跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/29 21:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳志民
研究生(外文):Wu Chih-Ming
論文名稱:玉米自交系對本達隆除草劑之耐性研究
論文名稱(外文):Differential tolerance to bentazon in inbred corn (Zea mays L.)
指導教授:王慶裕王慶裕引用關係
指導教授(外文):Wang Ching-Yuh
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農藝學系
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:98
中文關鍵詞:玉米自交系耐性本達隆
外文關鍵詞:Corn inbredsToleranceBentazon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本試驗主要探討玉米自交系,對本達隆之耐感反應以及耐性差異之生理原因。根據玉米台農一號不同苗齡植株之株高、地上部鮮重、乾重及傷害指數性狀,以非線性回歸分析之log-logistic及probit model分析本達隆之劑量反應,在各性狀中以V1期對本達隆最為敏感,因此選定此時期篩選對本達隆具有不同耐感程度之品系。在玉米自交系族群篩選過程中,自264個玉米自交系族群中選出耐性品系LU21及感性品系TN89。經劑量反應、可見傷害等級、光系統II活性及細胞膜過氧化傷害之情形,耐性品系LU21皆小於感性品系TN89。
耐感玉米自交系在14C-bentazon(5.4 µCi)處理後24小時,對本達隆之吸收率並無明顯差異。在吸收14C-bentazon後觀察14C在植體內轉運分佈,耐性品系LU21有少量14C轉運至處理葉以上之部位及根部,而感性品系TN89則大多仍殘留在處理葉上。在代謝部份,以本達隆噴施及14C-bentazon處理二自交系測定本達隆及其代謝物之含量,明顯發現在耐性植體中短時間內即可快速形成6-hydroxy-bentazon及葡萄糖基結合物,但相較下感性品系植體中明顯較多本達隆殘留,且僅有少量6-hydroxy-bentazon及葡萄糖基結合物產生。進一步利用活體外(in vitro)方式測定耐感品系植體中bentazon-6-hydroxylase之比活性,隨著葉齡增加耐性品系bentazon-6-hydroxylase比活性亦高於感性品系。
綜合本論文試驗結果,經由比較耐感玉米自交系對本達隆之吸收、轉運及代謝,玉米自交系對本達隆耐感性差異原因主要在於本達隆之代謝能力。由於耐性品系LU21具有較高bentazon-6-hydroxylase比活性,因此可在短時間代謝本達隆降低其傷害。然而,感性品系TN89因bentazon-6-hydroxylase比活性較低,代謝能力不及耐性品系,因此殘留較多本達隆,而造成如光系統II活性下降、細胞膜之破壞而導致植株傷害程度較大。

Experiments were conducted to study the differential tolerance to bentazon in lines of inbred corn (Zea mays L.) and to determine the physiological basis of this tolerance. According to the analysis of log-logistic model or probit analysis of four growth characteristics, i.e. plant height, shoot fresh weight, dry weight and injury index of the corn, cv. TNG1, seedlings at six development stages, the most sensitive stage at V1 was determined. Subsequently, the screening of bentazon-tolerant and -susceptible lines of inbred corn was performed at this stage.
As a result of screening the bentazon-tolerant and -susceptible lines of inbred corn, line LU21 and TN89 are referred to a tolerant and a susceptible line, respectively. Under the bentazon treatment at the ED50 of seedling growth, tolerant LU21 at V1 stage only suffered a slight visible injury and a less inhibition of photosynthesis as well as a little accumulation of malondialdehyde 7 days after bentazon application, as compared with the susceptible TN89.
Further physiological study on the differential tolerance between tolerant and susceptible lines of inbred corn showed that the amount of 14C-bentazon absorbed by LU21 24 h after treatment was not significantly different from that absorbed by TN89. Most of absorbed 14C-bentazon remained in treated leaf of both LU21 and TN89, while only a little additional movement of 14C from the treated leaf to upper leaves and roots in LU21. Bentazon metabolism was greater in LU21 than in TN89, which was rapidly converted to the glycosyl conjugate of bentazon in LU21. However, only a relatively low level of bentazon metabolite and more bentazon residue have been found in TN89. In vitro activity of bentazon-6-hydroxylase in tolerant and susceptible lines of inbred corn showed that a higher activity of bentazon-6-hydroxylase was maintained in LU21 with seedling age. It is suggested that the differential tolerance to bentazon existed in tolerant LU21 is primarily resulted from the higher activity of bentazon-6-hydroxylase.

目錄...................................................i
圖目錄................................................ii
表目錄................................................iv
壹、緒言...............................................1
貳、前人研究...........................................4
參、材料與方法........................................18
肆、結果與討論........................................35
一、玉米台農一號不同苗齡植株對本達隆除草劑
之劑量反應....................................35
二、本達隆耐感玉米自交系之選拔....................42
三、耐感性玉米自交系對本達隆之反應及其耐感
性差異原因....................................50
伍、中文摘要..........................................82
陸、英文摘要..........................................84
柒、參考文獻..........................................86
附錄..................................................94

農林廳。1998。植物保護手冊,台灣省政府農林廳,中興新村,台灣。
Akerblom, M., and G. Alex. 1984. Ion-pair extraction cleanup
for liquid chromatographic determination of bentazon in crop
and soil. J. Assoc. Off. Anal. Chem. 67:653-655.
Baltazar, A. M., and T. J. Monaco. 1984. Uptake, translocation,
and metabolism of bentazon by two pepper species (Capsicum
chinese ) and(Capsicum annuum). Weed Sci. 32:258-263.
Bradshaw, L. D., M. Barrett, and C. G. Poneleit.
1992.Physiological basis for differential bentazon
susceptibility among corn (Zea mays) inbreds. Weed Sci. 40:
522-527.
Bradshaw, L. D., M. Barrett, and C. G. Poneleit. 1994.
Inheritance of bentazon susceptibility in a corn (Zea mays)
line. Weed Sci. 42:641-647.
Burton, J. D., and E. P. Maness. 1992. Constitutive and
inducible bentazon hydroxylation in shattercane (Sorghum
bicolor) and johnsongrass (S. halapense). Pestic. Biochem.
Physiol. 44:40-49.
Clay, S. A., and E. A. Oelke. 1988. Basis for differential
susceptibility of rice (Oryza sativa), wild rice (Zizania
palustris), and giant burreed (Sparganium eurycarpum) to
bentazon. Weed Sci. 36:301-304.
Cobb, A. H. 1992. Herbicides that inhibit photosynthesis. In:
Herbicides and Plant Physiology, pp. 36-81, T. J. Press
(Padstow) Ltd, Padstow, Cornwall, London. UK.
Coleman, J. O. D., M. M. A. Blake-Kalff, and T. G. E. Davies.
1997. Detoxification of xenobiotics by plants:chemical
modification and vacuolar compartmentation. Trend plant Sci.
2:144-151.
Connelly, J. A., M. D. Johnson, J. W. Gronwald, and D. L. Wyse.
1988. Bentazon metabolism in tolerant and susceptible
soybean (Glycine max) genotypes. Weed Sci. 36:417-423.
Davies, J., and J. C. Caseley. 1999. Herbicide safeners:a
review. Pestic. Sci. 55:1043-1058.
De Prado, R., N. Lopez-Martinez, and J. Gonzalez-Gutierrez.
2000. Identification of two mechanisms of atrazine
resistance in Setaria faberi and Setaria viridis biotypes.
Pestic. Biochem. Physiol. 67:114-124.
Donaldson, R. P., and D. G. Luster. 1991. Multiple forms of
plant cytochrome P-450. Plant Physiol. 96:669-674.
Eastin, E. F. 1973. Separation of bentazon and some related
compounds by thin-layer chromatography. J. Chromatogr. 76:
272-273.
Edwards, F. R. 1998. Concepts and principle of high performance
liquid chromatography, In:HPLC in enzymatic analysis, pp.
13-39, A John Wiley & Sons, Canada.
Edwards, R., D. P. Dixon, and V. Walbot. 2000. Plant
glutathione S-transferases:enzymes with multiple functions
in sickness and in health. Trends Plant Sci. 5:193-198.
Fleming, A. A., P. A. Banks, and J. G. Legg. 1988. Differential
response of maize inbreds to bentazon and other herbicides.
Can. J. Plant Sci. 68:501-507.
Green, J. M. 1998. Differential tolerance of corn(Zea mays)
inbreds to four sulfonylurea herbicide and bentazon. Weed
Technol. 12:474-477.
Gronwald, J. W., and J. A. Connelly. 1991. Effect of
monooxygenase inhibitors on bentazon uptake and metabolism
in maize cell suspension cultures. Pestic. Biochem. Physiol.
40:284-294.
Haack, A. E., and N. E. Balke. 1994. Enhancement of microsomal
bentazon 6-hydroxylase and cinnamic acid 4-hydroxylase
activities from grain sorghum shoots. Pestic. Biochem.
Physiol.50:92-105.
Hamill, A. S., and J. Zhang. 1997. Rate and time of
bentazon/atrazine application for broadleaf weed control in
corn(Zea mays). Weed Technol. 11:549-555.
Han, Y. C., and C. Y. Wang. 2002. Physiological basis for
bentazon tolerance in rice (Oryza sativa L.) line. Weed Bio.
Manage.(un publish).
Han, Y. C., and C. Y. Wang. 2001. Screening of bentazon-
tolerant and susceptible rice (Oryza sativa L.) seedlings.
J. Chinese Agron. 10:229-237.
Harrison, H. F., and J. R. L. Fery. 1998. Response of leading
bell pepper varieties to bentazon herbicide. Hortscience 33:
318-320.
Hayes, R. M., and L. M. Wax. 1975. Differential intraspecific
responses of soybean cultivars to bentazon. Weed Sci. 23:
516-521.
Heath, R. L., and L. Packer. 1968. Photoperoxidation in
isolated chloroplasts. I. Kinetics and stoichiometry of
fatty acid peroxidation. Arch. Biochem. Biophys. 125:189-
198.
Hinz, J. R. R., M. D. K. Owen, and M. Barrett. 1997.
Nicosulfuron, primisulfuron, and bentazon hydroxylation by
corn (Zea mays), woolly cupgrass (Eriochloa villosa), and
shattercane (Sorghum bicolor) cytochrome P-450. Weed Sci.
45:474-480.
Huber, R., and S. Otto. 1994. Enviromental behavior of bentazon
herbicide. Rev. Environ. Contam. Toxicol. 137:111-133.
Irons, S. M., and O. C. Burnside. 1982. Absorption,
translocation, and metabolism in sunflower(Heliantbus
annuus). Weed Sci. 30:255-259.
Kappus, H. 1985. Lipid peroxidation:Mechanisms, analysis,
enzymology and biological relevance. In:Oxidative Stress
(H. Sies, ed), pp. 273-310, Academic press, New York.
Koeppe, M. K., C. M. Hirata, H. M. Brown, W. H. Kenyon, D. P.
O’Keefe, S. C. Lau, W. T. Zimmerman, and J. M. Green. 2000.
Basis of selectivity of the herbicide rimsulfuron in maize.
Pestic. Biochem. Physiol. 66:170-181.
Leah, J. M., T. L. Worrall, and A. H. Cobb. 1991. A study of
bentazon uptake and metabolism in the presence and the
absence of cytochrome P-450 and acetyl-coenzyme a
carboxylase inhibitors. Pestic. Biochem. Physiol. 39:232-
239.
Lichtenthaler, H. K., G. Kuhn, U. Prenzel, and D. Meier. 1982.
Chlorophyll-protein levels and degree of thylakoid stacking
in radish chloroplasts from high-light, low-light and
bentazon-treated plants. Physiol. Plant. 56:183-188.
Mahoney, M., and D. Penner. 1973. Bentazon metabolism in navy
bean and soybean. Proc. Brighton Crop Protec. Conf. Weeds
28:65.
Maxwell, K., and G. N. Johnson. 2000. Chlorophyll fluorescence-
a practical guide. J. Exp. Bot. 51:659-668.
McFadden, J. J., J. W. Gronwald, and C. V. Eberlein. 1990. In
vitro hydroxylation of bentazon by microsomes from
naphthalic anhydride-treated corn shoots. Biochem.
Biophysic. Res. Commun. 168:206-213.
Mine, A., M. Miyakado, and S. Matsunaka. 1975. The Mechanism of
bentazon selectivity. Pestic. Biochem. Physiol. 5:566-574.
Moss, S. 1999. Detecting herbicide resistance.
http://plantprotection.org/HRAC/main.htmle
Otto, S., P. Beutel, N. Dreschler, and R. Huber. 1979.
Investigation into the degradation of bentazon in plant and
soil. Adv. Pestic. Sci. 2:551-556.
Pace, E., L. Pompili, A. Margonelli, P. Giardi, and M. T.
Giardi. 2001. Pulse-chase experiments with [35S]methionine
show D1 reaction II protein turnover in variously herbicide
tolerant species. Pestic. Biochem. Physiol. 69:92-99.
Pinto, G. M. F., and I. C. S. F. Jardim. 1999. Determination of
bentazon residues in water by high-performance liquid
chromatography validation of the method. J. Chromatogr. A
864:369-374.
Pyon, J. Y., N. E. Balke. 1997. The enhancement of cytochrome P-
450 mediated aryl hydroxylation of bentazon in rice
microsomes. Korean J. Weed Sci. 17: 59-65.
Potter, J. R., and W. P. Wergin. 1975. The role of light in
bentazon toxicity to cocklebur:physiology and
ultrastructure. Pestic. Biochem. Physiol. 5:458-470.
Polge, N. D., and M. Barrett. 1995. Characterization of
cytochrome P450 mediated chlorimuron ethyl hydroxylation in
maize microsome. Pestic. Biochem. Physiol. 53:193-204.
Retzlaff, G., and R. Hamm. 1976. The relationship between CO2
assimilation and the metabolism of bentazon in wheat plants.
Weed Res. 16:263-266.
Ruthherford, A., and A. Krieger-Liszkay. 2001. Herbicide-
induced oxidative stress in photosystem II. Trends Biochem.
Sci. 26:648-653.
Schreiber, U. 1986. Detection of rapid induction kinetics with
a new type of high-frequency modulated chlorophyll
fluorometer. Photosynth. Res. 9:261-272.
Seefeldt, S. S., J. E. Jensen, and E. P. Fuerst. 1995. Log-
logistic analysis of herbicide dose-response relationship.
Weed Technol. 9:218-227.
Streibig, J. C. 1992. Quantitative assessment of herbicide
phytotoxicity with dilution assay. Department of
Agricultural Science, Royal Veterinary and Agricultural
University. Copenhagen. pp. 1-15.
Streibig, J. C., A. Walker, A. Blair, M. Anderson-Taylor, G.
Eagle, D. J. Friedlander, H. Hacker, E. Iwanzik, W. Kudsk,
P. Labhart, C. Luscombe, B. M. Madafiglio, G. Nel, P. C.
Pestemer, W. Rahman, A. Retzlaff, G. Rola, J. Stefanovic, L.
Straathof, H. J. M. Thies. 1995. Variability of bioassays
with metsulfuron-methyl in soil. Weed Res. 35: 215-224.
Stering, T. M., and N. E. Balke. 1988. Use of soybean (Glycine
max) and velvetleaf (Abutilon theophrasti) suspension-
cultured cells to study bentazon metabolism. Weed Sci. 36:
558-565.
Stering, T. M., and N. E. Balke. 1989. Differential bentazon
metabolism and retention of bentazon metabolites by plant
cell culture. Pestic. Biochem. Physiol. 34:39-48.
Suwanketnikon, R., K. K. Hatzios, and D. Penner. 1982. The site
of electron transport inhibition of bentazon (3-isopropyl-1H-
2,1,3-benzothiadiazin-(4)3H-one 2,2- dioxide) in isolated
chloroplast. Can. J. Bot. 60:409-412.
Teasdale, J. R., and R. W. Thimijan. 1983. Influence of light
and temperature on bentazon phytotoxicity to cucumber
(cucumis sativus). Weed Sci. 31:232-235.
Werck-Reichhart, D., A. Hehn, and L. Didierjean. 2000.
Cytochromes P450 for engineering herbicide tolerance. Trends
Plant Sci. 5:116-123.
Yun M. S., and J. Y. Pyon. 1995. Effect of bentazon 6-
hydroxylase activity on tolerance of corn cultivars to
bentazon. Korean J. Weed Sci. 15:214-223.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top