跳到主要內容

臺灣博碩士論文加值系統

(54.173.214.227) 您好!臺灣時間:2022/01/29 15:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄧斐仁 
研究生(外文):Fei-Jen Teng
論文名稱:變頻式油溫冷卻機之模型參考適應預估控制
論文名稱(外文):Model Reference Adaptive Predictive Control of a Variable-Frequency Oil-Cooling Machine
指導教授:蔡清池
指導教授(外文):Ching-Chih Tsai
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:88
中文關鍵詞:oil-coolingmodel referencepredictive
外文關鍵詞:油冷卻模型參考預估
相關次數:
  • 被引用被引用:0
  • 點閱點閱:939
  • 評分評分:
  • 下載下載:200
  • 收藏至我的研究室書目清單書目收藏:1
本論文的主要目的在發展一以數位信號處理器 (DSP) 為基礎的變頻式油溫冷卻機控制器之模型參考適應預估控制法則及其實現技術。油溫冷卻機之近似系統參數可由遞迴最小平方法則(Recursive Least-Squares Estimation Method)來求得。首先提出一利用德州儀器公司 TMS320F243 DSP 單晶片來作為運算處理單元並結合相關週邊介面發展出一低價單板高性能溫度控制器。為達到良好的溫度控制效果,本文提出二種模型參考控制策略:模型參考間接自調預估控制 (Model Reference Indirect Self-Tuning Predictive Control) 及直接自調預估控制 (Direct Self-Tuning Model Following Predictive Control)。經由實驗結果證明本論文所提的控制策略,在不同的實驗條件下,例如:設定點改變、外加固定負載及負載改變,皆能有效地在DSP-Based 控制器上得到符合規格的控制性能。
This thesis develops methodologies and techniques for model reference adaptive predictive control laws design and implementation of a DSP-based controller for a variable-frequency oil-cooling machine. The plant is well approximated by a first-order system model with time delay and its system parameters are estimated using the recursive least-squares estimation method. In order to obtain a low-cost, real-time and high-performance controller, we build a stand-alone control architecture using a powerful TMS320F243 DSP single chip with associated peripherals. To achieve satisfactory control performance specifications, the thesis proposes two model reference adaptive predictive control strategies, model reference indirect self-tuning predictive control and direct self-tuning model following predictive control. Experimental results show that both the two proposed control methods together with the DSP-based controller’s prototype have been proven to work well for the machine under set-point changes, fixed heat loads and heat load changes.
Contents
Chinese Abstract i
English Abstract ii
Acknowledgments iii
Contents iv
List of Figures viii
List of Tables xiii
Nomenclature xiv
Chapter 1:Introduction 1
1.1 Introduction 1
1.2 Survey of Related Research 3
1.3 Contributions of the Thesis 5
1.4 Organization of the Thesis 6
Chapter 2:DSP-Based Temperature Control Architecture Design and Software Development 7
2.1 Introduction 7
2.2 Physical Configuration of the Oil-Cooling Machine 8
2.3 TMS320F243 DSP-Based Control Architecture 14
2.3.1 Overview of the TMS320F243 DSP Chip 15
2.3.2 Features of DSP-Based Temperature Controller 17
2.3.3 External Memory Interfacing of DSP-Based Controller 21
2.4 Flowchart of Control Codes Programming 24
2.5 Concluding Remarks 27
Chapter 3:Model Reference Indirect Self-Tuning Predictive Control 28
3.1 Introduction 28
3.2 Mathematical Modeling and Parameter Estimation 29
3.3 Model Reference Indirect Self-Tuning Predictive Control 32
3.4 Real-Time Model Reference Indirect Self-Tuning Predictive Control Algorithm 39
3.5 Simulation, Experimental Results and Discussion 40
3.5.1 Simulation using MATLAB 40
3.5.2 PC-Based Control 44
3.5.3 DSP-Based Control 50
3.6 Concluding Remarks 56
Chapter 4:Direct Self-Tuning Model Following Predictive Control 57
4.1 Introduction 57
4.2 Direct Self-Tuning Model Following Predictive Control 58
4.3 Direct Self-Tuning Model Following Predictive Control Algorithm 65
4.4 Simulation, Experimental Results and Discussion 66
4.4.1 Simulation using MATLAB 66
4.4.2 PC-Based Control 70
4.4.3 DSP-Based Control 76
4.5 Concluding Remarks 81
Chapter 5:Summaries and Recommendations 82
5.1 Summaries 82
5.2 Recommendations 83
Bibliography 84
Appendix A 88
Bibliography
[1] 蔡清池,變頻式油冷卻機微電腦電路控制系統發展計畫,哈伯精密工業有限公司委託計畫期末報告,1999.
[2] C. C. Tsai and C. H. Lu, “Multivariable self-tuning temperature control for plastic injection molding process,” IEEE Transaction on Industry Applications, vol. 34, no. 2, pp. 310-318, March/April 1998.
[3] C. C. Tsai and C. H. Lu, “Fuzzy supervisory predictive PID control of a plastic extrusion barrel,” Journal of the Chinese Institute of Engineers, vol. 21, no. 5, pp. 619-624,1998.
[4] J. S. Taur, C. W. Tao and C. C. Tsai, “Temperature control of a plastic extrusion barrel using PID fuzzy controllers,” Proceeding of 1995 IEEE-IAS International Conference on Industrial Automation and Control, pp. 370-375, Taipei, May 1995.
[5] C. C. Tsai and C. H. Lu, “Multivariable adaptive generalized predictive PI temperature control of a plastic injection molding process,” Journal of Control System and Technology, vol. 5, no. 1, pp. 11-24, 1997.
[6] C. C. Tsai and C. H. Lu, “Design and implementation of an adaptive generalized predictive PID temperature controller for a plastic extrusion heated barrel,” Journal of Technology, vol. 13, no. 1, pp. 167-178, 1998.
[7] C. Lascu, A. M. Trzynadlowski, “A TMS320C243-based torque estimator for induction motor drives,” IEEE Electric Machines and Drives Conference, PP. 733-735, 2001
[8] E. G. Carati, H. Pinheiro, J. R. Pinheiro, H. L. Hey and H. A. Grundling, “Adaptive robust DSP-based single phase AC power source,” Proceedings of the 2001 IEEE International Conference on Control Applications, pp. 24-28, 2001
[9] H. Hanselmann, “DSP in control: the Total Development Environment,” Proceedings of the 1996 IEEE IECON 22nd International Conference on Industrial Electronics, Control, and Instrumentation, vol.3, pp. 1647-1654, 1996
[10] C. Lundquist and V. P. Carey, “Microprocessor-based adaptive thermal control for an air-cooled computer CPU module,” Seventeenth Annual IEEE Symposium, pp. 168-173, 2001.
[11] Z. Bielewicz, L. Debowski and E. Lowiec, “A DSP and FPGA based integrated controller development solutions for high performance electric drives,” Proceedings of the IEEE International Symposium on Industrial Electronics, vol. 2, pp. 679-684, 1996.
[12] J. W. Curtis and R.W. Beard, “A model-predictive satisficing approach to a nonlinear tracking problem”, 2001. Proceedings of the 40th IEEE Conference on Decision and Control, Vol. 1, pp. 491-495, 2001
[13] J. Ritonja, D. Dolinar and B. Grcar, “Simple adaptive control for stability improvement,” Proceedings of the 2001 IEEE International Conference on Control Applications, pp. 29-34, 2001
[14] P. R. Banerjee and S. L. Shan, “Robust stability of GPC as applied to a first order model with time delay,” proceedings of American Control Conference, Seattle, Washington, pp. 2884-2889, June 1995.
[15] C. H. Huang, Predictive temperature control of a variable-frequency oil-cooling machine, MS thesis, Department of Electric Engineer, National Chung Hsing University, 2001.
[16] Texas Instrument Incorporated, TMS320C24x DSP Controllers (CPU, System, and Instruction Set), Tarrant Dallas Printing, Inc., 1997.
[17] Texas Instruments Incorporated, TMS320C24x DSP Controllers (Peripheral Library and Specific Devices), Tarrant Dallas Printing, Inc., 1997.
[18] Texas Instruments Incorporated, TMS320F243/F241/C242 DSP Controllers (System and Peripherals), Tarrant Dallas Printing, Inc., 1999.
[19] R. C. Dorf and R. H. Bishop, Modern Control Systems, Addison Wesley, 1995.
[20] K. J. Åström and B. Wittenmark, Adaptive Control, Addison Wesley, 1995.
[21] Ronald Soeterboek, Predictive Control, Prentice Hall, 1992
[22] V. Oppenheim and W. Schafer, Discrete-Time Signal Processing, Prentice Hall, 1999.
[23] H. Butler, Model Reference Adaptive Control, Prentice Hall, 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top