跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/19 02:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林隆新
研究生(外文):Lung-Hsin Lin
論文名稱:毛豆合格莢產量之氣象估計模式的研究
論文名稱(外文):Toward a Weather Model for Predicting the Marketable Pod Yield of Vegetable Soybean
指導教授:林俊隆林俊隆引用關係
指導教授(外文):Jiunn-Lung Lin
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農藝學系
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:62
中文關鍵詞:毛豆合格莢推估變數共線性脊回歸法主成分回歸法淨最小平方和回歸法估計相對誤差
外文關鍵詞:vegetable soybeanmarketable podpredictor variablescollinearityridge regressionprincipal components regressionpartial least squares regressionrelative prediction error
相關次數:
  • 被引用被引用:0
  • 點閱點閱:632
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的在開發一個可供估計台灣南部地區毛豆之合格莢產量的氣象模式。在1998至2000年之間,於屏東市的高雄區農業改良場內,以毛豆品種高雄五號進行一系列播種期×收穫期的田間試驗,總共獲得74筆毛豆合格莢產量的數據。田間試驗期間同時測記了日均溫、日照時數、日射量及降雨量等氣象變數。由於氣象數據過於龐大,我們先將毛豆的整個生育期間劃分為營養生長期與生殖生長期兩個階段,或劃分為營養生長期、開花著莢期及莢果充實期三個階段,再計算各生長階段內之日數、平均氣溫、平均日照時數、平均日射量及平均降雨量做為建立合莢格產量估計模式的基本推估變數。其次,我們將整套數據分裂為兩部分,較早獲得的42筆數據做為開發模式用的建模數據,其餘32筆數據則做為俟後測試模式之估計準確性的驗證數據。模式中的推估變數包含前述各生長階段內之日數、平均氣溫、平均日照時數、平均日射量及平均降雨量的一次項、二次項及彼此間的乘積項。由於這些推估變數彼此間的高度相關,我們嘗試以脊回歸法、主成分回歸法及淨最小平方和回歸法來解決這種共線的困擾。結果顯示,將整個生育期劃分為三個生長階段時,所求得的模式雖然對建模數據的配適程度相當高,但在以驗證數據測試時卻無法合理地估計合格莢產量。就三種求配的程序而言,脊回歸法的表現最差。當我們把整個生育期劃分為兩個生長階段時,主成分回歸法與淨最小平方和回歸法都能獲得相當好的結果,求配所得的模式不僅對建模數據有很高的配適度,在以驗證數據進行測試時也呈現相當準確的估計能力:估計的合格莢產量與其實測值之間相關高達0.85,而估計值的最大相對誤差則在22%以下。

Summary
This study aims to develop a weather model for predicting the marketable pod yield of vegetable soybean in South Taiwan. A total of 74 observations on the marketable pod yield of Kaohsiung No. 5, a soybean variety bred specially for vegetable usage, were obtained in a series of sowing date × harvest date field experiments conducted at the Kaohsiung District Agricultural Improvement Station located in Pingtung City during the years of 1998 through 2000. Meanwhile, daily mean air temperature, sunshine hour, solar radiation and precipitation were measured during the time of field experiments. To manage the huge meteorological data, the whole growing period of each crop was divided into two stages (vegetative growth stage and reproductive growth stage), or three stages(vegetative growth stage, flowering-podding stage, and pod-filling stage). Thereby the duration of each growth stage and the mean of each of the four meteorological variables over each growth stage were taken as the candidate predictors for the marketable pod yield. The data was split into two portions, i.e., the 42 earlier observations were used as training data set to develop the models, and the rest 32 observations were reserved as test data set to check the prediction accuracy of the fitted models. Second-degree polynomial models in the mentioned predictors were fitted to the training data. The methods of ridge regression, principal components regression, and partial least squares regression were employed to cope with the collinearity among the predictor variables. The result shows that the models fitted with the whole growing period being divided into three stages were not able to predict the marketable pod yield in the test data, although their fitness to the training data were rather satisfactory. Among the three fitting procedures, ridge regression failed to give any model with reasonable prediction ability. With the whole growing period being divided into two stages, both principal components regression and partial least squares regression gave models with not only very good fitness to the training data but also faily high accuracy in predicting the marketable yield of the test data. The correlation coefficient between the predicted marketable pod yield and its observed value was as large as 0.85, and the maximum of the relative prediction error was as small as 22%.

目 錄
目次 頁次
中文摘要-----------------------------------------Ⅰ
英文摘要-----------------------------------------Ⅲ
前言----------------------------------------------1
前人研究------------------------------------------4
材料與方法----------------------------------------9
結果---------------------------------------------18
討論---------------------------------------------50
參考文獻-----------------------------------------53
附錄---------------------------------------------61

呂椿棠。1997。氣象因子對水芋乾物質生產與分配過程影響。國立中興大學農藝學研究所碩士論文。pp.67。
林俊隆、何榮祥。1999。由濕穀重量折算為乾穀淨重之轉換比率的估計。中華農學會報 新185:120-138。
邱運全。1993。台灣地區水稻幼穗分化期的預測。國立中興大學農藝學研究所碩士論文。pp.75。
侯金日 1996 溫度與光期對作物始花期的影響。國立臺灣大學碩士論文。臺灣。臺北。pp.70。
陳庚鳳。1993。毛豆莢果特性之研究。農國立中興大學農藝學研究所博士論文。臺灣。臺中。pp.194。
陳庚鳳。1996。毛豆新品種~高雄五號。農業世界 155:11-15。
陳庚鳳、鄭士藻。1996。毛豆新品種『高雄五號』之育成。臺灣省高雄區農業改良場研究彙報8(1):1-21。
蔡吉豐。1992。毛豆開花習性及莢果生育的探討。國立中興大學農藝學研究所碩士論文。臺灣。臺中。
行政院農業委員會2000 中華民國89年農業統計年報。行政院農業委員會(編印)pp.78-79。
劉湘川。1982。脊回歸分析與變數選擇之研究。國立台灣大學農藝學研究所試驗統計組碩士論文。pp.96。
蘇 綺、郭寶錚、洪梅珠。2001。淨最小平方和回歸法的介紹。科學農業49(1,2):7-18。
堀江 武、中川博視。1990。 發育過程 化 預測 關 研究。第1報 基本構造 推定法 出穗預測 適用。日作紀59:687-695。
Anderson, L. R. and B. L. Vasilas. 1985. Effect of planting date on two soybean cultivars:seasonal dry matter accumulation and seed yield. Crop Sci. 25:999-1004.
Baier, W. 1979. Note on the terminology of crop-weather models. Agric. Meteorol. 20:137-145.
Boote, K. J. , J. W. Jones, and N. B. Pickering. 1996. Potential uses and limitations of crop models. Agron. J. 88:704-716.
Brown, P. J. 1993 Regularized multiple regression. pp.51-83.In:Measurement, Regression, and Calibration. Oxford Uni. Press Inc., New York.
Carlson, J. B. 1973. Morphology. In:B. E. Caldwell(ed.)Soybean:Improvement, Production, and Use. pp:17-95. Am. Soc. Agron., Inc., Madison, WI. USA.
Chiba, Y. 1991. Postharvest processing marketing and quality degradation of vegetable soybean in Japan. In:S. Shanmugasundarm (ed.)Vegetable Soybean:Research Needs for Production and Quality Improvement. pp.108-112. Asian Vegetable Research and Development Center. Taiwan.
Draper, N. R. and H. Smith. 1998. Applied Regression Analysis. Wiley, New York.
Egli, D. B. 1975. Rate of accumulation of dry weight in seed of soybean and its relationship to yield. Can. J. Plant Sci. 55:215-219.
Egli, D. B., and J. E. Leggett, and W. G. Duncan. 1978. Influence of N stress on leaf senescence and N redistribution in soybean. Agron. J. 70:43-47.
Egli, D. B., L. Meckel, R. E. Phillips, D. Radcliffe, and J. E. Leggett. 1983. Moisture stress and N redistribution in soybean. Agron, J. 75:1027-1030.
Egli, D. B. and I. F. Wardlaw. 1980. Temperature response of seed growth characteristics of Soybean. Agron. J. 72:560-564.
Ellis, R. H., R. J. Lawn, R. J. Summerfield, A. QI. E. H. Roberts, P. M. Chay, J. B. Brouwer, J. L. Rose, and S. J. Yeates. 1994a. Towards the reliable prediction of time to flowering in six annual crops. Ⅲ. Cowpea Vigna unguiculata. Expl. Agric. 30:17-29.
Ellis, R. H., R. J. Lawn, R. J. Summerfield, A. QI. E. H. Roberts, P. M. Chay, J. B. Brouwer, J. L. Rose, S. J. Yeates, and S. Sandover, 1994b. Towards the reliable prediction of time to flowering in six annual crops. Ⅳ. Cultivated and wild mung bean. Expl. Agric. 33:31-43.
Ellis, R. H., R. J. Lawn, R. J. Summerfield, A. QI. E. H. Roberts, P. M. Chay, J. B. Brouwer, J. L. Rose, S. J. Yeates, and S. Sandover, 1994c. Towards the reliable prediction of time to flowering in six annual crops. Ⅴ. Chickpea(Cicer arietinum). Expl. Agric. 33:271-282.
Elston, D.A., and M. F. Proe, 1995. Smoothing regression coefficients in an overspecified regression model with interrelated explanatory variables. Appl. Statist. 44(3):395-406.
Fehr, W. R.,C. E. Caviness, D. T. Burmood, and J. S. Pennington. 1971. Stage of development descriptions for soybean(Glycine max(L.)Merrill). Crop Sci. 11:929-931.
Fehr, W. R. and C. E. Caviness. 1977. Stages of soybean development. Iowa State Univ. Coop. Ext. Serv. Spec. Rep. 80:1-12.
Garthwaite, P. H. 1994. An interpretation of partial least squares. J. Amer. Statist. Assoc. 89:122-127.
Geladi, P. and B. R.Kowalski. 1986. Partial least-squares regression : a tutorial. Anal. Chimica Acta.185:1-7.
Hartwig, E. E. 1973. Varietal Development. In:B. E. Caldwell(ed.)Soybean:Improvement, Production, and Use. pp:187-210. Am. Soc. Agron. Madison Wis.
Helland, I. S. 1988. On the structure of partial least-squares regression. Comm. Statist. Simula Comput. 17(2):581-607.
Helland, I. S. 1990. Partial least squares regression and statistical models. Scand. J. Statist. 17:97-114.
Hoerl, A. E. and R. W. Kennard. 1970. Ridge regression:biased estimation for non-orthogonal problems. Technomrtrics 12:55-67.
Hodges, T. and V. French. 1985. Soybean:Soybean growth stages modeled from temperature, daylength, and water availability. Agron. J. 77:500-505
Hoskuldsson, A. 1988. PLS regression methods. Chemomet. 2:211-228.
Katz, R.W. 1979. Senstitivity analysis of statistical crop-weather models. Agri. Meteor. 20:291-300.
Lawn, R. J., R. J. Summerfield, R. H. Ellis, A. QI. E. H. Roberts, P. M. Chay, J. B. Brouwer, J. L. Rose, and S. J. Yeates. 1995. Towards the reliable prediction of time to flowering in six annual crops. VI. Applications in crop improvement. Expl. Agric. 31:89-108.
Major, D. J., D. R. Johnson, J. W. Tanner, and I. C. Anderson. 1975. Effects of daylength and temperature on soybean development. Crop Sci. 15:174-179.
Martens, H. and T. Næs. 1989a. Principal components regression(PCR). pp.97-116. In:Multivariate Calibration. Wiley, Chichester.
Martens, H. and T. Næs. 1989b. Partial least-squares regression(PLSR). pp.116-164. In:Multivariate Calibration. Wiley, Chichester.
Meckel, L., D. B. Egli, R. E. Phillips, D. Radcliffe, and J. E. Leggett. 1984. Effect of moisture stress on seed growth in soybean. Agron. J. 76:647-650.
Montgomery, D. C. and E. A. Peck. 1982. Multicollinearity. pp.287-346. In:Introduction to linear regression aanalysis. Wiley, Interscience. U.S.A.
Murtagh, F. and A. Heck. 1987. Principal components analysis. pp.13-53. In:Multivariate Data Analysis. D. Reidel(ed.), Dordrecht.
Newell, W, J. and B. Lee. 1981 Ridge regression:an alternative to multiple linear regression for highly correlated data. J. Food Sci. 46:968-969.
Neter, J., M. G. Kutner, C. J. Nachtsheim, and W. Wasserman. 1996 Applied Linear Statistical Model. 4th ed. IRWIN, U. S. A.
Piper, E. L., K. J. Boote, and J. W. Jones 1998 Evaluation and improvement of crop models using regional cultivar trial data. Applied Engin. in Agri. 14(4):435-446.
SAS Institute. 1999. The PLS Procedure. In:SAS/STAT User’s Gruide, Version 8, pp.2691-2734. Cary, NC, USA.
Seddigh, M. and G. D. Jolliff. 1984. Effect of night temperature on dry matter partitioning and seed growth of indeterminate field grown soybean. Crop Sci. 24:704-709.
Shibles, R. M., I. C. Anderson, and A. H. Gibson. 1975. Soybean. In:L. T. Evans(ed.)Crop Phsiology. pp:151-190. Cambrige University Press. New York.
Sinclair, T. R., S. Kintani, K. Hinson, J. Bruniard, and T. Horie, 1991. Soybean flowering date:linear and logistic models based on temperature and photoperiod. Crop Sci. 31:786-790.
Smiciklas, K. D., R. E. Mullen, R. E. Carlson, and A. D. Knapp, 1992. Soybean seed quality response to drought stress and pod position. Agron. J. 84:166-170.
Spaeth, S. C., T. R. Sinclair, T.Ohnuma, and S. Konno. 1987. Temperature, radiation and duration dependence of high soybean yield:measurement and simulation. Field Crop Res. 16:297-307.
Summerfield, R. J., and E. H. Roberts. 1984. Photo-thermal regulation of flowering in soybean. In:R. Shibles(ed.)World Soybean Research Conference. Ⅲ:Proceedings. pp:848-857. Westview Press. Boulder and London.
Summerfield, R. J., E. H. Roberts, R. H. Ellis, and R. J. Lwan,1991. Towards the reliable prediction of time to flowering in six annual crops. Ⅰ.The development of simple models for fluctuating field environments. Expl. Agric. 27:11-31.
Summerfield, R. J., R. J. Lwan, A. QI., R. H. Ellis, E. H. Roberts, P. M. Chay, J. B. Brouwer, J. L. Rose, S. Shanmugasundaram, S. Yeates, and S. Sandover 1993. Towards the reliable prediction of time to flowering in six annual crops. Ⅱ.Soybean (Glycine max). Expl. Agric. 29:253-289.
Thompson, L. M. 1970. Weather and technology:in the production of soybean in the Central United States. Agron. J. 62:232-236.
van Schaik, P. H., and A. H. Probst. 1958. Effect of some environment factors on flower production and reproductive efficiency. Agron. J. 50:192-197.
Wold, H. 1985. Partial least squares. In:Kotz, S., N. L. Johnson, and C. B. Read(eds)Encyclopedia of Statistical Science. Vol. 6 pp.581-591.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top