996). Activation of floral meristem identity genes in Arabidopsis. Nature 384: 59-62.
Sommer, H., Beltrán, J-P, Huijser, P., Pape, H., Lönning, W-E, Saedler, H., and Schwarz-Sommer, Z. (1990). Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9: 605-613.
Soppe, W.J., Jacobsen, S.E., Alonso-Blanco, C., Jackson, J.P., Kakutani, T., Koornneef, M., Peeters, A.J. (2000). The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol. Cell. 6: 791-802.
Stone, J.M., and Walker, J.C. (1995). Plant protein kinase families and signal transduction. Plant Physiol. 108: 451-457.
Sung, Z.R., Belachew, A., Bai, S., and Bertrand-Garcia, R. (1992). EMF, an Arabidopsis gene required for vegetative shoot development. Science 258: 1645-1647.
Theißen, G., and Saedler, H. (1995). MADS-box genes in plant ontogeny and phylogeny: Haeckel''s ''biogenetic law'' revisited. Current Opinion in Genetics and Development 5: 628-639.
Theiben, G., Kim J., and Saedler, H. (1996). Classification and phylogeny of the MADS-box gene subfamilies in the morphological evolution of eukaryotes. J.Mol.Evol. 43: 484-516.
Theiben, G., Becker, A., Rosa, A.D., Kanno, A., Kim J.T., Münster, T., Winter, K.U., and Saedler, H. (2000). A short history of MADS-box genes in plant. Plant Mol. Biol. 42: 115-149.
Theiben, G.(2001). Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol. 4: 75-85.
Theißen, G., and Saedler, H. (2001). Floral quartets. Nature 409: 469-471.
Thummler, F., Kirchner, M., Teuber, R., and Dittrich, P. (1995). Differential accumulation of the transcripts of 22 novel protein kinase genes in Arabidopsis thaliana. Plant Mol. Biol. 29: 551-565.
Tilly, J.J., Allen, D.W., and Jack, T. (1998). The CarG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development 125: 1647-1657.
Torii, K.U., Mitsukawa, N., Oosumi, T., Matsuura, Y., Yokoyama, R., Whittier, R.F., and Komeda, Y. (1996). The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell 8: 735-746.
Wang, C.S., Liau, Y.E., Huang, J.C., Wu, T.D., Su, C.C., and Lin, C.H. (1998). Characterization of a desiccation-related protein in lily pollen during development and stress. Plant Cell Physiol. 39: 1307-1314.
Wang, C.S., Huang, J.C., and Hu, J.H. (1999). Characterization of two subclasses of PR-10 transcripts in lily anthers and induction of their genes through separate signal transduction pathways. Plant Mol. Biol. 40: 807-814.
Weigel, D., Alvarez, J., Smyth, D.R., Yanofsky, M.F., and Meyerowitz, E. M. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843-859.
Weigel, D., and Meyerowitz, E.M. (1994). The ABCs of floral homeotic genes. Cell 78: 203-209.
Yang, C-H., Cheng, L-J., and Sung, Z.R. (1995). Genetic regulation of shoot development in Arabidopsis: the role of EMF genes. Dev. Biol. 169: 421-435.
Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A., and Meyerowitz, E. M. (1990). The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 35-39.
Yoshida, N., Yanai, Y., Chen, L., Kato, Y., Hiratsuka, J., Miwa, T., Sung, Z.R., and Takahashi, S. (2001). EMBRYONIC FLOWER2, a novel polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis. Plant Cell. 13: 2471-281
Zagotta, M. T., Shannon, S., Jacobs, C., and Meeks-Wagner, R. (1992). Early-flowering mutants of Arabidopsis thaliana. Aust. J. Plant Physiol.. 19: 411-418.
Zagotta, M.T., Hick, K.A., Jacobs, C.I., Young, J.C., Hangarter, R.P., and Meeks-Wagner, R. (1996). The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering. Plant J. 10: 691-702.
參考文獻
Angenent, G.C., Busscher, M., Franken, J., Mol, J.N.M., and van Tunen, A.J. (1992). Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell 4: 983-993.
Angenent, G.C., Busscher, M., Franken, J., Dons, H.J.M., and van Tunen, A.J. (1995). Functional interaction between the homeotic genes fbp1 and pMADS1 during petunia floral organogenesis. Plant Cell 7: 505-516.
Angenent, G.C., and Colombo, L. (1996). Molecular control of ovule development. Trends Plant Sci. 1: 228-232.
Bechtold, N., Ellis, J., and Pelletier, G. (1993). In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci. Ser. III Sci. Vie 316: 1194-1199.
Bowman, J.L., Smyth, D.R., and Meyerowitz, E.M. (1989). Genes directing flower development in Arabidopsis. Plant Cell 1: 37-52.
Bowman, J.L., Alvarez, J., Weigel, D., and Meyerowitz, E.M. (1993). Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119: 721-743.
Bowman, J.L. (1997). Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. J Biosci. 22: 515-527.
Breeden, L., and Nasmyth, K. (1985). Regulation of the Yeast HO Gene. Cold Spring Harbor Symposium Quant. Biol. 50: 643-650.
Coen, E.S., and Meyerowitz, E.M. (1991). The war of the whorls: genetic interactions controlling flower development. Nature 353: 31-37.
Colombo, L., Franken, J., Koetje, E., van Went, J., Dons, H.J.M., Angenent, G.C., and van Tunen, A.J. (1995). The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7: 1859-1868.
Crone, W., and Lord, E.M. (1991). A kinematic analysis of gynoecial growth in Lilium longiflorum: surface growth patterns in all floral organs are triphasic. Dev. Biol. 143: 408-417.
Doyle, J.J. (1994). Evolution of a plant homeotic multigene family: toward connecting molecular systematic and molecular developmental genetics. Syst. Biol. 43: 307-328.
Flanagan, C.A., Hu, Y., and Ma, H. (1996). Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development. Plant J. 10: 343-353.
Fosket, D.E. (1994). The size and complexity of plant genomes. In Plant Growth and Development: A Molecular approach, Edited by Fosket, D.E. pp. 79-152. Academic Press, San Diego.
Gietz, D., St Jean, A., Woods, R.A., and Schiesti, R.H. (1992). Improved method for high efficiency transformation of intact yeast cells. Nucl. Acids Res. 20: 1425.
Gustafson-Brown, C., Savidge, B., and Yanofsky, M.F. (1994). Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell 76: 131-143.
Haung, M-D., and Yang, C-H. (1998). EMF genes interact with late-flowering genes to regulate Arabidopsis shoot development. Plant Cell Physiol. 39: 382-393.
Honma, T., and Goto, K. (2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525-529.
Jack, T., Brockman, L.L., and Meyerowitz, E.M. (1992). The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683-697.
Jack, T., Fox, G.L., and Meyerowitz, E.M. (1994). Arabidopsis homeotic gene APETALA3 ecotopic expression: Transcriptional and posttranscriptional regulation determine floral organ identity. Cell 76: 703-716.
Jeon, J-S., Jang, S., Lee, S., Nam, J., Kim, C., Lee, S-H., Chung, Y-Y., Kim, S-R., Lee, Y.H., Cho, Y-G., and An, G. (2000). leafy hull sterile 1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 12: 871-884.
Jofuku, K.D., den Boer, B.G.W., van Montagu, M., and Okamuro, J.K. (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6: 1211-1225.
Joseph, J.L., Sentry, J.W., and Smyth, D.R. (1990). Interspecies distribution of abundant DNA sequences in Lilium. J. Mol. Evol. 30: 146-154.
Kater, M.M., Colombo, L., Franken, J., Busscher, M., Masiero, S., Van Lookeren Campagne, M.M., and Angenent, G.C. (1998). Multiple AGAMOUS homologs from cucumber and petunia differ in their abilityto induce reproductive organ fate. Plant Cell 10: 171-182.
Kim, Y-S., Lee, H-S., Lee, M-H., Yoo, O-J., and Liu, J-R. (1998). A MADS box gene homologous to AG is expressed in seedlings as well as in flowers of ginseng. Plant and Cell Physiol. 39: 836-845.
Kramer, E.M., Dorit, R.L., and Irish, V.F. (1998). Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149: 765-783.
Krizek, B.A., Riechmann, J.L., and Meyerowitz, E.M. (1999). Use of the APETALA1 promoter to assay the in vivo function of chimeric MADS box genes. Sex. Plant Reprod. 12: 14-26.
Kyozuka, J., Harcourt, R., Peacock, W.J., and Dennis, E.S. (1997). Eucalyptus has functional equivalents of the Arabidopsis AP1 gene. Plant Mol. Biol. 35: 573-584.
Kyozuka, J., Kobayashi, T., Morita, M., and Shimamoto, K. (2000). Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes.. Plant Cell Physiol. 41: 710-718.
Mandel, M.A., Gustafson-Brown, C., Savidge, B., and Yanofsky, M.F. (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273-277.
Mena, M., Mandel, M.A., Lerner, D.R., Yanofsky, M.F., and Schmidt, R.J. (1995). A characterization of the MADS-box gene family in maize. Plant J. 8: 845-854.
Miller, J.H. (1992). A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and related Bacteria. Cold Spring Harbor Laboratory Press, New York.
Mizukami, Y., Huang, H., Tudor, M., Hu, Y., and Ma, H. (1996). Functional domains of the floral regulator AGAMOUS: characterization of the DNA binding domain and analysis of dominant negative mutations. Plant Cell 8: 831-845.
Moon, Y-H., Jung, J-Y., Kang, H-G., and An, G. (1999). Identification of a rice APETALA3 homologue by yeast two-hybrid screesing. Plant Mol. Biol. 40: 167-177.
Münster, T., Pahnke, J., DiRosa, A., Kim, J.T., Martin, W., Saedler, H., and Theiben, G. (1997). Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc. Natl. Acad. Sci, USA 94: 2415-2420.
Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-479.
Nakayasu, T., Yokota, E., and Shimmen, T. (1998). Purification of an actin-binding protein composed of 115-kDa polypeptide from pollen tubes of lily. Biochem. Biophs. Res. Commun. 249: 61-65.
Okamuro, J.K., den Boer, B.G.W., and Jofuku, K.D. (1993). Regulation of Arabidopsis flower development. Plant Cell 5: 1183-1193.
Park, S.Y., Jauh, G.Y., Mollet, J.C., Eckard, K.J., Nothnagel, E.A., Walling, L.L., and Lord, E.M. (2000). A lipid transfer-like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12: 151-163.
Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., and Yanofsky, M.F.(2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200-203.
Purugganan, M.D. (1997). The MADS-box floral homeotic gene lineages predate the origin of seed plants:phylogenetic and molecular clock estimates. J. Mol. Evol. 45: 392-396.
Purugganan, M.D., Rounsley, S.D., Schmidt, R.J., and Yanofsky, M.F. (1995). Molecular evolution of flower development: Diversification of the plant MADS-box regulatory gene family. Genetics 140: 345-356.
Riechmann, J.L., Krizek, B.A., and Meyerowitz, E.M. (1996). Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA. 93: 4793-4798.
Rounsley, S.D., Ditta, G.S., and Yanofsky, M.F. (1995). Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7: 1259-1269.
Rutledge, R., Regan, S., Nicolas, O., Fobert, P., Cote, C., Bosnich, W., Kauffeldt, C., Sunohara, G., Seguin, A., and Stewart, D. (1998). Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. Plant J. 15: 625-634.
Sablowski, R.W.M., and Meyerowitz, E.M. (1998). A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92: 93-103.
Schmidt, R.J., and Ambrose, B.A. (1998). The blooming of grass flower development. Curr. Opin. Plant Biol. 1: 60-67.
Schwarz-Sommer, Z., Hue, I., Huijser, P., Flor, P.J., Hansen, R., Tetens, F., Lonnig, W.E., Saedler, H., and Sommer, H. (1992). Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens - Evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 11: 251-263.
Sambrook, F., Fritsch, E.F., and Maniatis, T. (1989). Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory. Cold Spring Harbor, N. Y.
Sanger, F., Nicklen, S., and Coulson, A.R. (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74: 5463-5467.
Tandre, K., Svenson, M., Svensson, M.E., and Engström, P. (1998). Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms. Plant J. 15: 615-623.
Theißen, G., and Saedler, H. (1995). MADS-box genes in plant ontogeny and phylogeny: Haeckel''s ''biogenetic law'' revisited. Current Opinion in Genetics and Development 5: 628-639.
Theißen, G., Kim, J.T., and Saedler, H. (1996). Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43: 484-516.
Theißen, G., Becker, A., Di Rosa, A., Kanno, A, Kim, J.T., Münster, T., Winter, K-U., and Saedler, H. (2000). A short history of MADS-box genes in plants. Plant Molecular Biology 42: 115-149.
Theißen, G., and Saedler, H. (2001). Floral quarters. Nature 409: 469-471.
Tröbner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lönnig, W.E., Saedler, H., Sommer, H., and Schwarz-Sommer, Z. (1992). GLOBOSA: A homeotic gene which interacts with DEFICIENS in control of Antirrhinum floral organogenesis. EMBO J. 11: 4693-4704.
van der Krol, A.R., Brunelle, A., Tsuchimoto, S., and Chua, N-H. (1993). Functional analysis of petunia floral homeotic MADS box gene Pmads1. Genes Dev. 7: 1214-1228.
van Tunen, A.J., Eikelboom, W., and Angenent, G.C. (1993). Floral organogenesis in Tulipa. Flowering Newsl. 16: 33-37.
Wang, C.S., Walling, L.L., Eckard, K.J., and Lord, E.M. (1992). Patterns of protein accumulation in developing anthers of Lilium longiflorum correlate with histological events. American J. Botany 79: 118-127.
Wang, C.S., Huang, J.C., and Hu, J.H. (1999). Characterization of two subclasses of PR-10 transcripts in lily anthers and induction of their genes through separate signal transduction pathways. Plant Mol. Biol. 40: 807-814.
Wang, C.S., Liau, Y.E., Huang, J.C., Wu, T.D., Su, C.C., and Lin, C.H. (1998). Characterization of a desiccation-related protein in lily pollen during development and stress. Plant Cell Physiol. 39: 1307-1314.
Weigel, D., and Meyerowitz, E.M. (1994). The ABCs of floral homeotic genes. Cell 78: 203-209.
Winter, K.U., Becker, A., Münster, T., Kim, J.T., Saedler, H., and Theiben, G. (1999). MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proc. Natl. Acad. Sci. USA. 96: 7342-7347.
Yang, C-H., and Li, C-I. (1999). A transgenic mutant defective in cell elongation and cellular organization during both root and shoot development in lettuce, Lactuca sativa. Plant Cell Physiol. 40: 1108-1118.
Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A., and Meyerowitz, E.M. (1990). The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 35-39.
Yu, D., Kotilainen, M., Pollanen, E., Mehto, M., Elomaa, P., Helariutta, Y., Albert, V.A., and Teeri, T.H. (1999). Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant J. 17: 51-62.
參考文獻
Angenent, G.C., Busscher, M., Franken, J., Mol, J.N.M., and van Tunen, A.J. (1992). Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell 4: 983-993.
Angenent, G.C., Franken, J., Busscher, M., van Dijken, A., van Went, J.L., Dons, H.J.M., and van Tunen, A.J. (1995). A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7: 1569-1582.
Angenent, G.C., and Colombo, L. (1996). Molecular control of ovule development. Trends Plant Sci. 1: 228-232.
Bowman, J.L., Smyth, D.R., and Meyerowitz, E.M. (1989). Genes directing flower development in Arabidopsis. Plant Cell 1: 37-52.
Bowman, J.L. (1997). Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. J Biosci. 22: 515-527.
Coen, E.S., and Meyerowitz, E.M. (1991). The war of the whorls: genetic interactions controlling flower development. Nature 353: 31-37.
Doyle,J. J. (1994). Evolution of a plant homeotic multigene family: toward connecting molecular systematics and molecular developmental genetics. Syst. Biol. 43: 307—328.
Egea-Cortines, M., Saedler, H., and Sommer, H. (1999). Ternary complex formation between MADS-box proteins SQUAMOSA, DEFICIENS, and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18: 5370-5379.
Goto, K., and Meyerowitz, E.M. (1994). Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8: 15481560.
Honma, T., and Goto, K. (2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525—529.
Jack, T., Brockman, L.L., and Meyerowitz, E.M. (1992). The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683-97.
Jack, T., Fox, G.L., and Meyerowitz, E.M. (1994). Arabidopsis homeotic gene APETALA3 ecotopic expression: Transcriptional and posttranscriptional regulation determine floral organ identity. Cell 76: 703-716.
Kramer, E.M., Dorit, R.L., and Irish, V.F. (1998). Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics. 149: 765-783.
Kramer, E.M., and Irish, V.F. (1999). Evolution of genetic mechanisms controlling petal development. Nature 399: 144-148.
Kramer, E.M., and Irish, V.F. (2000). Evolution of Petal and Stamen Developmental Programs. Int J Plant Sci. 161: S29-S40.
Mandel, M.A., Gustafson-Brown, C., Savidge, B., and Yanofsky, M.F. (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273-277.
Moon, Y-H., Jung, J-Y., Kang, H-G., and An, G. (1999). Identification of a rice APETALA3 homologue by yeast two-hybrid screesing. Plant Mol. Biol. 40: 167-177.
Mouradov, A., Hamdorf, B., Teasdale R.D., Kim J.T., Winter K.U., and Theiben, G.(1999). A DEF/GLO-like MADS-box gene from a gymnosperm: Pinus radiata contains an ortholog of angiosperm B class floral homeotic genes. Dev Genet. 25: 245-52.
Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., and Yanofsky, M.F. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200-203.
Purugganan, M.D., Rounsley S.D., Schmidt R.J., and Yanofsky, M.F. (1995). Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140: 345—356.
Purugganan, M. D., (1997). The MADS-box floral homeotic gene lineages predate the origin of seed plants: phylogenetic and mo- lecular clock estimates. J. Mol. Evol. 45: 392—396.
Qiu, Y.L., Lee, J., Bernasconi-Quadroni, F., Soltis, D.E., Soltis, P.S., Zanis, M., Zimmer, E.A., Chen, Z., Savolainen, V., and Chase, M.W. (1999). The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402: 404-407.
Riechmann, J.L., Krizek, B.A., and Meyerowitz, E.M. (1996). Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci U S A. 93: 4793-4798.
Riechmann, J.L., and Meyerowitz, E.M. (1997). MADS domain proteins in plant development. Biol Chem. 378: 1079-1101.
Rounsley, S.D., Ditta, G.S., and Yanofsky, M.F. (1995). Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7: 1259-1269.
Soltis, P.S., Soltis, DE., and Chase, M.W.(1999). Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature. 402: 402-404.
Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H., and Sommer H. (1990). Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250: 931-936.
Schwarz-Sommer, Z., Hue, I., Huijser, P., Flor, P.J., Hansen, R., Tetens, F., Lonnig, W.E., Saedler, H., and Sommer, H. (1992). Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens - Evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 11: 251-263.
Shore, P., and Sharrocks, A.D. (1995). The MADS-box family of transcription factors. Eur. Biochem. 229: 1-13.
Sommer, H., Beltran, JP., Huijser, P., Pape, H., Lonnig, WE., Saedler, H., and Schwarz-Sommer, Z. (1990). Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9: 605-613.
Sundström, J. (2001). Characterization of MADS-box genes active during cone development in Norway spruce. Acta Universitatis psaliensis, Uppsala, Sweden.
Theißen, G., and Saedler, H. (1995). MADS-box genes in plant ontogeny and phylogeny: Haeckel''s ''biogenetic law'' revisited. Current Opinion in Genetics and Development 5: 628-639.
Theiben, G., Kim, J., and Saedler, H. (1996). Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43: 484—516.
Theiben, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Münster, T., Winter, K-U., and Saedler, H. (2000). A short history of MADS-box genes in plants. Plant Molecular Biology 42: 115-149.
Theiben, G. (2001). Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol. 4: 75-85.
Tröbner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lönnig, W.E., Saedler, H., Sommer, H., and Schwarz-Sommer, Z. (1992). GLOBOSA: A homeotic gene which interacts with DEFICIENS in control of Antirrhinum floral organogenesis. EMBO J. 11: 4693-4704.
Tzeng, T-Y., and Yang, C-H. (2001). A MADS box gene from lily (Lilium longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant Cell
Physiology 42: 1156-1168.
van der Krol, A.R., Brunelle, A., Tsuchimoto, S., and Chua, N-H. (1993) . Functional analysis of petunia floral homeotic MADS box gene Pmads1. Genes Dev. 7: 1214-1228.
Winter, K.U., Becker, A., Münster, T., Kim, J.T., Saedler, H., and Theiben, G. (1999). MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proc. Natl. Acad. Sci. USA. 96: 7342-7347.
Winter, K.U., Weiser, C., Kaufmann, K., Bohne, A., Kirchner, C., Kanno, A., Saedler, H., and Theiben, G. (2002). Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization. Mol. Biol. Evol. 19: 587-596.
Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A., and Meyerowitz, E.M. (1990). The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 35-39.
Yu, D., Kotilainen, M., Pollanen, E., Mehto, M., Elomaa, P., Helariutta, Y., Albert, V.A., and Teeri, T.H. (1999). Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant J. 17: 51-62.
參考文獻
Angenent, G.C., Busscher, M., Franken, J., Mol, J.N.M., and van Tunen, A.J. (1992). Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell 4: 983-993.
Angenent, G.C., Franken, J., Busscher, M., van Dijken, A., van Went, J.L., Dons, H.J.M., and van Tunen, A.J. (1995). A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7: 1569-1582.
Arabidopsis genome Initiative. (2000). Analysis of gneome of the flowering plant Arabidopsis Thaliana. Nature 408: 796-815.
Amasino, R.M. (1996). Control of flowering time in plant. Current Opinion in Genetics and Development. 6: 480-487.
Bagnall, D.J. (1992). Control of flowering in Arabidopsis thaliana by light, vernalization, and gibberellins. Aust. J. Plant Physiol. 19: 401- 409.
Berbel, A., Navarro, C., Ferrandiz, C., Canas, L.A., Madueno, F., and Beltran, J.P. (2001). Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species. Plant J. 25: 441-451.
Bernier, G., Havelange, A., Houssa, C., Petitjean, A., and Lejeune, P. (1993). Physiological signals that induce flowering. Plant Cell. 5: 1147-1155.
Bradley, D., Carpenter, R., Sommer, H., Hartley, N., and Coen, E. (1993). Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell. 72: 85-95.
Bowman, J.L. (1997). Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. J Biosci. 22: 515-527.
Coen, E.S., Romero, J.M., Doyle, S., Elliott, R., Murphy, G., and Carpenter, R. (1990). floricaula: a homeotic gene required for flower development in antirrhinum majus. Cell. 63: 1311-1322.
Colombo, L., Franken, J., Alexander, R., van der Krol, R., Wittich, P.E., Dons, H.J.M., and Angenent, G.C. (1997). Downregulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell 9: 703-715.
Coupland, G. (1995). Genetic and environmental control of flowering time in Arabidopsis. Trends Genet. 11: 393-397.
Eimert, K., Wang, S-W., Lue, W-L., and Chen, J. (1995). Monogenic recessive mutations causing both late floral initiation and excess starch accumulation in Arabidopsis. Plant Cell 7: 1703-1712.
Elo, A., Lemmetyinen, J., Turunen, M.L., Tikka, L., and Sopanen, T.(2001). Three MADS-box genes similar to APETALA1 and FRUITFULL from silver birch (Betula pendula). Physiol Plant. 112: 95-103.
Evans, L. T. (1969). The Induction of Flowering. Cornell University Press.
Fischer, A., Saedler, H., and Theiben, G. (1995). Restriction fragment length polymorphism-coupled domain-directed differential display: a highly efficient technique for expression analysis of multigene families. Proc Natl Acad Sci U S A. 92: 5331-5.
Garcia, A., LaMontagne, K., Reavis, D., Stober-Grasser, U., and Lipsick, J.S. (1991). Determinants of sequence-specific DNA-binding by p48v-myb. Oncogene. 6: 265-273.
Goto, K., and Meyerowitz, E.M. (1994). Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8: 1548-1560.
Goodrich, J., Puangsomlee, P., Martin, M., Long, D., Meyerowitz, E.M., and Coupland, G. (1997). A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386: 44-51.
Grossniklaus, U., Vielle-Calzada, J.P., Hoeppner, M.A., and Gagliano, W.B. (1998). Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280: 446-450.
Heck, G.R., Perry, S.E., Nichols, K.W., and Fernandez, D.E. (1995). AGL15, a MADS domain protein expressed in developing embryos. Plant Cell 7: 1271-1282.
Huang, H., Mizukami, Y., Hu, Y., and Ma, H. (1993). Isolation and characterization of the binding sequences for the product of the Arabidopsis floral homeotic gene AGAMOUS. Nucl. Acids Res. 21: 4769-4776.
Huijser, P., Klein, J., Lonnig, W.E., Meijer, H., Saedler, H., and Sommer, H. (1992). Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J. 11: 1239-49.
Ito, T., Takahashi, N., Shimura, Y., and Okada, K. (1997). A serine/threonine protein kinase gene isolated by an in vivo binding procedure using the Arabidopsis floral homeotic gene product, AGAMOUS. Plant Cell Physiol. 38: 248-258.
Jang, S., An, K., Lee, S., and An, G. (2002). Characterization of tobacco MADS-box genes involved in floral initiation. Plant Cell Physiol. 43: 230-238.
Jack, T., Brockman, L.L., and Meyerowitz, E.M. (1992). The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683-97.
Kang, H.G., Noh, Y.S., Chung, Y.Y., Costa, M.A., An, K., and An, G. (1995). Phenotypic alterations of petal and sepal by ectopic expression of a rice MADS box gene in tobacco. Plant Mol Biol. 29: 1-10.
Kater, M.M., Colombo, L., Franken, J., Busscher, M., Masiero, S., Van Lookeren Campagne, M.M., and Angenent, G.C. (1998). Multiple AGAMOUS homologs from cucumber and petunia differ in their abilityto induce reproductive organ fate. Plant Cell 10: 171-182.
Kempin, S.A., Mandel, M.A., and Yanofsky, M.F. (1993). Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene NAG1. Plant Physiol. 1993103: 1041-1046.
Koornneef, M., Hanhart, C.J., and van der Veen, J.H. (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229: 57-66.
Koornneef, M., Alonso-Blanco, Peeters, A.J., and Soppe, W. (1998). Genetic control of flowering time in Arabidopsis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 345-370.
Kyozuka, J., Harcourt, R., Peacock, W.J., and Dennis, E.S. (1997). Eucalyptus has functional equivalents of the Arabidopsis AP1 gene. Plant Mol. Biol. 35: 573-584.
Levy, Y.Y., and Dean, C. (1998). Control of flowering time. Curr. Opin Plant Biol. 1: 49-54.
Luo, M., Bilodeau, P., Dennis, E.S., Peacock, W.J., and Chaudhury, A. (2000). Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci U S A. 97: 10637-10642.
Mandel, M.A., and Yanofsky, M.F. (1995). A gene triggering flower formation in Arabidopsis. Nature 377: 522-524.
Mandel, M.A., Gustafson-Brown, C., Savidge, B., and Yanofsky, M.F. (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273-277.
Mandel, T., Lutziger, I., and Kuhlemeier, C. (1994). A ubiquitously expressed MADS-box gene from Nicotiana tabacum. Plant Mol Biol. 25: 319-21.
Mena, M., Mandel, M.A., Lerner, D.R., Yanofsky, M.F., and Schmidt, R.J. (1995). A Characterization of the MADS-box gene family in maize.Plant J. 8: 845-854
Mizukami, Y., and Ma, H. (1992). Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71: 119-131.
Mizukami, Y., and Ma, H. (1997). Determination of Arabidopsis floral meristem identity by AGAMOUS. Plant Cell 9: 393-408.
Müller, B.M., Saedler, H., and Zachgo, S. (2001). The MADS-box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development. Plant J. 28: 169-179.
Ohad, N., Yadegari, R., Margossian, L., Hannon, M., Michaeli, D., Harada, J.J., Goldberg, R.B., and Fischer, R.L. (1999). Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11: 407-416.
Onouchi, H., Igeño, M.I., Périlleux, C., Graves, K., and Coupland, G. (2000). Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell 12: 885-900.
Pnueli, L., Hareven, D., Rounsley, S.D., Yanofsky, M.F., and Lifschitz, E. (1994). Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. Plant Cell 6: 163-173.
Pollock, R., and Treisman, R. (1991). Human SRF-related proteins: DNA-binding properties and potential regulatory targets. Genes Dev. 5: 2327-2341.
Reeves, P.H., and Coupland, G. (2000). Response of plant development to environment: control of flowering by daylength and temperature. Curr. Opin. Plant Biol. 3: 37-42.
Riechmann, J.L., Krizek, B.A., and Meyerowitz, E.M. (1996). Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci U S A. 93: 4793-4798.
Riechmann, J.L., and Meyerowitz, E.M. (1997). MADS domain proteins in plant development. Biol Chem. 378: 1079-1101.
Rounsley, S.D., Ditta, G.S., and Yanofsky, M.F. (1995). Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7: 1259-1269.
Rutledge, R., Regan, S., Nicolas, O., Fobert, P., Cote, C., Bosnich, W., Kauffeldt, C., Sunohara, G., Seguin, A., and Stewart, D. (1998). Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. Plant J. 15: 625-634.
Schmidt, R.J., Veit, B., Mandel, M.A., Mena, M., Hake, S., and Yanofsky, M.F. (1993). Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. Plant Cell 5: 729-737.
Shiraishi, H., Okada, K., and Shimura, Y. (1993). Nucleotide sequences recognized by the AGAMOUS MADS domain of Arabidopsis thaliana in vitro. Plant J. 4: 385-398.
Shore, P., and Sharrocks, A.D. (1995). The MADS-boxfamily of transcription factors. Eur J Biochem. 229: 1-13
Simon, R., and Coupland, G. (1996). Arabidopsis genes that regulate flowering time in respone to day-length. Semin. Cell Dev. Biol. 7: 419- 425.
Simpson, G.G., Gendall, A.R., and Dean, C. (1999). When to switch to flowering. Annu Rev Cell Dev Biol. 15: 519-550.
Sommer, H., Beltran, J.P., Huijser, P., Pape, H., Lonnig, W.E., Saedler, H., and Schwarz-Sommer, Z. (1990). Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9: 605-613.
Tilly, J.J., Allen, D.W., and Jack, T. (1998). The CarG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development 125: 1647-1657.
Theißen, G., and Saedler, H. (1995). MADS-box genes in plant ontogeny and phylogeny: Haeckel''s ''biogenetic law'' revisited. Current Opinion in Genetics and Development 5: 628-639.
Tröbner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lönnig, W.E., Saedler, H., Sommer, H., and Schwarz-Sommer, Z. (1992). GLOBOSA: A homeotic gene which interacts with DEFICIENS in control of Antirrhinum floral organogenesis. EMBO J. 11: 4693-4704.
Tzeng, T-Y., and Yang, C-H. (2001). A MADS box gene from lily (Lilium longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant Cell Physiology 42: 1156-1168.
Weigel, D., Alvarez, J., Smyth, D.R., Yanofsky, M.F., and Meyerowitz, E.M. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843-859.
Wilson, R.N., Heckman, J.W., and Somerville, C.R. (1992). Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol. 100: 403-408.
Winter, K.U., Becker, A., Münster, T., Kim, J.T., Saedler, H., and Theissen G. (1999). MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proc. Natl. Acad. Sci. USA. 96: 7342-7347.
Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A., and Meyerowitz, E.M. (1990). The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 35-39.
Yoshida, N., Yanai, Y., Chen, L., Kato, Y., Hiratsuka, J., Miwa, T., Sung, Z.R., and Takahashi, S. (2001). EMBRYONIC FLOWER2, a novel polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis. Plant Cell 13: 2471-2481.
Yu, D., Kotilainen, M., Pollanen, E., Mehto, M., Elomaa, P., Helariutta, Y., Albert, V.A., and Teeri, T.H. (1999). Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant J. 17: 51-62.
Zagotta, M. T., Shannon, S., Jacobs, C., and Meeks-Wagner, R. (1992). Early-flowering mutants of Arabidopsis thaliana. Aust. J. Plant Physiol. 19: 411-418.
Zeevaart, J. A. D. (1984). Light and the Flowering Process, pp.137-142, Orlando Academic Press.
參考文獻
陳俊宏. 2000. 百合中 kinase 基因之分子選殖與特性分析. 國立中興大學農業生物科技學研究所碩士論文.
Bai, C., Sen, P., Hofmann, K., Ma, L., Goebl, M., Harper, J.W., and Elledge, S.J. (1996). SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-Box. Cell 86: 263-274.
Bowman, J.L., Sakai, H., Jack, T., Weigel, D., Mayer, U., and Meyerowitz, E.M. (1992). SUPERMAN, a regulator of floral homeotic genes in Arabidopsis.Development 114: 599-615.
Bowman, J.L., Smyth, D.R., and Meyerowitz, E.M. (1989). Genes directing flowerdevelopment in Arabidopsis. Plant Cell 1: 37-52..
Chung, J., Kuo, C.J., Crabtree, G.R., and Blenis, J. (1992). Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kDa S6 protein kinases. Cell 69: 1227-1236.
Connelly, C., and Hieter, P. (1996). Budding yeast SKP1 encodes an evolutionarily conserved kinetochore protein required for cell cycle progression. Cell 86: 275-285.
Coen, E.S., and Meyerowitz, E.M. (1991). The war of the whorls: genetic interactions controlling flower development. Nature 353: 31-37.
Downward, J. (1994). Regulating S6 kinase. Nature 371: 378-379.
Dufner, A., and Thomas, G. (1999). Ribosomal S6 kinase signaling and the control of translation. Experimental Cell Research. 253: 100-109.
Ferrari, S., Bannwarth, W., Morley, S.J., Totty, N.F., and Thomas, G. (1992). Activation of p70s6k is associated with phosphorylation of four clustered sites displaying Ser/Thr-Pro motifs. Proc. Natl. Acad. Sci. USA. 89: 7282-7285.
Flanagan, C.A., and Ma, H. (1994). Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowers. Plant Mol. Biol. 26: 581-595.
Goto, K., and Meyerowitz, E.M. (1994). Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8: 1548-1560.
Hill, T.A., Day, C.D., Zondlo, S.C., Thackeray, A.G., and Irish, V.F. (1998). Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development 125: 1711-1721.
Honma, T., and Goto, K. (2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525-529.
Hunter, T. (1995). Protein kinases and phosphatases: the yin and yang of phosphorylation and signalling. Cell 80: 225-236.
Ingram, G.C., Doyle, S., Carpenter, R., Schultz, E.A., Simon, R., and Coen, E.S. (1997). Dual role for fimbriata in regulating floral homeotic genes and cell division in Antirrhinum. EMBO J. 16: 6521-6534.
Jack, T., Brockman, L.L., and Meyerowitz, E.M. (1992). The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683-697.
Jack, T., Fox, G.L., and Meyerowitz, E.M. (1994). Arabidopsis homeotic gene APETALA3 ecotopic expression: Transcriptional and posttranscriptional regulation determine floral organ identity. Cell 76: 703-716.
Jefferies, H.B., Fumagalli, S., Dennis, P.B., Reinhard, C., Pearson, R.B., and Thomas, G. (1997). Rapamycin suppresses 5’TOP mRNA translation through inhibition of p70 s6k. . The EMBO J. 16: 3393-3704.
Jefferies, H.B., Reinhard, C., Kozma, S.C., and Thomas, G. (1994). Rapamycin selectively represses translation of the "polypyrimidine tract" mRNA family. Proc. Natl. Acad. Sci. USA. 91: 4441-4445.
Kater, M.M., Franken, J., van Aelst, A., and Angenent, G.C. (2000). Suppression of cell expansion by ectopic expression of the Arabidopsis SUPERMAN gene in transgenic petunia and tobacco. The Plant J. 23: 407-413.
Kreis, M., and Walker, J.C. (2000). Plant protein kinases. Advances in BOTANICAL RESEARCH incorporating Advances in Plant pathology, Vol. 32. (San Diego: Academic press).
Kramer, E.M., Dorit, R.L., and Irish, V.F. (1998). Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149: 765-783
Lee, I., Wolfe, D.S., Nilsson, O., and Weigel, D. (1997). A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS. Curr. Biol. 7: 95-104.
Levin,J.Z., and Meyerowitz, E.M. (1995). UFO: an Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell 7:, 529-548.
Levy, S., Avni, D., Hariharan, N., Perry, R.P., and Meyuhas, O. (1991). oligopyrimidine tract at the 5’ end of mammalian ribosomal protein mRNAs is required for their translational control. Proc. Natl. Acad. Sci. USA. 88: 3319-3323.
Mizoguchi, T., Hayashida, N., Yamaguchi-Shinozaki, K., Kamada, H., and Shinozaki, K. (1995). Two genes that encode ribosomal-protein S6 kinase homologs are induced by cold or salinity stress in Arabidopsis thaliana. FEBS Letters 358: 199-204.
Montagne, J., Stewart, M.J., Stocker, H., Hafen, E., Kozma, S.C., and Thomas, G. (1999). Drosophila S6 kinase: a regulator of cell size. Science 285: 2126-2129.
Ng, M., and Yanofsky, M.F. (2000). Three ways to learn the ABCs. Current Opinion in Plant Biology 3: 47-52.
Parcy, F., Nilsson, O., Busch, M.A., Lee, I., and Weigel, D. (1998). A genetic framework for floral patterning. Nature 395: 561-566.
Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., and Yanofsky, M.F. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200-203.
Porat, R., Lu, P.Z., and O’Neill, S.D. (1998). Arabidopsis SKP1, a homologue of a cell cycle regulator gene, is predominantly expressed in meristematic cells. Planta 204: 345-351.
Riechmann, J.L., Krizek, B.A., and Meyerowitz, E.M. (1996). Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA. 93: 4793-4798.
Rounsley, S.D., Ditta, G.S., and Yanofsky, M.F. (1995). Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7: 1259-1269.
Sablowski, R.W.M., and Meyerowitz, E.M. (1998). A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92: 93-103.
Sakai, H., Medrano, L.J., and Meyerowitz, E.M. (1995). Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature 378: 199-203.
Samach, A., Klenz, J.E., Kohalmi, S.E., Risseeuw, E., Haughn, G.W., and Crosby, W.L. (1999). The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J. 20: 433-445.
Savidge, B., Rounsley, S.D., and Yanofsky, M.F. (1995). Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell 7: 721-733.
Schwarz-Sommer, Z., Hue, I., Huijser, P., Flor, P.J., Hansen, R., Tetens, F., Lonnig, W.E., Saedler, H., and Sommer, H. (1992). Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens - Evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 11: 251-263.
Shima, H., Pende, M., Chen, Y., Fumagalli, S., Thomas, G., and Kozma, S.C. (1998). Disruption of the p70 s6k /p85 s6k gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J. 17: 6649-6659.
Stone, J.M., and Walker, J.C. (1995). Plant protein kinase families and signal transduction. Plant Physiol. 108: 451-457.
Theißen, G. (2001). Development of floral organ identity: stories from the MADS house. Current Opinion in Plant Biology 4: 75-85.
Theißen, G., and Saedler, H. (2001). Floral quarters. Nature 409: 469-471.
Tilly, J.J., Allen, D.W., and Jack, T. (1998). The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development 125: 1647-1657.
Tröbner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lönnig, W.E., Saedler, H., Sommer, H., and Schwarz-Sommer, Z. (1992). GLOBOSA: A homeotic gene which interacts with DEFICIENS in control of Antirrhinum floral organogenesis. EMBO J. 11: 4693- 4704.
Turck, F., Kozma, S.C., Thomas, G., and Nagy, F. (1998). A heat-sensitive Arabidopsis thaliana kinase substitutes for human p70 (s6k) function in vivo. Molecular and Cellular Biology 18: 2038-2044.
Volarević, S., Stewart, M.J., Ledermann, B., Zilberman, F., Terracciano, L., Montini, E., Grompe, M., Kozma, S.C., and Thomas, G. (2000). Proliferation, but not growth, blocked by conditional deletion of 40S ribosomal protein S6. Science 288: 2045-2047.
Weigel, D., Alvarez, J., Smyth, D.R., Yanofsky, M.F., and Meyerowitz, E.M. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843-859.
Weigel, D., and Meyerowitz, E.M. (1993). Activation of floral homeotic genes in Arabidopsis. Science 261: 1723-1726.
Weigel, D., and Meyerowitz, E.M. (1994). The ABCs of floral homeotic genes. Cell 78: 203-209.
Wilkinson, M.D., and Haughn, G.W. (1995). UNUSUAL FLORAL ORGANS controls meristem identity and organ primordial fate in Arabidopsis. Plant Cell 7: 1485-1499.
Yun, J.T., Weigel, D., and Lee, I. (2002). Ectopic expression of SUPERMAN suppresses development of petals and stamens. Plant Cell Physiol. 43: 52-57.
Zhang, H., Kobayashi, R., Galaktionov, K., and Beach, D. (1995). P19 Skp1 and p45 Skp2 are essential elements of the cyclins A-CDK2 S phase kinase. Cell 82: 915-925.
Zhang, S-H., Lawton, M.A., Hunter, T., and Lamb, C.J. (1994). atpk1, a novel ribosomal protein kinase gene from Arabidopsis. I. isolation, characterization, and expression. J. Biol. Chem. 269: 17586-17592.
Zhao, D., Yang, M., Solava, J., and Ma, H. (1999). The ASK1 gene regulates development and interacts with the UFO gene to control floral organ identity in Arabidopsis. Develop. Gen. 25: 209-223.
參考文獻
Angenent, G.C., Franken, J., Busscher, M., van Dijken, A., van Went, J.L., Dons, H.J.M., and van Tunen, A.J. (1995). A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7: 1569-1582.
Arabidopsis genome Initiative. (2000). Analysis of gneome of the flowering plant Arabidopsis Thaliana. Nature 408: 796-815.
Bowman, J.L. (1997). Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. J Biosci. 22: 515-527.
Coen, E.S., and Meyerowitz, E.M. (1991). The war of the whorls: genetic interactions controlling flower development. Nature 353: 31-37.
Colombo, L., Franken, J., Alexander, R., van der Krol, R., Wittich, P.E., Dons, H.J.M., and Angenent, G.C. (1997a). Downregulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell 9: 703-715.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top