(54.236.58.220) 您好!臺灣時間:2021/03/08 09:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃國益
研究生(外文):Kuo-Yi Huang
論文名稱:應用機器視覺於蝴蝶蘭大苗幾何特徵與病害檢測
論文名稱(外文):A Study of the Geometric Characteristics and Diseases for Phalaenopsis Seedlings with Machine Vision
指導教授:林聖泉林聖泉引用關係
指導教授(外文):Tshen-Chan Lin
學位類別:博士
校院名稱:國立中興大學
系所名稱:農業機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:272
中文關鍵詞:機器視覺蝴蝶蘭大苗病害選別機構
外文關鍵詞:machine visionPhalaenopsis Seedlingsdiseasesorting mechanism
相關次數:
  • 被引用被引用:27
  • 點閱點閱:2103
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
蝴蝶蘭為近年來最受歡迎的花卉之一,台灣為全球蝴蝶蘭苗最大的產銷國,為了使得蝴蝶蘭生產作業邁向自動化,提升台灣蝴蝶蘭產業的競爭力,本研究應用機器視覺建立蝴蝶蘭大苗選別系統,該系統包括幾何特徵之估算模組、病害檢測模組、選別機構等。為了建立完整系統,相關的研究範圍包括以下四部分 :
1、建立蝴蝶蘭大苗幾何特徵估算法則
(1)利用影像處理技術,建立估算蝴蝶蘭大苗幾何特徵之演算法則。
(2)撰寫幾何特徵之估算程式。
2、建立蝴蝶蘭病害檢測法則
(1)利用影像處理技術,建立蝴蝶蘭病害檢測法則。
(2)撰寫病害檢測程式。
3、建立蝴蝶蘭大苗選別系統
(1)設計製造蝴蝶蘭大苗選別機構。
(2)建立選別控制系統,整合影像處理及控制大苗選別系統程式。
4、建立蝴蝶蘭大苗選別系統軟體
(1)建立影像處理函式庫。
(2)撰寫使用者指南。
(3)撰寫指令參考資料。
本論文應用影像處理技術,建立蝴蝶蘭苗幾何特徵估算法則,包括苗莖中心與葉片端點搜尋法、葉片數估算法、苗盆與葉片分離法及葉片輪廓萃取法。針對44株蝴蝶蘭大苗進行估算試驗,同時以人工方式進行量測,人工量測所得之數據為正確值,針對估算的結果與實際量測結果進行比較,其中以葉片數之估算最為準確,其平均相對誤差為1.48%,其它特徵值的平均相對誤差分別為葉長為1.80%、葉幅為2.44%、葉片夾角為3.90%、葉寬為4.02%及葉片長寬比為7.04%。
本論文提出蝴蝶蘭病害檢測法則針對蝴蝶蘭之軟腐病、褐斑病及疫病病害進行檢測與分類。首先利用Rayleigh轉換與影像處理技術萃取蝴蝶蘭病害區域之特徵,這些特徵包括形心座標、面積、周長、平均直徑及平均灰階值 、 、 ,再進一步利用檢測線法則估算病害區域之最大灰階平均值 與灰階值陡峭係數 ,最後以 、 、 、 及 為特徵向量,利用貝氏分類法求得決策邊界 、 、 、 及 ,以這些決策邊界為判斷依據,針對軟腐病、褐斑病、疫病害區域進行檢測與分類。針對144個病害測試樣本進行檢測與分類,平均分類正確率為88.2%,每一株大苗的平均處理速度為1.78 sec。若僅考慮是否檢測出病害,而不論其屬於何種病害,則本系統之病害檢測能力可達到96.5%。
本論文完成蝴蝶蘭大苗選別系統之研製,該系統主要由四部份組成:(1)取像定位機構、(2)影像辨識系統、(3)分級顯示裝置、(4)選別控制系統。此選別系統作業方式係將蝴蝶蘭大苗藉由置料平台與升降機構送至取像平台,利用影像辨識系統估算蝴蝶蘭大苗的幾何特徵及檢測病害,並根據台糖外銷蝴蝶蘭大苗的選別標準進行品質選別。針對430株蝴蝶蘭大苗進行選別試驗,由試驗結果顯示,機器選別的正確率為90.0 %,每一株蝴蝶蘭大苗的平均選別作業時間為21.15 sec;人工選別的正確率則為97.2 %,每一株蝴蝶蘭大苗的平均選別作業時間為27.42 sec;機器選別的速度較人工選別約快22.3 %。
本論文完成蝴蝶蘭大苗選別系統軟體SSPS 1.0之開發,並建立影像程式庫,針對每一個副程式及函式的功能進行說明,可提供使用者參考。
Phalaenopsis is getting popular recently. In order to ensure competition in world market for Taiwanese floristic industry, an automatic production line is a key factor. In this study we used the image processing techniques to develop a sorting system for Phalaenopsis seedlings. The sorting system consists of the module of estimation of the geometric characteristics, the module of diseases detection, and the sorting machine. The scope of this research to develop the whole system includes:
1. Developing an algorithm for estimating characteristics of Phalaenopsis seedlings: The algorithm is developed to estimate the geometric characteristics of Phalaenopsis seedlings using the image processing techniques.
2. Developing an algorithm for detecting diseases of Phalaenopsis seedlings: The disease detection algorithm is established to detect bacterial soft rot (BSR), bacterial brown spot (BBS), and Phytophthora black rot (PBR) using image processing techniques.
3. Developing a sorting system: A sorting system for Phalaenopsis seedlings was designed and manufactured. The sorting system is composed of the sorting mechanism and control system.
4. Developing a software for the sorting system: The software includes: (1) image processing functions, (2) user guide, and (3) command reference.
A methodology using machine vision to estimate the geometric characteristics of Phalaenopsis seedlings was established in this paper. The image processing techniques including the stem-center search method, the leaf-endpoint search method, the leaf number search method, the pot removing method, and the leaf-shape extraction procedure were applied to develop the algorithms that were used to estimate the geometric characteristics. Forty-four samples were investigated. Measurements taken manually and from estimation using our method were obtained and compared. The average relative errors between estimated values and measured results were 1.48% for the total number of leaves, 1.80% for the length, 2.44% and 3.90% for the span and the angle between two upper leaves, 4.02% for the width, and 7.04% for the length/width ratio.
A novel system for detecting and classifying Phalaenopsis seedling diseases, including BSR, BBS, and PBR, was developed. The features of the lesion area of a Phalaenopsis seedling were extracted by Rayleigh transform and image processing techniques, such as hole-filling, erosion, dilation, opening, and closing operators. The detection line algorithm (DLA) was used to evaluate the lesion area. Five color features - Rmean, Gmean, Bmean, Gmax, and M were used in the classification procedure. A Bayes classifier was applied to classify BSR, BBS, and PBR of Phalaenopsis seedlings. One hundred and forty-four samples were used to evaluate the system. The methodology rapidly detected and classified these three Phalaenopsis seedlings diseases, at 1.78 sec/pot, to an accuracy of 88.2%. The disease detection capability of the system, without classifying the disease type, was as high as 96.5%.
A sorting system for Phalaenopsis seedlings was designed and manufactured. This sorting system consists of four major parts: (1) image grabbing and positioning mechanism, (2) pattern recognition system, (3) display panel, and (4) control system. Four hundred and thirty pots of Phalaenopsis seedlings were used to test the sorting system. According to the results, we were able to achieve a rapid sorting of 21.15 sec/pot compared to 27.42 sec/pot by manual sorting, to an accuracy of 90.0% compared to 97.2% when sorting manually. Our machine can save up to 22.3% of the time used for manual sorting.
The sorting system for Phalaenopsis seedling (SSPS) software 1.0 was developed. The SSPS 1.0 library had been established. The sub-programs and functions were described in the SSPS 1.0 reference manual.
中文摘要……………………………………………………………………………....I
英文摘要……………………………………………………………...………...……III
目錄……………………………………….…………………………………………..V
表目錄……………………………………………………………………………….IX
圖目錄……………………………………….……………………………..…..……XI
符號表……………………………………………………………………………....XV
第一章 前言
1.1 研究動機與目的………………………………………………………1
1.2 論文內容與結構………………………………………………………3
第二章 研究背景
2.1 蝴蝶蘭概述……………………………………………………………5
2.2 蝴蝶蘭產業現況………………………………………………………5
2.3 蝴蝶蘭大苗幾何特徵之選別標準……………………………………7
2.4 蝴蝶蘭病害……………………………………………………………9
2.5 影像處理在農業上之應用…………………………………………..11
2.6 直方圖等化法與貝氏分類法之應用………………………………..14
第三章 基本理論分析
3.1 數位影像與其描述方法……………………………………………..17
3.2 影像處理之基本運算………………………………………………..20
3.3 貝氏分類法…………………………………………………………..25
第四章 蝴蝶蘭大苗幾何特徵之估算法則
4.1 試驗材料與設備……………………………………………………..27
4.1.1 試驗材料…………………………………………………..27
4.1.2 試驗設備…………………………………………………..27
4.2 前視影像處理………………………………………………………..29
4.2.1 苗莖中心搜尋法…………………………………………..29
4.2.2 葉片端點搜尋法…………………………………………..34
4.2.3 葉片數估算法……………………………………………..37
4.3 上視影像處理………………………………………………………..39
4.3.1 分離苗盆與葉片…………………………………………..39
4.3.2 萃取葉片輪廓……………………………………………..47
第五章 蝴蝶蘭病害檢測與分類系統
5.1 試驗材料與設備……………………………………………………..48
5.1.1 試驗材料…………………………………………………..48
5.1.2 試驗設備…………………………………………………..48
5.2 病害之培養與接種…………………………………………………..52
5.3 萃取病害區域…………………………………………………….….56
5.4 檢測線法則……………………………………………………….….61
5.5 以貝氏分類法進行病害分類…………………………………….….69
5.6 蝴蝶蘭病害檢測與分類法則………………………………………..70
第六章 蝴蝶蘭大苗選別系統
6.1 試驗材料………………………..……………………………….…...72
6.2 選別機構之研製………………..……………………………….…...72
6.2.1 取像定位機構…………………..……………….…….…..75
6.2.2 影像辨識裝置與分級顯示裝置..………………….….…..78
6.3 選別控制系統之建立……………………..……………………..…..80
6.3.1 試驗設備………………………..……………………..…..80
6.3.2 系統控制電路…………………..…………………..……..81
6.3.3 系統控制程式…………………..………………….….…..83
第七章 蝴蝶蘭大苗選別系統軟體
7.1 選別軟體之設計……………………….…………….………..……..88
7.2 使用者介面………………………………………………..…….…...93
7.2.1 監控介面與執行按鈕之功能………….……………….93
7.2.2 幾何特徵估算模組………………………...…………...96
7.2.3 病害檢測與分類模組…………………………………..99
7.2.4 系統控制模組……….………………………………...101
7.2.5 選別系統之作業流程…………………………………103
7.3 影像處理程式與函式庫………………………………………104
7.4 SSPS 1.0安裝程式之製作……......…………….………….....106
第八章 結果與討論
8.1 打光與影像校正………………………….………………………...107
8.2 蝴蝶蘭大苗幾何特徵之估算…………………………………...….111
8.3 蝴蝶蘭病害之檢測………………………………………………....127
8.3.1 蝴蝶蘭病害培養與接種樣本……………………………127
8.3.2 病害檢測與分類系統……………………………………129
8.3.3 病害檢測與分類結果……………………………………137
8.3.4 以機器視覺與人工方式檢測病害之比較…………..…..139
8.4 蝴蝶蘭大苗選別系統………..………………………………….….140
8.5 影像經校正與未校正處理之比較…………………………………148
8.6 蝴蝶蘭大苗選別系統軟體…………………………………….…...159
第九章 結論與未來展望
9.1 結論…………………………………………………………………160
9.2 未來展望…………………………………………………………....162
參考文獻……………………………………………………………………………163
附錄A 區間對分法………………………………………………………………168
附錄B 控制系統之硬體規格……………………………………………………170
附錄C 蝴蝶蘭大苗選別系統程式………………………………………………179
附錄D 蝴蝶蘭大苗選別系統軟體SSPS 1.0之函式參考手冊………………...225
D.1 影像處理基本設定模組…………………..……………………....225
D.2 病害檢測與分類模組……...………..………………………….…231
D.3 幾何特徵估算模組……..…..………………………………….….237
D.4 系統控制模組……..………………………………………….…...247
附錄E MIL 6.0函式功能及說明..………………………………………...…….253
E.1 MIL影像系統之配置與釋放……………….…….……………….253
E.2 RGB彩色影像處理…………………………………….………….255
E.3 MIL 基本功能介紹…………...………….………………….…….256
E.4 Blob分析模組…………………………….………………..………258
附錄F 蝴蝶蘭大苗選別系統軟體SSPS 1.0之安裝程序………………………259
附錄G 蝴蝶蘭大苗選別結果…………………………………………….………262
1. 王國榮。2000。Visual Basic 6.0教本。旗標出版股份有限公司。
2. 台中天一蘭園。1998。大苗一級品出貨認定合格標準及說明。
3. 朱欽昌。1988。蝴蝶蘭的播種與組織培養。洋蘭雜誌社。
4. 位國慶。1994。台灣蝴蝶蘭真菌及細菌病害之發生與防治。台灣花卉病蟲害研討會專刊 2: 119-133.
5. 李芳繁。1991。檸檬顏色分級方法之建立。農工學報37(2): 59-64。
6. 李芳繁、蔡玉芬。1997。以機器視覺與類神經網路分級玫瑰切花之研究。農業機械學刊6(1): 57-69。
7. 林秀雄、賴本智。2001。台灣蝴蝶蘭產銷調查報告。中華盆花發展協會。
8. 林建銘。1999。稻米品質檢測軟體之設計與檢測系統改進之研究。碩士論文。國立中興大學農業機械工程學系。
9. 柯健全、黃膺任、艾群。1999。應用影像處理計算生乳體細胞之研究。農業機械學刊 8(4): 1-16。
10. 陳文輝。2002。蝴蝶蘭的品種改良。科學發展月刊 351: 32-39。
11. 陳加忠。1998。蝴蝶蘭組織培養苗生產自動化之技術開發。花卉生產自動化技術推廣資料手冊75-86。
12. 陳加忠。2001a。大陸蝴蝶蘭產業之我見。國立中興大學農業機械工程學系生物系統工程研究室訪問稿。
13. 陳加忠。2001b。蝴蝶蘭量產品質與大陸競爭。國立中興大學農業機械工程學系生物系統工程研究室訪問稿。
14. 陳任芳。1993。蘭花病蟲害認識和防治─病害篇。花蓮區農業專訊 3: 6-9。
15. 張文宏、陳世銘。1993。以機器視覺引導機器人選別水果。農業機械學刊2(3):11-23。
16. 張仁明、林達德。1999。類神經網路與貝氏分類法應用於影像分割之比較研究。農業機械學刊8(3):61-74。
17. 張鴻文、蕭介宗、李盛銘、洪梅珠。2000。以近紅外線及影像處理技術鑑別水稻品種。農業機械學刊9(4): 1-16。
18. 萬一怒、溫惠雯。1998。糙米品質自動檢測分級系統─(二)糙米外觀品質檢測之研究。農業機械學刊 7(2): 13-28.
19. 蔡志濃、安寶貞、林俊義、吳雅芳、彭淑貞. 2001. 楊桃細菌性斑點病之發生、品種抗病性及藥劑防治. 植病會刊 10:139-145.
20. 錢中方、林達德。2000。應用霍氏轉換量測重疊葉片面積之影像處理方法。農業機械學刊9(4): 47-64。
21. 謝青霖、馮丁樹、陳世銘。1992。數位影像處理在水果大小選別之應用。農業機械學刊1(1): 28-41。
22. 謝志誠、林勁助。1994。以類神經網路技術作青椒形狀及大小之分級。農業機械學刊3(3): 15-27。
23. 謝清祿、鄭聖夫、林達德。1997。應用影像紋理分析及類神網路辨識甘藍種苗之生長階段。農業機械學刊6(2): 1-13。
24. Advantech Corporation Ltd. 1998. Advantech driver 3.01 reference manual.
25. Ann, P. J. 1995. Phytophthora diseases of orchids in Taiwan. Plant Pathology Bulletin 4(4):152-162.
26. Ann, P. J. and Tsai, J. N. 2000. Phytophthora blight of peace lily in Taiwan. Plant Pathology Bulletin 9: 145-150.
27. Ark, P. A. and M. P. Starr. 1951. Bacterial diseases of orchids. Plant Disease Reporter 35(1):42-43.
28. Ark, P. A. and H. E. Thomas. 1946. Bacterial leaf spot and bud rot of orchids caused by Pseudomonas cattleyae. Phytopathology 36(9): 695-698.
29. Arora, J. S. 1985. Introduction to optimum design. McGraw-Hill Co., New York.
30. Batchelor, S. R. 1982. Orchid culture-15-disease, Part 1-The ruinous rots. American Orchid Society Bulletin 51(5):479-486.
31. Bradbury, J. F. 1986. Guide to plant pathogenic bacteria. C.A.B. International, UK.
32. Burks, T. F., S. A. Shearer, R. S. Gates and K. D. Donohue. 2000. Backpropagation neural network design and evaluation for classifying weed species using color image texture. Transactions of the ASAE 43(4): 1029-1037.
33. Chen, J. S. and S. P. Y. Hsieh. 1978. Phytophthora black rot of Phalaenopsis in Taiwan. Plant Protection Bulletin 20(2):161-170.
34. Cruvinel, P. E., S. R. Vieira, S. Crestana, E. R. Minatel, M. L. Mucheroni and A. T. Neto. 1999. Image processing in automated measurements of raindrop size and distribution. Computers and Electronics in Agriculture 23(3):205-217.
35. Diaz, R., G. Faus, M. Blasco, J. Blasco and E. Molto. 2000. The application of a fast algorithm for classification of olives by machine vision. Food Research International 33(3-4): 305-309.
36. Duda, R. O., P. E. Hart and D. G. Stork. 2001. Pattern classification. John Wiley & Sons, Inc., New York.
37. Erwin, D. C. and O. K. Ribeiro. 1996. Phytophthora diseases worldwide. APS press, St. Paul, Mn.
38. Francis, Z. H., H.Y. Chan and F. K. Lam. 1999. Image contract enhancement by constrained local histogram equalization. Computer Vision and Image Understanding. 73 (2): 281-290.
39. Fu, J. C., H. C. Lien and S. T. C. Wong. 2000. Wavelet-based histogram equalization enhancement of gastric sonogram images. Computerized Medical Imaging and Graphics 24 (2000): 59-68.
40. Ghazanfari, A., J Irudayaraj and A. Kusalik. 1996. Grading pistachio nuts using a neural network approach. Transactions of the ASAE 36(6): 2319-2324.
41. Gonzalez, R. C. and R. E. Woods. 1992. Digital image processing. Addison Wesley Pub. Co., Massachusetts.
42. Ho, H. H., P. J. Ann and H. S. Chang. 1995. The genus of Phytophthora in Taiwan. Institute of Botany, Academia Sinica Monograph Series No 15.
43. Ko, W. H., Chang, H. S. and Su, H. J. 1976. Isolates of Phytophthora cinnamomi from Taiwan as evidence for an Asian origin of the species. Trans. Br. Mycol. Soc. 72: 353-358.
44. Lee, C. H., S. H. Lee and H. Hwang. 2001. Automatic lean tissue generation of carcass beef via color computer vision, ASAE paper No. 016122, St. Joseph, Mi.
45. Leemans, V., H. Magein and M. F. Destain. 1999. Defect segmentation on ‘Jonagold’ apples using colour vision and a bayesian classification. Computers and Electronics in Agriculture 23(1): 43-53.
46. Majumdar, S. and D. S. Jayas. 2000a. Classification of cereal grains using machine vision: I. Morphology models. Transactions of the ASAE 43(6): 1669-1675.
47. Majumdar, S. and D. S. Jayas. 2000b. Classification of cereal grains using machine vision: II. Color models. Transactions of the ASAE 43(6): 1677-1680.
48. Majumdar, S. and D. S. Jayas. 2000c. Classification of cereal grains using machine vision: III. Texture models. Transactions of the ASAE 43(6): 1681-1687.
49. Majumdar, S. and D. S. Jayas. 2000d. Classification of cereal grains using machine vision: IV. Combined morphology, color, and texture models. Transactions of the ASAE 43(6): 1689-1694.
50. Majumdar, S., D. S. Jayas and S. J. Symons. 1999. Textural features for grain identification. International Agricultural Engineering Journal 8(4): 213-222.
51. Matrox Electronic Systems Ltd. 2000a. Matrox imaging library 6.0 command reference.
52. Matrox Electronic Systems Ltd. 2000b. Matrox imaging library 6.0 user guide.
53. Microsoft Corporation. 1998. MSDN library visual studio 6.0 user guide.
54. National Instruments Corporation. 2000. FlexMotion software 5.0 reference manual.
55. Ni, B., M. R. Paulsen and J. F. Reid. 1997. Corn kernel crown shape identification using image processing. Transactions of the ASAE 40(3): 833-838.
56. Nishiwaki, K., T. Togashi, K. Amaha and K. Matsuo. 2001. Estimate crop position using template matching in rice production, ASAE paper No. 013103, St. Joseph, Mi.
57. Pearson, T. and N. Toyofuku. 2000. Automated sorting of pistachio nuts with closed shells. Applied Engineering in Agriculture 16(1): 91-94.
58. Rao, S. S. 1996. Engineering optimization theory and practice. John Wiley & Sons, Inc., Canada.
59. Rossetti, V. 1943. Black rot of orchids. Biologico 9:201-205.
60. Sarkar, N. and R. R. Wolfe. 1985. Feature extraction techniques for sorting tomatoes by computer vision. Transactions of the ASAE 28(3): 970-979.
61. Shashidhar, N. S., D. S. Jayas, T. G. Crowe and N. R. Bulley. 1997. Processing of digital images of touching kernels by ellipse fitting. Canadian Agricultural Engineering 39(2): 139-142.
62. Sid-Ahmed, M. A. 1995. Image processing. McGraw-Hill, Co., New York.
63. Sites, P. W. and M. J. Delwiche, 1988. Computer vision to locate fruit on a tree. Transactions of the ASAE 31(1): 641-644.
64. Steenhoek, L. W., M. K. Misra, W. D. Batchelor and J. L. Davidson. 2001. Probabilistic neural networks for segmentation of features in corn kernel images. Applied Engineering in Agriculture 17(2): 225-234.
65. Tian, L. 1995. Knowledge based machine vision system for outdoor plant identification. Ph.D. dissertation, Department of Biological and Agricultural Engineering, the University of California, Davis.
66. Tian, L., D. C. Slaughter and R. F. Norris. 1997. Outdoor field machine vision identification of tomato seedlings for automated weed control. Transactions of the ASAE 40(6): 1761-1768.
67. Tong, A. W. K., R. Qureshi, X. Li and A. P. Sather. 1998. A system for ultrasound image segmentation for loin eye measurements in swine. Canadian Agricultural Engineering 40(1): 47-53.
68. Uchida, J. Y. 1994. Diseases of orchids in Hawaii. Plant Disease 78(3):220-224.
69. Vincent, L. and P. Soille. 1991. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6): 583-598.
70. Wang, J. and T. Tan. 2000. A new face detection method based on shape information. Pattern Recogniton Letters. 21(2000): 463-471.
71. Wolfe, R. R. and W. E. Sandler. 1985. An algorithm for stem detection using digital image analysis. Transactions of the ASAE 28(2): 641-644.
72. Woebbecke, D. M., G. Meyer, E. K. Von Bargen and D. A. Mortensen, 1995. Shape feature for identifying young weeds using image analysis. Transactions of the ASAE 38(1): 271-281.
73. Zayas, I. Y. and P. W. Flinn. 1998. Detection of insects in bulk wheat samples with machine vision. Transactions of the ASAE 41(3): 883-888.
74. Zion, B., A. Shklyar and I. Karplus. 1999. Sorting fish by computer vision. Computers and Electronics in Agriculture 23(3): 175-187.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔