(44.192.10.166) 您好!臺灣時間:2021/03/06 19:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:汪雅敏
研究生(外文):ya-min Wang
論文名稱:水稻幼苗在過量UV-B照射下UV-B吸收物質之變化及耐感性品種比較
論文名稱(外文):Changes of UV-B absorbing compounds in rice seedlings exposed to excessive UV-B radiation and differential tolerance between tolerant and susceptible cultivars of rice (Oryza sativa L.)
指導教授:朱德民朱德民引用關係王慶裕王慶裕引用關係
指導教授(外文):Teh-ming ChuChing-yuh Wang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農藝學系
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:147
中文關鍵詞:UV-B輻射耐性
外文關鍵詞:UV-B radiationtolerance
相關次數:
  • 被引用被引用:1
  • 點閱點閱:763
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:144
  • 收藏至我的研究室書目清單書目收藏:1
本試驗以台農67號、四種對UV-B耐感性水稻品種(秈稻感性Dular、秈稻耐性8908、稉稻感性3003、稉稻耐性M202)及台農67號水稻(M9)突變體幼苗作為試驗材料,經過量UV-B照射後,對其植株生育、生理生化反應及UV-B吸收物質反應差異加以比較,以期了解水稻幼苗經過量UV-B照射後傷害變化及UV-B特殊吸收物質之反應,作為日後有關植物和UV-B方面研究之參考。
本試驗項目共分為:一.台農67號水稻幼苗對過量UV-B照射後其生長及UV-B吸收物質之反應。二.耐感UV-B水稻品種幼苗對過量UV-B照射後其生長及UV-B吸收物質反應比較。三.台農67號水稻(M9)突變體幼苗耐感性選拔及其反應。
台農67號及四種耐感性品種水稻幼苗在UV-B照射處理後植株株高生長受抑制、葉片葉綠素之含量相對降低,丙二醛(MDA)含量明顯的增加。在UV-B吸收物質方面,台農67號、四種耐感性水稻幼苗及台農67號水稻(M9)耐感性突變體,其波長330nm吸收值(類黃酮)在處理後第一天即略有增加,且隨著處理時間的增加而大量增加,至處理第五天,略有減少。
類黃酮化合物Catechin含量,台農67號水稻幼苗在UV-B處理後第三天有明顯之增加。在秈稻耐性(8908)及感性(Dular)此兩品種經UV-B處理後第三天Catechin含量亦有明顯之增加,爾後則隨之下降;至於稉稻耐性(M202)感性(3003)品種亦有相同之情形。另外在台農67號及四種耐感性水稻幼苗皆經UV-B處理後,Taxifolin含量有明顯之增加,以第三天為最。一般而言耐性品種UV-B吸收物質之量較感性為多。除外,經過量UV-B照射後,發現有大量花青素合成,特別是耐性品種。
由試驗結果綜合而知顯示台農67號及供試四種水稻品種幼苗經過量UV-B照射後,會發生氧化傷害,間接影響其形態及造成生理的障礙,同時過量UV-B照射可以誘導類黃酮化合物生成,特別是花青素,這些反應在UV-B照射後一天就即產生;又耐 UV-B品種誘導類黃酮化合物累積能力較感性品種大,此部分亦可說明耐性品種對過量UV-B產生耐性機制之一。

The purpose of this study is to explore the UV-absorbing compounds responses of rice seedling exposed to excess UV-B radiation. TNG67、UV-tolerant cultivar、susceptible cultivar and TNG67 were used as matter.
Three experiments were performed in this study, the first part was a series of physiological and injury responses were conducted as cultivar TNG67 V3-seedlings exposed to excess UV-B radiation. Second part was compared the physiological and UV-B absorbing compounds responses of tolerant and suspectible rice cultivars to excess UV-B radiation. Last was screening the TNG67 mutants and responses of excess UV-B radiation.
Enhanced UV-B radiation depresses physiological responses, resulting in the reduction of rice seedlings growth , including seedlings height and the content of chlorophyll, and clearly increased malondialdehyde(MDA)content.
As rice seedlings of TNG67、tolerant cultivars 、suspectible cultivars and TNG67 mutants exposed to excess UV-B radiation, resulted in accumulation of UV-B absorbing compounds, and increasing absorption (O.D.) at 330nm. An example of first day exposed to excess UV-B radiation with increased absorption (O.D.) at 330nm (flavonoids), and then increased during the treament period. At five days, absorpton (O.D.) at 330nm was decreased lightly.
The UV-B absorbing compounds are mainly identified as flavonoid, among of flavonoid compounds, the content of catechin was increased at the three days of UV-B radiation. Indica type 8908 (T) and Dular (S) were referred to the content of catechin were also increased at the three days of UV-B radiation, and then decreased during the UV-B treatment period, as well as the japonica type M202 (T) and 3003 (S). On the other side, the content of taxifolin were great increased at the three days of UV-B exposure.
The same as UV-B absorbing compounds from tolerant rice cultivars tend to be higher than susceptible rice cultivars. Futhermore the content of anthocyanidins were accumulated to excess UV-B radiation exposure, tolerant cultivars especially. Experimental results indicated that exposed to the excess UV-B radiation occured the peroxidation and affected the morphological and physiological responses indirectly. In the meanwhile, it has been shown that the induced accumulation of these flavonoid compounds, anthocyanidins especially. These responses were produced at the first day of UV-B radiation, and tolerant UV-B cultivars induced higher content of flavonoids than suspectible cultivars. Based on these results, this part is an important factor contributing to UV-B tolerance mechanism in rice cultivars.

目錄…………………………………………………圖目錄………………………………………………表目錄………………………………………………縮寫字對照表………………………………………壹、緒言……………………………………………貳、前人研究………………………………………參、材料與方法……………………………………肆、結果……………………………………………伍、討論……………………………………………陸、中文摘要………………………………………柒、Abstract…………………………………………捌、參考文獻………………………………………附錄………………………………………………… 頁次ⅠⅡⅦⅧ142232117132134136146

參考文獻
朱德民。1995。植物與環境逆境。pp.255-258。明文書局,台北。
朱燕華。1998。類黃酮之介紹。食品工業月刊30:1-6。
周昶汎。2001。水稻幼苗對過量UV-B輻射之反應及其耐感性差異之比較。國立中興大學農藝所碩士論文,台中,台灣。
邱輝龍、范明仁。1998。花青素與花色之表現。中國園藝44:102-115。
廖玉婉、徐善德(編譯)。1999。植物生理學。pp.155-178。啟英文化,台北。
劉銘龍、柳中明、黃韋菁。1997。紫外線指數預報是環境新指標。環耕8:45-53。
藍恩玲。1997。漫談防曬。醫院藥學 14:198-203。
Alscher, R. G., J. L. Donahue, and C. L. Cramer. 1997. Reactive oxygen species and antioxidants: relationships in green cells. Physiol. Plant. 100:224-233.
Asen, S. 1976. Known factors responsible for infinite flower color variations. Acta Hortic. 63:217-223.
Barnes, P. W., C. L. Ballare, and M. M. Caldwell. 1996. Photomorphogenic effects of UV-B radiation on plants: consequences for light competition. Plant Physiol. 148: 15-20.
Bieza, K. and R. Lois. 2001. An Arabidopsis mutant tolerant to lethal ultraviolet-B leavels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiol. 126: 1105-1115.
Caasi-Lit, M., M. I. Whitecross, M. Nayudu, and G. J. Tanner. 1997. UV-B irradiation induces differential leaf damage, ultrastructural changes and accumulation of specific phenolic compounds in rice cultivars. Aust. J. Plant Physiol. 24:261-274.
Caldwell, M. M., R. Robberecht, and S. D. Flint. 1983. Internal filters: prospects for UV-acclimation in higher plants. Physiol. Plant. 58:445-450.
Cannon, C. C., L. A. Hedrick, and S. Heinhorst. 1995.Repair mechanisms of UV-induced DNA damage in soybean chloroplasts. Plant Mol. Bio. 29:1267-1277.
Chappell, J., and K. Hahlbrock. 1984. Transcription of plant defence genes in response to UV light or fungal elicitor. Nature 311:76-78.
Crozier, A., M. E. Lean, M. S. McDonald and C. Black. 1997. Quantitative analysis of the flavonoid content of commercial tomatoes, onions, lettuce and celery. Agric. Food Chem. 45: 590-595.
Dai, Q., V., P. Coronel, B. S. Vergara, P. W. Barnes, and A. T. Quintos. 1992. Ultraviolet-B radiation effects on growth and physiology of four rice cultivars. Crop Sci. 32:1269-1274.
Dai, Q. J., B. Yan, S. B. Huang, X. Z. Liu, S. B. Peng, M. L. L. Mirranda, A. Q. Charez, B. S. Vergara and D. M. Olszyk. 1997. Response of oxidative stress defense systems in rice (Oryza sativa) leaves with supplemental UV-B radiation. Physiol. Plant. 101:301-308.
Deboo, G. B., M. C. Albertsen, and L. P. Taylor. 1995. Flavanone 3-hydroxylase transcripts and flavonol accumulation are temporally coordinate in maize anthers. Plant J. 7: 703-713.
Dixon, R. A., and N. L. Paiva. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell. 7: 1085-1097.
Dong, Y., L. Beuning, K. Davies, D. Mitra, B. Morris, and A. Kootstra. 1998. Expression of pigmentation genes and photoregulation of anthocyanin biosynthesis in developing Royal Gala apple flowers. Aust. J. Plant Physiol. 25:245-252.
Fauconneau, B., P. W. Teguo, F. Huguet, L. Barrier, A. Decendit, and J. M. Merillon. 1997. Comparative study of radical scavenger and antioxidant properties of phenolic compounds from Vitis vinifera cell cultures in vitro tests. Life Sci. 61: 2103-2110.
Foyer, C. H., P. Descourvieres, and K. J. Kunert. 1994a. Protection against oxygen radicals : an important defense mechanism studied in transgenic plants. Plant Cell Environ. 17:507-523.
Foyer, C. H., M. Lelandais, and K. J. Kunert. 1994b. Photooxidative stress in plants. Physiol. Plant. 92:696-717.
Goodwin T. W. 1976. Functions of flavonoids in plants. In: Chemistry and Biochemistry of Plant Pigments, pp.736-775. Academic Press, New York.
Gross, J. 1987. Anthocyanins. In: Pigments in fruits, pp.59-85. Academic Press, New York.
Harborne J. B. 1967. The anthocyanidin pigments. In: Comparative Biochemistry of the Flavonoids, pp.1-36. Academic Press, London.
Haussühl, K., W. Rohde, and G. Weissenbock. 1996. Expression of chalcone synthase gene in coleoptiles and primary leaves of Secale cereale L. after induction by UV radiation: evidence for a UV-protective role of the coleoptile. Bot. Acta 109:229-238.
He, J., L. K. Huang, W. S. Chow, M. I. Whitecross and J. M. Anderson. 1993. Effects of supplementary ultraviolet-B.
Hertog, M. G. L., P. C. H. Hollman and M. B. Katan. 1992. Content of potentially anticarcienogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Nutherlands. Agric. Food Chem. 40: 2379.
Hodgson, R. A. J., and J. K. Raison. 1991. Lipid peroxidation and superoxide dismutase activity in relation to photoinhibition induced by chilling in moderate light. Planta 185:215-219.
Kakegawa, K., E. Hattori, K. Koike, and K. Takeda. 1991. Induction of anthocyanin synthesis and related enzyme activities in cell cultures of Centaurea cyanus by UV-light irradiation. Phytochemistry 30: 2271-2273.
Kappus, H. 1985. Lipid peroxidation : Mechanisms, analysis, enzymology and biological relevence. pp.273-310. In Oxidative Stress. Academic Press, New York.
Kubo, A., M. Aono, N. Nakajima, H. Saji, K. Tanaka, and N. Kondo. 1999. Differential responses in activity of antioxidant enzymes to different environmental stresses in Arabidopsis thaliana. Plant Res. 112:279-290.
Lancaster, J. E., P. F. Reay, J. Norris, and R. C. Butler. 2000. Induction of flavonoids and phenolic acids in apple by UV-B and temperature. Hort. Sci. Biotechnol. 75:142-148.
Law, K. H., and N. P. Das. 1987. Dual-wavelength absorbance ratio and spectrum scanning techniques for identification of flavonoids by highperformance liquid chromatography. Chromatography 388: 225-233.
Levall, M. W., and J. F. Bornman. 2000. Differential response of a sensitive and tolerant sugarbeet line to Cercospora beticola infection and UV-B radiation. Physiol. Plant. 109: 21-27.
Lichtenthaler, H. K. 1996. Vegetation stress : an introduction to the stress concept in plants. Plant Physiol. 148: 4-14.
Liu, L., D. C. Gitz, and J. W. McClure. 1995. Effects of UV-B on flavonoids, ferulic acid, growth and photosynthesis in barley primary leaves. Physiol. Plant. 93:725-733.
Lo, S. C., and R. L. Nicholson. 1998. Reduction of light-induced anthocyanin accumulation in inoculated sorghum mesocotyls. Plant Physiol. 116:979-989.
Madronich, S., R. L. Mckenzie, M. M. Caldwell and L.O. Bjön. 1995. Changes in ultraviolet radiation reaching the earth’s surface. Ambio. 24: 143-152.
Markham, K. R., G. J. Tanner , C. L. Merdelyn, M. I. Whitecross, M. Nayudu and K. A. Mitchell. 1998. Possible protective for 3’,4’-dihydroxyflavones induced by enhanced UV in a UV-tolerant rice cultivar. Phytochemistry 7: 1913-1919.
Mazza, G. and E. Miniati. 1993. Anthocyanin in fruit, vegetables, and grains. CRC Press, USA.
Mehdy, C. 1994. Active oxygen species in plant defense against pathogens. Plant Physiol. 105:46-472.
Murali, N. S. and A. H. Teramura. 1986. Intraspecific differences in Cucumis sativus sensitivity to ultraviolet-B radiation. Physiol. Plant. 68: 673-677.
Nedunchezhian, N., and G. Kulandaivelu. 1991. Evidence for the UV-B radiation induced structural reoganization and damage of photosystem polypeptides in isolated chloroplasts. Physiol. Plant. 81: 558-562.
Parisi, A.V., J. C. F. Wong, and V. J. Galea. 1998. A study of the total ultraviolet exposure to all the leaves for small-plant growth. Photochem. Photobiol. B: Biology 45: 36-42.
Pinhero, R. G., M. V. Rao, G. Paliyath, D.P. Murr and R. A. Fletcher. 1997. Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance of maize seedlings. Plant Physiol. 114: 695-704.
Rao, M. V., G. Paliyath, and D. P. Ormrod. 1996. Ultraviolet-B- and ozone-induced biochemical changes in antioxdant enzymes of Arabidopsis thaliana. Plant Physiol. 110:125-136.
Reddy, V. S., K. V. Goud, R. Sharma, and A. R. Reddy. 1994. Ultraviolet-B-responsive anthocyanin production in a rice cultivar is associated with a specific phase of phenylalanine ammonia-lyase biosynthesis. Plant Physiol. 105:1059-1066.
Reuber, S., J. F. Bornman, and G. Weissenbock. 1996. A flavonoid mutant of barley (Hordeum vulgare L.) exhibits increased sensitivity to UV-B radiation in the primary leaf. Plant Cell Environ. 19:593-601.
Rowland, F. S. 1996. Chlorofluorocarbons and the depletion of stratospheric ozone. Am. J. Sci. 77:36-45.
Russell , J. M., M. Luo, R. J. Cicerone, and L. E. Deaver. 1996. Satellite confirmation of the dominance of chlorofluorocarbons in the global stratospheric chlorine budget. Nature 379: 526-529.
Sarma, A. D., and R. Sharma. 1999. Purification and characterization of UV-B induced phenylalanine ammonia-lyase from rice seedlings. Phytochemistry 50:729-737.
Sato, T., H. S. Kang, and T. Kumagai. 1994. Genetic study of resistance to inhibitory effects of UV radiation in rice (Oryza sativa). Physiol. Plant. 91: 234-238.
Sato, T., and T. Kumagai. 1997. Role of UV-absoring compounds in genetic differences in the resistance to UV-B radiation in rice plants. Breed. Sci. 47:21-26.
Shirley, B. W. 1996. Flavonoid biosynthesis: “new” functions for an “old” pathway. Trends Plant Sci. 11: 377-382.
Sinclair, T. R., O. N, Diaye, and R. H. Biggs. 1990. Growth and yield of field-grown soybean in response to enhanced exposure to ultraviolet-B radiation. Environ. Qual. 19: 478-481.
Staaij, J. W. M. van de., W. H. O. Ernst, H. W. J. Hakvoort, and J. Rozema. 1995. Ultraviolet-B (280-320nm) absorbing pigments in the leaves of Silene vulgaris:their role in UV-B tolerance. Plant Physiol. 147: 75-80.
Stafford, H. A. 1990. Anthocyanidin-anthocyanin pathway. In: Flavonoid Metabolism, pp.101-132. CRC Press, Florida.
Sullivan, J. H., A. H. Teramura, and L. H. Ziska. 1992. Variation in UV-B sensitivity in plants from A3000-m elevational gradient in Hawaii. Am. J. Bot. 79: 737-743.
Taiz, L. and E. Zeiger. 1991. Phenolic compound. In: Plant Physiology, pp.328-338. Benjamin/Cummings, California.
Teramura, A. H., J. H. Sullivan, and J. Lydon. 1990a. Effectives of UV-B radiation on soybean yield and seed quality: A 6-year field study. Physiol. Plant. 80: 5-10.
Teramura, A. H., J. H. Sullivan, and L. H. Ziska. 1990b. Interaction of elevated ultraviolet — B radiation and CO2 on productivity and photosynthetic characteristics in wheat, rice and soybean. Plant Physiol. 94: 470-475.
Teramura, A. H., J. H. Sullivan, and A. E. Sztein. 1991. Changes in growth and photosynthetic capacity of rice with increased UV-B radiation. Physiol. Plant. 83 : 373-380.
Tevini, M. 1994. UV-B effects on terrestrial plants and aquatic oranisms. In : Progress in Botany. Vol 55. pp.174-190.
Veit, M., W. Bilger, T. Muhlbauer, W. Brummet, and K. Winter. 1996. Diurnal changes in flavonoids. J. Plant Physiol. 148:478-482.
Walker, M. A., and B. D. McKersie. 1993. Role of the ascorbate-glutathione antioxidant system in chilling resistance of tomato. Plant Physiol. 141:234-239.
Wängberg, S. A., J. S. Selmer, and K. Gustavson. 1998. Effects of UV-B radiation on carbon and nutrient dynamics in marine plankton communities. Photochemistry and Photobiology B: Biology 45: 19-24.
Yan, B., and Q. J. Dai. 1996. Effects of ultraviolet-B radiation on active oxygen metabolism and membrane system of rice leaves. Acta Phytophysiol. Sin. 22:373-378.
Ziska, L. H. 1996. The potential sensitivity of tropical plants to increased ultraviolet-B radiation. Plant physiol. 148: 35-41.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔