跳到主要內容

臺灣博碩士論文加值系統

(107.21.85.250) 您好!臺灣時間:2022/01/18 08:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅正宗
研究生(外文):Jeng-Chung Lo
論文名稱:台灣地區水稻品種之光能利用效率分析及其判別函數的建立
論文名稱(外文):Solar radiation use efficiency and its discriminant functions of the rice varieties released un Taiwan
指導教授:林俊隆林俊隆引用關係
學位類別:博士
校院名稱:國立中興大學
系所名稱:農藝學系
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:143
中文關鍵詞:水稻光能利用效率判別函數
外文關鍵詞:ricesolar radiation use efficiencydiscriminant function
相關次數:
  • 被引用被引用:1
  • 點閱點閱:777
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究之目的在建立台灣地區水稻稻穀產量之光能利用效率(RUEy)的判別函數,以作為選育高光能利用效率的水稻品種之用。由於產量之光能利用效率需涉及水稻植冠對日光輻射之截取能力,及植冠所截取之日光輻射形成稻穀產量之效率;因此,本試研究首先針對過去台灣地區過去六十年來育成的水稻品種進行植冠截光率(MLI)及光能利用效率的品種變異性分析,及其在不同育種年代中的遺傳演進,並進一步探討水稻植冠發育之相關性狀與MLI及RUEy的關係,作為建構判別函數所需之變數選擇的依據。
逢機選取25個過去六十年來台灣地區育成的水稻品種為材料, 進行水稻MLI之品種變異性及其遺傳演進之探討。結果顯示品種間雖具有顯著的變異性,但以兩期作之數據進行合併分析,水稻MLI之遺傳率及遺傳增進量均甚低,顯示水稻MLI是一個相當不穩定的性狀;但若在各期作內分別估算,則遺傳率及遺傳增進量均明顯地提高。其中以第二期作施用180公斤氮肥及第一期作不施氮肥的條件下之水稻MLI的育種效應顯著地比其他試驗條件下之育種效應高。此外,植冠發育之相關性狀與水稻MLI間均具有顯著的相關性,但以抽穗期之LAI與MLI關係最密切,可作為水稻品種選育的參考性狀;而此參考性狀在第二期作施予180公斤氮肥之環境下,具較高之遺傳率及遺傳增進量。
二十五個參試水稻品種之MLI值在第一期作下,並未依育種年代演進而呈顯著的改變。但在第二期作不施氮肥及施以180公斤氮肥的條件下, MLI值之遺傳增進量呈現直線減少的趨勢。另由參試品種之植冠平均截光效率(LIE)進行遺傳改良成果的週期性評估, 顯示台灣地區育成的水稻品種之LIE隨育種年代演進而增加或遞減的情形並不明顯, 換言之,老品種雖具有較高的MLI, 但其LIE並不高於新近育成的品種。
就RUEy而言,25個參試品種在第一期作之表現明顯高於第二期作,新近育成之品種的RUEy會因氮肥之施用而提高,而老舊品種在高氮肥的環境下則可能因倒伏而降低其RUEy。由綜合變方分析的結果顯示水稻RUEy為一相當穩定的性狀,品種與環境因子間並未呈現顯著地交感作用。就育種選拔效應而言,應以第二期作施用氮肥的環境下較高。由相關分析的結果顯示水稻RUEy與植冠發育相關性狀間關係並不密切。
不同年代育成的參試品種,在氮肥施用的環境下,RUEy值隨育種年代之演進而呈直線增加的趨勢,且增加的效應會因氮肥施用量之增加而提高,唯此種關係在不施氮肥環境下則不易顯現出來。
為了分析水稻穀粒產量的品種變異性,本試驗以總日光輻射截取量(LIsum)及產量之光能利用效率(RUEy)的乘積用以表達水稻稻穀產量。相同地,以總乾物重之光能利用效率(RUEtdw)及收穫指數(HI)之乘積用以表達RUEy。分析結果顯示當參試品種處以90公斤氮肥施用量時,LIsum對穀粒產量之變異性的影響較高;然而在施以180公斤氮肥或不施氮肥的環境下,則RUEy對穀粒產量之變異性較高。另就RUEtdw及HI對RUEy之變異性的影響而言,在各種氮肥施用量下,RUEtdw對RUEy之變異性的影響均大於HI。在此情況下,產量受制於RUEy的高比例變異均為透過RUEtdw所達成。
為使本研究所建立之判別函數能準確地鑑別一水稻品種之RUEy,先在各個試驗環境下進行供試品種的分群分析(clustering),再以多變數變方分析決定分群之群數,以達到群內變異最小,群間變異最大的要求。結果顯示除第一期作90公斤氮肥施用量下可分為四群外,其它試驗環境下均以分成三群較為適當。建構判別函數之性狀,乃依因子分析之結果,選取在相同主因子中與RUEy關係密切之性狀。本研究依不同環境所建立之六組判別函數,均具有顯著的判別能力,可將低RUEy群明確地區隔出來,依此,在水稻品種選育的過程中,可清楚的鑑別低RUEy個體而予以淘汰,減少育種工作量,有利於選育工作之進行。
Solar Radiation Use Efficiency and Its Discriminant Functions of the Rice Varieties Resealed in Taiwan
Abstract
This study aimed to explore a set of canonical discriminant functions, i.e., linear combinations of certain quantitative traits, that best reveal the difference of solar radiation use efficiency of grain yield (RUEy) among rice varieties. A total of 25 varieties randomly selected from the collection of rice varieties released in Taiwan during the past 60 years were used to conducted field experiments with various nitrogen rates and/or planting densities in the first and the second crop seasons through the years from 1997to1999. Plant height, tiller number, leaf area index , leaf inclination angle, light interception rate, and total shoot dry weight were periodically measured throughout the growing season, and grain yield and its components, i.e., panicle number, spikelet number per panicle, ripen rate and 1000-grain weight were also recorded at harvest. RUEy was calculated as the ratio of grain yield to the total intercepted solar radiation (LIsum), which in turn was the product of the total incoming radiation and the mean light interception rate (MLI).
The MLI value of rice canopy, although significantly different among the test varieties, was unstable across the range of the experiments. Both the estimates of heritability (intra-variety correlation) and genetic gain of MLI were low from a combined analysis on the pooled data. When data were analyzed separately for each of the two crop seasons, however, the estimates of these two genetic parameters of MLI raised remarkably. It revealed that varieties with high MLI value might best be identified under the conditions of applying 180 Kg nitrogen per hectare in the second crop season or applying no nitrogen in the first crop season. As expected, many characteristics of the rice canopy were significantly correlated with MLI. Among them, the LAI at heading, which showed high heritability and genetic gain, was correlated with MLI very closely. This suggested that selection for variety with high MLI could be accomplished by the way of selection for LAI at heading.
When grown with no nitrogen fertilizer or with 180 Kg nitrogen per hectare in the second crop season, the MLI of the test varieties showed a clear decreasing trend over the time the varieties were released. Such a time trend was not detected in the first crop season. Besides, no significant evolution pattern in the mean light interception efficiency (LIE), i.e., the ratio of MLI to LAI, was observed in the range of the experiments. In other words, the older varieties showed higher MLI but not higher LIE.
All the test varieties gave higher values of RUEy in the first crop season than in the second crop season. The varieties released in recent years showed higher RUEy when they were fertilized with more nitrogen. But, the reverse was true for the old varieties. No significant GxE interaction was found in the analysis of variance of RUEy, which indicated that RUEy was a rather stable character of the rice varieties released in Taiwan. However, higher estimates of the heritability and genetic gain of RUEy were obtained when these varieties were fertilized with nitrogen in the second crop season. This suggested an efficient environmental condition for the selection of varieties with high RUEy. No significant correlation was detected between RUEy and other canopy characteristics investigated in this study. In general, the test varieties showed an increasing time trend of RUEy in respect to their breeding era . This trend was absent when these varieties were grown with no nitrogen fertilizer.
To elucidate the varietal variation of grain yield and RUEy, grain yield was expressed as the product of LIsum and RUEy, which in turn was expressed as the product of radiation use efficiency of total dry matter production (RUEtdw) and harvest index (i.e., ratio of grain yield to total dry matter production, HI). The variance of grain yield was mainly accounted for by LIsum when the varieties were fertilized with 90 Kg nitrogen per hectare. However, RUEy took the role in determining the variation of grain yield when these varieties were fertilized with 180 Kg nitrogen per hectare or no nitrogen fertilization. On the other hand, contribution of RUEtdw to the varietal variance of RUEy was much higher than HI across the treatment levels of nitrogen rate. In sum, grain yield of a variety was mainly determined by its RUEy, which in turn was affected greatly by the RUEtdw of the variety when it was fertilized with certain amount of nitrogen.
As a provision to develop the discriminant functions for RUEy, the test varieties were clustered, by a nonhierarchical clustering algorithm, into three to five groups according to their RUEy values evaluated in each of the six treatment combinations of the two crop seasons by the three levels of nitrogen rate. The optimal number of variety group was determined so as to maximize the among-group variance and to minimize the within-group variance of RUEy simultaneously. The result showed that the test varieties could adequately be separated into three groups except the treatments with 90 Kg nitrogen per hectare, which a four- group clustering seemed optimal. A set of two discriminat functions for RUEy were established for each of the six treatment combinations. Owing to their significant ability in identifying the varieties with low RUEy, a breeding program would be much more efficient to improve the RUEy of rice varieties if these discriminant functions were employed.
目錄
章節 頁次
表目錄 ……………..…………………………………………………….Ⅰ
圖目錄 ………………..………………………………………………….Ⅴ
縮寫對照表 …………..………………………………………………….Ⅵ
中文摘要…………..…………………………..…………………………..1
第一章緒言……………..……………………..…………………………..4
第二章前人研究…………………………….…………………………….7
第三章水稻植冠結構與其截光率及光能利用效率之關係
一、前言……………………………….……….…….…………………..16
二、材料與方法…………………….……………..…………………….18
三、結果…………………………….……………………..……………..22
四、討論…………………………….…………………………..………..36
第四章水稻植冠截光率之品種變異性
一、前言……………………………….………………………………….40
二、材料與方法………………………………………………………….42
三、結果…………………………………………………………………..48
四、討論…………………………………………………………………..68
第五章水稻植冠之光能利用效率的品種變異性
一、前言…………………………………………………………………..73
二、材料與方法………………………………………………………….75
三、結果…………………………………………………………………..78
四、討論…………………………………………………………………..94
第六章水稻光能利用效率之判別函數的建立
一、前言……………………………….…………………………………101
二、材料與方法…………………………………………………………103
三、結果………………………………………………………………….106
四、討論………………………………………………………………….118
第七章綜合討論…………………………………………………………122
參考文獻………………………………………………………………….127
英文摘要………………………………………………………………….139
附錄………………………………………………………………………..142
朱德民。1988。植物生長與發育。pp.1-23。國立編譯館。台北。
李裕娟、楊純明。1999。田間水稻葉綠素含量與生長之關係。中華農業研究6(4):191-200。
林安秋。1978。一、二期作水稻群落光合作用之比較。In. 臺灣二期作稻低產原因及其解決方法研討會專集。pp. 85-90。謝順景、劉大江編。行政院國家科學委員會。
周瑞國、陳清義。1978。台灣一、二期作水稻數種生理特性之比較研究。In. 臺灣二期作稻低產原因及其解決方法研討會專集。pp.113-122。謝順景、劉大江編。行政院國家科學委員會。
陳烈夫、魏夢麗、鄭統隆、廖大經、陳正昌、曾東海、劉大江。1996。台灣水稻產量的一些生理問題。稻作生產改進策略研討會專刊79- 88。
張萬來。1967。栽培條件對水稻雜交後代選拔效率之影響。臺灣農業3(1):81-100。
張萬來。1969。環境因素對新育成水稻品系適應性之影響。臺灣農業5(1):38-44。
張彩泉、黃添財、李蒼郎。1980。台灣水稻品種農藝性狀特性及系譜圖。台灣省農林廳編印。pp.52。
張富州、郭益全、劉大江。1989。水稻粒種變異與植株氮素、利用效率及產量之關係。中華農學會報新145:32-44。
楊方平、鄧耀宗、許東暉。1967。水稻雜交後代在重肥分離選育效果之比較。中華農業研究16(1):35-41。
曾希柏、青長樂、謝德體、侯光炯。1998。光照條件對土壤-植物系統氮素狀況影響的研究。應用生態學報9(2):139-144。
馮朝程、許東暉、鄧耀宗。1969。臺灣秈稻與梗稻之特性研究。中華農學研究18(3):18-29。
萬 雄、王 光。1970。作物理想型的育種。科學農業16(1.2):1-10。
謝昱暲。1978。一、二期作水稻之生長與光合作用構成因子。In. 臺灣二期作稻低產原因及其解決方法研討會專集。pp. 91-100。謝順景、劉大江編。行政院國家科學委員會。
魏夢麗、劉大江。期作間水稻光合成物質生產、分配及產量之比較。中華農業研究 32(4): 303-311.
羅正宗、林俊隆。2000。利用植冠分析儀測定水稻葉面積指數之標準規範。。中華農藝 10(1):13-21。
嚴盛添。1969。水稻數量性狀在不同環境下之變異與遺傳型式。中華農業研究 18(4):1-10。
Allen, Jr. L.H. 1974. Model of light penetration into a wide-row crop. Agron. J.66:41-47.
Andrade, F.H., S.A. Uhart, and M.I. Frugone. 1993.Intercepted radiation at flowering and kernelnumber in maize: shape versus plant density effects. Crop Sci. 33:482-485.
Atlin, G.N., and K.J. Frey. 1990. Selecting oat lines for yield in low-productivity environments. Crop Sci. 30:556-561.
Bange, M.P., G.L. Hammer, and K.G. Rickert. 1997. Effect of specific leaf nitrogen on radiation use efficiency and growth of sunflower. Crop Sci. 37:1201-1207.
Bange, M.P., G.L. Hammer, and K.G. Rickert. 1997. Effect of radiation environment on radiation use efficiency and growth of sunflower. Crop Sci. 37:1208-1214.
Bell, M.J., G.C. Wright, and G.L. Hammer. 1992. Night temperature affects radiation- use efficiency in peanut. Crop Sci. 32:1329-1335.
Bell, M.J., R.C. Roy, M. Tollenaar, and T.E. Michaels. 1994. Importance of variation in chilling tolerance for peanut genotypic adaptation to cool, short-season environments. Crop Sci. 34:1030-1039.
Board, J.E. and B. G. Harville.1996. Growth dynamicsduring vegetative period affects yield of narrow-row, late-planted soybean. Agron. J. 88:567-572.
Board, J.E., A.T. Wier, and D.J. Beothel. 1997. Critical light interception during seed filling for insecticide application and optimum soybean grain yield. Agron. J. 89:369-374.
Borojevic, S. 1990. Principles and methods of plant breeding. P.154-163. Elsevier Science Publishing. Inc. New York.
Bramel, P.J., P.N. Hinz, D.E. Green, and R.M. Shibles. 1984. Use of principle factor analysis in the study of three stem termination types of soybean. Euphytica 33:387-400.
Brown, K.D., M.E. Sorrells, and W.R. Coffman. 1983. A method for classification and evaluation of testing environments. Crop Sci. 23:889-893.
Burstall, L., and P.M. Harris. 1983. The estimation of percentage light interception from leaf area index and percentage ground cover in potatows. J. Agric. Sci. Cam. 100:241-244.
Carmer, S.G., W.E. Nyquist, and W.M. Walker.1989. Least significant dfferences for combined analyses of experiments with two-or three-factor treatment designs. Agron. J. 81:655-672.
Caton, B.P., T.C. Foin, and J.E. Hill. 1997. Mechanisms of competition for light between rice (Oryza sativa)and redstem(Ammannia spp.). Weed Sci. 45:269-275.
Ceccarelli, S. 1989. Wide adaptation:How wide?. Euphytica 40:197-205.
Ceccarelli, S. 1996. Adaptation to low/high input cultivation. Euphytica 92:203-214.
Ceccarelli, S., and S. Grando. 1991. Environment of selection and type of germplasm in barley breeding for low-yielding conditions. Euphytica 57:207-219.
Cirilo, A.G., and F.H. Andrade. 1994. Sowing date and maize productivity: I.Crop growth and dry matter partitioning. Crop Sci. 34:1039-1043.
Cohen, S., R.S. Rao, and Y. Cohen. 1997. Canopy transmittance inversion using a line quantum probe for a row crop. Agric. For. Meteorol. 86:225-234.
Collinson, S.T., J. Berchie, and S. N.Azam-Ali. 1999. The effect of soil moisture on light interception and the conversion coefficient for three landraces of bambara groundnut (Vigna suterranea). J. Agric. Sci. Cam. 133:151-157.
Cooley, W.W., and P.R. Lohnes, 1971. Multivariate data analysis. pp.243-261. 華泰書局。
Cox, T.S., J.P. Shroyer, B.H. Liu, R.G. Sears, and T.J. Martin.1988. Genetic improvement in agronomic traits of hard red winter wheat cultivars from 1919 to 1987. Crop Sci. 28:756-760.
Cudney, D.W., L.S. Jordan, and A.E. Hall. 1991. Effect of wild oat(Avena fatua) infestations on light interception and growth rate of wheat(Triticum aestivum). Weed Sci. 39:175-179.
Donald, 1968. The breeding of plant ideotype. Euphytica 17:385-403.
Dudley, J.W., and R.H. Moll. 1969. Interpretation and use of estimates of heritability and genetic variances in plant breeding. Crop Sci. 9:257-261.
Earl, H.J., and M. Tollenaar. 1997. Maize leaf absorptance of photosynthetically active radiation and its estimation using a chlorophll meter. Crop Sci. 37:436-440.
Ebdon, J.S., A.M. Petrovic, and S.J. Schwager. 1998. Evaluation of discriminant analysis in identification of low- and high-water use kentucky bluegrass cultivars. Crop Sci. 38:152-157.
Faurie, O., J.F. Soussana, and H. Sinoquet. 1996. Radiation interception, partitioning and use in grass-clover mixtures. An. Bot. 77:35-45.
Flenet, F., J.R. Kiniry, J.E. Board, M.E. Westgate, and D.C. Reicosky.1996. Row spacing effects on light extinction coefficients of corn, sorghum, soybean, and sunflower. Agron. J. 88:185-190.
Forcella, F. 1987. Tolerance of weed competition associated with high leaf-area expansion rate tall fescue. Crop Sci. 27: 146-147.
Forcella, F. and O.C. Burnside. 1994.Pest anagement weeds. In. Sustainable agriculture system.(ed.) Hatfield, J.L. and D.L. Karlen. Pp.157-197. CRC Press, INC. Florida.
Fox, P.N., and A.A. Rosielle. 1982. Reducing the influence of environmental main-effects on pattern analysis of plant breeding environments. Euphytica 31:645-656.
Frey, K.J. 1963. Adaptation reaction of oat strains selected under stress and non-stress environmental conditions. Crop Sci. 3:55-56.
Gallo, K.P.,C.S. T. Daughtry, and C.L. Wiegand. 1993. Errors in measuring absorbed radiation and computing crop radiation use efficiency. Agron.J. 85:1222-1228.
Gendron, F., C. Messier, P.G. Comeau. 1998. Comparison of various methods for estimating the mean growing season percent photosynthetic photon flux density in forests. Agric. For. Meteorol. 92:55-70.
Gent, M.P.N., and R.K. Kiyomoto. 1989. Assimilation and distribution of photosynthate in winter wheat cultivars differing in harvest index. Crop Sci. 29:120-125.
Gent, M.P.N. 1995. Canopy light interception, gas exchange, and biomass in reduced height isolines of winter wheat. Crop Sci. 35:1636-1642.
Galze, J.S., and L.J. Eaves.1984 Variation in wild populations of Papaver dubium. V.The application of factor analysis to the study of variation. Heredity 29(2): 135-149.
Goodin, D.G., J.M.S. Hutchinson, R.L. Vanderlip, and M.C. Knapp. 1999. Estimating solar irradiance for crop modeling using daily air temperature data. Agron. J. 91:845-851.
Gravois, K.A. 1998. Optimizing selection for rough rice yield, head rice, and total milled rice. Euphytica 101:151-156.
Grravois, K.A., and J.L. Bernhardt. 2000. Heritability and genotype x environment interactions for discolored rice kernels. Crop Sci. 40:314-318.
Gwathmey, C.O., and D.D. Howard. 1998. Potassium effects on canopy light interception and earliness of no-tillage cotton. Agron. J. 90:144-149.
Hammer, G.L., and R.L.Vanderlip.1989. Genotype-by-environment interaction in grain sorghum I. Effects of temperature on radiation use efficiency. Crop Sci 29:370-376.
Hanson, C.H., H.F. Robinson, and R.E. Comstock. 1956. Biometrical studies of yield in segregating populations of Korean lespedeza. Agron. J. 47:268-272.
Harzic, N., and C.Huyghe. 1996. Dwarfism does not modify mean area per leaf and light interception in indeterminate autmn-sown white lupin. J.Agric. Sci. Com. 127:337-345.
Healey, K.D., K.G. Rickert, G.L. Hammer, and M.P. Bange. 1998. Radiation use efficiency increases when the diffuse component of incident radiation is enhanced under shade. Aust. J. Agric. Res. 49:665-672.
Heitholt, J.J., W.T. Pettigrew, and W.R. Meredith,Jr, 1992. Light interception and lint yield of narrow-row cotton. Crop Sci. 32:728-733.
Hicks, S.K., and R.J. Lascano. 1995. Estimation of leaf area index for cotton canopies using the LI-COR LAI-2000 plant canopy analyzer. Agron. J. 87:458-464.
Hirota, O., T. Takeda, Y. Murata, and M. Koba. 1978. Studies on utilization of solar radiation by crop stands. II. Utilization of short wave and photosynthetically active radiation by rice and soybean plant populations. Jpn. J. Crop Sci. 47(1):133-140.
Horie, T., and T. Sakuratani. 1985. Studies on crop-weather relationship model in rice (1) relation between absorbed solar radiation by the crop and the dry matter production. J. Agr. Met. 40(4):331-342.
Ikenhashi, H., and R. Ito. 1971. Statistical property of the selection by the plant type index given by quotient two traits. Jpn. J. Breed. 21: 106-113.
Inada, K., T. Funakoshi, M. Aoki, M. Fukui, and N. Katsura. 1980. Effect of spectral quality of composite lights on photosynthesis of crop plants. Jpn. J. Crop Sci. 49(1):34-41.
Isoda, A., T. Yoshimura, T. Ishikawa, H. Nojima, and Y. Takasaki. 1994. Solar radiation penetration and distribution in soybean communities. Jpn. J. Crop Sci.63(2):298-304.
Johnson, D.W., J.M. Krall, and R.H. Delaney.1989. Response of monocot and dicot weed specise to Fresnel lens concentrated solar radiation. Weed Sci. 37: 797-801.
Johnson, R.A., D.W. Wichern, 1998. Applied multivariate statistical analysis. 4th ed. Prentice-hall. Inc.
Jones, P., E.M. Keane, and B.A. Osborne. 1998. Effects of alien cytoplasmic variation on carbon assimilation and productivity in wheat. J. Exp. Bot. 49:1519-1528.
Kasanaga, H., and M. Monsi. 1954. On the light-transmission of leaves, and its meaning for the production of matter in plant communities. Jpn. J. Bot. 14:304-324.
Kiniry, J.R., and D.P. Knievel. 1995. Response of maize seed number to solar radiation intercepted soon after anthesis. Agron.J.87:228-234.
Kiniry, J.R. 1994. Radiation-use efficiency and grain yield of maize competing with johnsongrass. Agron. J. 86:554-557.
Knezevic, S.Z., M.J. Horak, R.L. Vanderlip. 1999. Estimates of physiological determinants for Amaranthus retroflexus. Weed Sci. 47:291-296.
Kuroda, E., and A. Kumura. 1990. Difference in single leaf photosynthesis between old and new rice varieties III. Physiological bases of varietal difference in single-leaf photosynthesis between varieties viewed from nitrogen content and the nitrogen-photosynthesis relationship. Jpn. J. Crop Sci. 59(2):298-302.
Lachenbruch, P.A., and M.R. Mickey, 1984. Estimation of error rates in discriminant analysis. Technometrics 10(1): 1-11.
Landsberg, J.J., and F.J. Hingston. 1996. Evaluating a simple radiation/dry matter conversion model using data from Eucalyptus globulus plantations in western australia. Tree Physiol. 16:801-808.
Lawlor, D.W. 1995. Photosynthesis, productivity and environment. J. Exp. Bot. 46:1449-1461.
Loomis, R.S., and J.S. Amthor.1999. Yield potential, plant assimilatory capacity, and metabolic efficiencies. Crop Sci 39:1584-1596.
Lynch, J. and N.S. Rodriguez. 1994. Photosynthetic nitrogen-use efficiency in relation to leaf longevity in common bean. Crop Sci. 34:1284-1290.
Madakadze, I.C., B.E. Coulman, P. Peterson, K.A. Stewart, R. Samson, and D.L. Smith. 1998. Leaf area development, light interception, and yield among switchgrass populations in a short-season area. Crop Sci. 38:827-834.
Manrique, L.A., J.R. Kiniry, T. Hodes, and D.S. Axness. 1991. Dry matter production and radiation interception of potato. Crop Sci. 31:1044-1049.
Major, D.J., B.W. Beasley, and R.I. Hamilton.1991. Effect of Maize Maturity on Radiation-Use Efficiency. Agron.J. 83:895-903.
Martin, R.J., B.R. Cullis, and D.W. McNamara. 1987. Prediction of wheat yield loss due to competition by wild oats (Avena spp.). Aust. J. Agric. Res. 38:487-499.
Mcgiffen, Jr, M.E., J.B. Masiunas, and J.D. Hesketh. 1992. Competition for light between tomatoes and nightshades(Solanum nigrum or S. ptycanthum). Weed Sci. 40-220-226.
Mcintosh, M.S. 1983.Analysis of Combined Experimeents. Agron.J. 75:153-156.
McLachlan, S.M., M. Tollenaar, C.J. Swanton, and S.F. Weise. 1993. Effect of corn-induced shading on dry matter accumulation, distribution, and architecture of redroot pigweed (Amaranthus retroflexus). Weed Sci. 41:568-573.
Meek, D.W., J.L. Hatfield, T.A. Howell, S.B. Idso, and R.J. Reginato. 1984. A generalized relationship between photosynthetically active radiation and solar radiation. Agron. J. 76:939-945.
Monteith, J.L., and M.H. Unsworth. 1990. Principles of environmental physics. (2nd ed.) pp.36-59. Chapman and Hall. Inc. USA.
Miralles, D.J., and G.A. Slafer. 1997. Radiation interception and radiation use efficiency of near-isogenic wheat lines with different height. Euphytica 97:201-208.
Moll, R.H., E.J. Kamprath, and W.A. Jackson.1982. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron.J. 74:562-564.
Monsi, M., and T. Saeki. 1953. Uber den lichtfaktor in den pflanzengesellschaften und seine bedeutung fur die stoffproduktion. Jpn. J. Bot. 14:22-52.
Morishima, H., H.I. Oka, and T.T. Chang. 1967. Analysis of genetic variations in plant type of rice 2.seasonal change in genetic plant type. Jpn.J.Breed. 17:251-261.
Morrison, M.J., and D.W. Stewart. 1995. Radiation-use efficiency in summer rape. Agron.J.87:1139-1142.
Muchow, R.C., C.I. Evensen, R.V. Osgood, and M.J. Robertson. 1997. Yield accumulation in irrigated sugarcane:II. Utilization of intercepted radiation. Agron. J. 89:646-652.
Muchow, R.C., T.R. Sinclair, and J.M. Bennett.1990. Temperature and solar radiation effects on potential maize yield across locations. Agron.J. 82:338-343.
Muchow, R.C.,and T.R. Sinclair.1994. Nitrogen response of leaf photosynthesis and canopy radiation use efficiency in field-grown maize and sorghum. Crop Sci.34:721-727.
Mungai, D.N., C.J. Stigter, C.L. Coulson, W.K. Ng’etich, M.M. Muniafu, and R.M.R. Kainkwa. 1997. Measuring solar radiation transmission in tropical agriculture using tube solarimeters ; a warning. Agric. For. Meteorol. 86: 235-243.
Murray, G.D., 1977. A cautionary note on selection of variables in discriminant analysis. Appl. Statist. 26(3): 246-250.
Nam, N.H., G.V. Subbarao, Y.S. Chauhan, and C. Jonansen.1998. Importance of Canopy Attributes in Determining Dry Matter Accumulation of Pigeonpea under Contrasting Moisture Regimes. Crop Sci. 38:955-961.
Nilson, T. 1971. A theoretiiical analysis of the frequency of gapsis in plant stands. Agr. Meteorol. 8:25-38.
Nishibe, S., M. Satoh, M. Mori, A. Isoda, and K. Nakaseko. 1989. Effects of climatic conditions on intercepted radiation and some growth parameters in potato. Jpn.J.Crop Sci. 58(2):171-179.
Nishiyama, I. 1985. Relation between rice yield and photosynthetically active solar radiation during seed ripening stage in selected prefectures in japan. Jpn. J. Crop Sci.54(1):8-14.
Ottman, M.J., and L.F. Welch. 1988. Supplemental radiation effects on senescence, plant nutrients, and yield of field-grown corn. Agron. J. 80:619-626.
Ottman, M.J., and L.F. Welch. 1989. Planting patterns and radiation interception, plant nutrient concentration, and yield in cron. Agron. J. 81:167-174.
Ortiz-Monasterio R, J.I., R.J. Pena, K.D. Sayre, and S. Rajaram.1997. CIMMYT’S genetic progress in wheat grain quality under four nitrogen rates. Crop Sci. 37:892-898.
Ortiz-Monasterio R, J.I., K.D. Sayre, S. Rajaram, and M. McMahon.1997. Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Sci. 37:898-904.
Palva, L., E. Garam, E. Siivola, R. Sepponen, and P. Hari. 1998. Quantifying spatial variability of photosynthetically active radiation within canopies using a multipoint measuring system. Agric. For. Meteorol. 92:163-171.
Papadopoulos, A.P., and S. Pararajasingham. 1997. The influence of plant spacing on light interception and use in greenhouse tomato (Lycopersicon esculentum Mill.): A review. Sci. Horticulturae 69:1-29.
Persaud, N., M. Gandah, M. Ouattara, and N. Mokete. 1993. Estimating leaf area of pearl millet from linear measurements. Agron. J. 85:10-12.
Petersen, R.G. 1994. Agricultural field experiments: Design and analysis. P.187-197. Marcel Dekker, Inc. New York.
Planchais, I., and H. Sinoquet.1998. Foliage determinants of light interception in sunny and shaded branches of fagus sylvation (L). Agric. For. Meteorol. 89:241-253.
Pons, T.L., A. Van der Werf, and H. Lambers. 1994. Photosynthetic nitrogen use efficiency of inherently slow- and fast-growing species: possible explanations for observed differences. In. Roy, J. and E. Garnier. (ed.). A whole plant perspective on carbon-nitrogen interactions, pp.61-77.SPB Academic Publishing, The Hague,The Netherlands.
Raun,W.R., H.J.Barreto, and R.L.Westerman.1993. Use of stability analysis for long-Term Soil Fertility Experiments. Agron.J. 85:159-167.
Rego, T.J., J.L. Monteith, P. Singh, K.K. Lee, V.N. Rao, and Y.V. Srirama. 1998. Response to fertilizer nitrogen and water of post-rainy season sorghum on a Vertisol. 1. Biomass and light interception. J. Agric. Sci. Cam. 131:417-428.
Rochette, P., R.L. Desjardins, E. Pattey, and R. Lessard. 1995. Crop net carbon dioxide exchange rate and radiation use efficiency in soybean. Agron. J. 87:22-28.
Rosenthal, W.D., G.F. Arkin, and T.A. Howell. 1985.Transmitted and Absorbed photosynthetically active radiation in grain sorghum. Agron. J. 77:841-845.
Rosenthal, W.D., and T.J. Gerik.1991. Radiation use efficiency among cotton cultivars. . Agron. J. 83:655-658.
Rosenthal, W.D., T.J. Gerik, and L.J. Wade.1993. Radiation use efficiency among grain sorghum cultivars and plant densities. Agron.J. 85:703-705.
Ross, J., M. Sulev, and P. Saarelaid. 1998. Statistical treatment of the PAR variability and its application to willow coppice. Agric. For. Meteorol. 91:1-21.
Roux, X., H. Gauthier, A. Begue, H. Sinoquet. 1997. Radiation absorption and use by humid savanna grassland: assessment using remote sensing and modelling. Agric. For. Meteorol. 85:117-132.
Ruan, W.R., H.J. Barreto, and R.L. Westerman. 1993. Use of stability analysis for long-term soil fertility experiments. Agron. J. 85: 159-167.
Sabine, D.M., and M.H. Jeuffroy. 2001. Incorporating radiation and nitrogen nutrition into a model of kernel number in wheat. Crop Sci. 41:415-423.
Sadras, V.O., and L.J. Wilson. 1997. Growth analysis of cotton crops infested with spider mites: I. Light interception and radiation-use efficiency. Crop Sci. 37:481-491.
Sameshima, R. 1995. Estimating the absorptivity of solar radiation in soybean canopies-for use in crop models. J. Agric. Meteorol. 51:37-45.
Sands, P.J. 1996. Modelling canopy production. III. Canopy light-utilisation efficiency and its sensitivity to physiological and environmental variables. Aust. J. Plant Physiol. 23:103-114.
Saitoh, K., H. Shimoda and K. Ishihara.1990. Characteristics of dry matter production process in high yielding rice varieties II. Comparisons among two early and three medium varieties. Jpn.J.Crop Sci.59(2):303-311.
Sayre, K.D., R.P. Singh, J. Huerta-Espino, and S. Rajaram.1998. Genetic progress in reducing losses to leaf rust in CIMMYT-derived mexican spring wheat cultivars. Crop Sci. 38:654-659.
Scott, R.A., M.Champoux, and W.T. Schapaugh, Jr. 1994. Influence of environmental productivity levels and yield stabillity on selection strategies in soybean. Euphytica 78:115-122.
Shabana, R., T. Bailey, and K.J. Frey. 1980. Production traits of oats selected under low, medium, and high productivity. Crop Sci. 20:739-744.
Shibles, R.M., and C.R. Weber. 1965. Leaf area, solar radiation interception and dry matter production by soybeans. Crop Sci. 5:575-577.
Shibles, R.M., and C.R. Weber. 1966. Interception of solar radiation and dry matter production by various soybean planting patterns. Crop Sci. 6:55-59.
Shiraiwa, T., and U. Hashikawa. 1993. Variation analysis of efficiency of intercepted radiation conversion in the accumulation of dry matter by soybean. Jpn.J. Crop Sci. 62(1):1-8.
Siddique, K.H.M., R.K. Belford, M.W. Perry and D. Tennant. 1989. Growth, development and light interception of old and modern wheat cultivars in a mediterranean-type environment. Aust. J. Agric. Res. 40:473-487.
Sinclair, T.R., and T. Horie.1989. Leaf nitrogen, photosythesis, and crop radiation use efficiency: a review. Crop Sci. 29:90-98.
Sinclair, T.R.m J.M. Bennett, and K.J. Boote. 1993. Leaf nitrogen content, photosynthesis and radiation use efficiency in peanut. Peanut Sci. 20:40-43.
Sinclair, T.R. and R.C. Muchow. 1999. Radiation use efficiency. Advences in Agronomy 65:215-265.
Sinclair, T.R., and T. Shiraiwa. 1993. Soybean radiation-use efficiency as influenced by nonuniform specific leaf nitrogen distribution and diffuse radiation. Crop Sci. 33:808-812.
Sinclair, T.R., T.Shiraiwa, and G.L.Hammer.1992. Variation in crop radiation-use efficiency with increased diffuse radiation. Crop Sci. 32:1281-1284.
Singer, J.W. 2001. Soybean light interception and yield response to row spacing and biomass removal. Crop Sci. 41:424-429.
Steiner, J.L.1987. Radiation balance of dryland grain sorghum as affected by planting geometry. Agron.J. 79:259-265.
Stutzel, H., and W. Aufhammer. 1991. Light interception and utilization in determinate and indeterminate cultivars of vicia faba under contrasting plant distributions and population densities. J.Agric. Sci.Cam. 116:395-407.
Takeda, T., M. Oka, and W. Agata. 1983. Characteristics of dry matter and grain production of rice cultivar in the warmer part of Japan. I. Comparison of dry matter production between old and new types of rice cultivars. Jpn. J. Crop Sci. 52: 299-306.
Takeda, T., M. Oka, and W. Agata. 1984. Characteristics of dry matter and grain production of rice cultivar in the warmer part of Japan. I. Comparison of grain production between old and new types of rice cultivars. Jpn. J. Crop Sci. 53:12-21.
Takezawa, K., and Y. Tamura. 1991. Use of smoothing splines to estimate rates of development. Agric. For. Meteorol. 57:129-145.
Teasdale, J.R.1998. Influence of corn(Zea mays)population and row spacing on corn and velvetleaf(Abutilon theophrasti)yield. Weed Sci. 46:447-453.
Thanisawanyangkura, S., H. Sinoquet, P. Rivet, M. Cretenet, and E. Jallas.1997. Leaf orientation and sunlit leaf area distribution in cotton. Agric.For.Meteorol. 86:1-15.
Tsunoda, S., and M. K. Singh. 1986. Photosynthetic efficiencies of rice under humid and dry conditions, as affected by varietal difference in leaf areal nitrogen content. Jap. J. Breed. 36:22-30.
Tollenaar, M., and A. Aguilera.1992. Radiation use efficiency of an old and a new maize hybrid. Agron.J. 84:536-541.
Valenzuela, H.R., S.K. O’Hair, and B. Schaffer. 1991. Developmental light environment and net gas exchange of cocoyam(Xanthosoma sagittifolium). J. Amer. Soc. Hort. Sci. 116(2)372-375.
Van Sanford, D.A., T.W. Pfeiffer, and P.L.Cornelius. 1993. Selection index based on genetic correlations among environments. Crop Sci. 33:1244-1248.
Venkateswarlu, B., B.S. Vergara, and R.M. Visperas. 1987. Influence of photosynthetically active radiation on grain density of rice. Crop Sci. 27:1210-1214.
Vong, N.Q.,and Y. Murata.1978. Studies on the physiological characteristics of C3 and C4 crop species. II. The effects of air temperature and solar radiation on the dry matter production of some crops. Jpn. J. Crop Sci. 47(1):90-100.
Wallace, D.H., J.P. Baudoin, J.Beaver, D.P. Coyne, D.E. Halseth, P.N. Masaya, H.M. Munger, J.R. Myers, M. Silbernagel, K.S. Yourstone, and R.W. Zobel. 1993. Improving efficiency of breeding for higher crop yield. Theor. Appl. Genet. 86:27-40.
Walton, P.D. 1972. Factor analysis of yield in spring wheat (Triticum aestivum L.). Crop Sci. 12: 731-733.
Wells,R.1991. Soybean growth response to plant density: relationship among canopy photosynthesis, leaf area, and light interception. Crop Sci. 31:755-761.
Wells, R., J.W. Burton, and T.C. Kilen. 1993. Soybean growth and light interception: Response to differing leaf and stem morphology. Crop Sci. 33:520-524.
Wells, J.M., and J.M. Norman. 1991. Instrument for indirect measurement of canopy architecture. Agron.J. 83:818-825.
Williams, W.A., R.S. Loomis, and C.R. Lepley. 1964. Vegetative growth of corn as affected by population density. I. Productivity in relation to interception of solar radiation. Crop Sci. 4:211-215.
Wilson, J.W., D.W. Hand, and M.A. Hannah. 1992. Light interception and photosynthetic efficiency in some glasshouse crops. J. Exp. Bot. 43:363-373.
Wright, G.C., M.J. Bell, and G.L. Hammer. 1993. Leaf nitrogen content and minimum temperature interactions affect radiation use efficiency in peanut. Crop Sci.33:476-481.
Zavala-Garcia, F., P.J. Bramel-Cox, J.D. Eastin, M.D. Witt, and D.J. Andrews. 1992. Increasing the efficiency of crop selection for unpredictable. Crop Sci. 32:51-57.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top