跳到主要內容

臺灣博碩士論文加值系統

(3.81.172.77) 您好!臺灣時間:2022/01/21 18:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱永龍 
研究生(外文):Yeong-Long Chiu
論文名稱:特用服務自走車之模糊反應導航與混合導航
論文名稱(外文):Fuzzy Reactive and Hybrid Navigation of a Special-Purpose Service Robot Vehicle
指導教授:蔡清池
指導教授(外文):Ching-Chih Tsai
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:90
中文關鍵詞:模糊控制尋標防碰撞反應導航混合導航
外文關鍵詞:fuzzy controlgoal seekingobstacle avoidancereactive navigationhybrid navigation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:2945
  • 評分評分:
  • 下載下載:960
  • 收藏至我的研究室書目清單書目收藏:4
本論文的研究目的在發展服務自走車模糊反應導航與混合導航之控制系統結構與技術。服務自走車車體是以類似履帶式結構建造,用以機動行駛於任何地面。服務自走車之自我定位端賴卡爾曼濾波器法則,以融合里程計、數位羅盤、陀螺儀與超音波感測系統等內外感測器之量測值,得出車體之位置與方向值。一新式模糊合作與競爭協調之反應導航策略被提出,用以即時處理多重超音波感測資料,合併尋標與防碰撞行為而產生一合適或緊急應變行為,控制車體能流暢地行走於未知動態的環境空間。混合導航是用以克服當車體行駛於一動態、凌亂的環境裡,服務自走車並不會以合適的路徑到達終點姿態的缺點。混合導航結合反應導航的性質與超音波環境辨識技術,控制車體以合適的路徑到達終點姿態。模擬與實驗數據資料用以驗証本文所提導航方法的可行性與有效性。
This thesis develops control architecture and techniques for fuzzy reactive navigation and hybrid navigation of a special-purpose service robot vehicle (SPSRV). The vehicle is constructed based on the similar tracked structure in order to maneuver in any terrain. Two types of internal and external sensors, including odometer, digital compass, gyroscope and ultrasonic ranging sensors, are fused by dead-reckoning and Kalman filter for accomplishing self-localization of the vehicle. A new fuzzy cooperation/competition coordination approach is presented to cope with multiple ultrasonic data so as to merge goal-seeking and obstacle avoidance behaviors to generate a suitable or emergent behavior, which makes the SPSRV move smoothly in an unknown-environment. The hybrid navigation method is proposed to overcome the weakness of the proposed reactive navigation, which may result in an undesirable path when the vehicle moves in a dynamic and cluttered environment. The hybrid navigation uses the nature of the reactive navigation integrated with identification of the environment model utilizing ultrasonic readings, and then drives the vehicle to reach the final pose in an appropriate route. Experimental and simulation results have been used to illustrate feasibility and effectiveness of the proposed navigation methods.
Contents
Chinese Abstract i
English Abstract ii
Acknowledgments iii
Contents iv
List of Figures viii
List of Tables xiii
Nomenclature xiv
Chapter 1: Introduction 1
1.1 Introduction 1
1.2 Literature Review 3
1.3 Contributions of the Thesis 5
1.4 Organization of the Thesis 6
Chapter 2: Control Architecture Design and Software Development 8
2.1 Introduction 8
2.2 Description of a SPSRV Navigation and Control System 9
2.3 Detailed Computing Architecture 11
2.3.1 Hardware Aspect 11
2.3.1.1 Digital Interfacing Cards 12
2.3.1.2. DAS-1600 (A/D-D/A card) 12
2.3.2 Operation System 12
2.3.3 Software Environment 13
2.4 Motion Control Subsystem 13
2.4.1 Odometer 14
2.5 Power Supply Subsystem 15
2.6 Heading Sensing Subsystem 16
2.6.1 Digital Compass 16
2.6.2 Gyrostar 16
2.7 Ultrasonic Ranging Subsystem 19
2.8 Vehicle Kinematics Model 21
2.9 Hybrid Navigation and Control 21
2.10 Heading Control 23
2.11 Concluding Remarks 27
Chapter 3: Fuzzy Control of Two Basic Behaviors 29
3.1 Introduction 29
3.2 Dead-Reckoning (DR) 32
3.3 Fuzzy Control Theory 35
3.4 Fuzzy Goal Seeking Behavior 37
3.4.1 Fuzzy Goal-Seeking Control 37
3.4.2 Computer Simulation, Experimental Results and Discussion 45
3.4.2.1 Simulation Results 45
3.4.2.2 Experimental Results 45
3.5 Fuzzy Obstacle Avoidance Behavior 47
3.5.1 Fuzzy Obstacle Avoidance Control 47
3.5.2 Computer Simulation, Experimental Results and Discussion 55
3.6 Concluding Remarks 61
Chapter 4: Fuzzy Reactive Navigation and Hybrid Navigation 63
4.1 Introduction 63
4.2 The Proposed Fuzzy Reactive Control Architecture 65
4.2.1 Fuzzy Reactive Navigation Control 65
4.2.2 Computer Simulation, Experimental Results and Discussion 70
4.3 The Proposed Fuzzy Hybrid Navigation Architecture 74
4.3.1 Fuzzy Hybrid Navigation Control 74
4.3.2 Computer Simulation, Experimental Results and Discussion 78
4.3.2.1 Simulation Results 78
4.3.2.2 Experimental Results 81
4.4 Concluding Remarks 82
Chapter 5: Summaries and Recommendations 84
5.1 Summaries 84
5.2 Recommendations 85
Bibliography 87
[1] R. D. Schraaft, and G. Schmierer, Service Robots, AK Peters, 2000.
[2] A. Mandow, J. M. Gomez-de-Gabriel, J. L. Martinez, V. F. Munoz, A. Ollero and A. Garcfa-Cerezo, “The autonomous mobile robot AURORA for greenhouse operation,” IEEE Robotics & Automation Magazine, pp. 18-28, December, 1996.
[3] S. Asami, “Robots in Japan: Present and Future,” IEEE Robotics & Automation Magazine, pp. 22-26, June 1994.
[4] D. Gachet, J. R. Pimentel, L. Moreno, M. A. Salichs, and V. Fernandez, “Neural network approaches for behavioral control of autonomous system,” IFAC Intelligent Autonomous Vehicles, Southampton, UK, pp. 329-333, 1993.
[5] P. S. Lee and L. L. Wang, “Collision avoidance by fuzzy logic control for automated guided vehicle navigation,” Journal of Robotic Systems, vol. 11, no. 8, pp. 743 -760, 1994.
[6] G. Cheng and A. Zelinsky, “Real-time visual behaviours for navigating a mobile robot,” Proc. IROS 96, pp. 973-980, 1996.
[7] C. Ye and N.H.C Yung, “Vehicle navigation strategy based on behavior fusion,” IEEE, pp. 3698-3703, 1997.
[8] 賴志章, Outdoor Localization and Reaction Control of an Autonomous Mobile Robot, 國立中興大學電機機工程研究所碩士論文, 中華民國八十八年六月.
[9] 劉文龍, Behavior Control for a Mobile Robot based on Reinforcement Learning,
國立中正大學電機工程研究所碩士論文, 中華民國九十年七 月.
[10] R. R. Murphy, Introduction to AI Robotics, The MIT press, 2000.
[11] D. Maravall, J. de Lope, and F. Serradilla, “Combination of model-based and reaction methods in autonomous navigation,” Proceedings of the 2000 IEEE International Conference on Robotics & Automation, pp. 2328-2333, April 2000.
[12] Y.-K. Na, and S.-Y. Oh, “Hybrid control for autonomous mobile robot navigation using neural network based behavior modules and environment classification,” to appear in Journal of Intelligent and Robotic System.
[13] 蔡清池, 無人搬運車 教育部八十五年度 機電整合科技教育計畫, 中華民國八十五年.
[14] Y. H. Joo, H. S. Hwang, K. B. Woo, K. W. Bae, and S. K. Kim, “Intelligent navigation control of an autonomous mobile robot,” Proceeding of IFAC Intelligent Autonomous Vehicles, Southampton, UK, pp. 281-286, 1993.
[15] R. C. Arkin, “Motor schema-based mobile robot navigation,” The International Journal of Robotics Research, vol. 8, no. 4, pp. 92-112, Aug 1989.
[16] H. R. Beom and H. S. Cho, “A sensor-based navigation for a mobile robot using fuzzy logic and reinforcement learning,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 25, no. 3, pp. 464-477, March 1995.
[17] K. T. Song, and W. H. Tang, “Environment perception for a mobile robot using double ultrasonic sensors and a CCD camera,” IEEE Transactions on Industrial Electronics, vol. 43, no. 3, pp. 372-379, August 1994.
[18] H. Gartner and A. Astolfi, “Stability study of a fuzzy controlled mobile robot,” Proceeding of 1996 IEEE Conference on Decision and Control, Koba, Japan, pp. 121-1126, 1996.
[19] D. K. Chwa, J. H. Seo, P. Kim, and J. Y. Choi, “Sliding mode tracking control of nonholonomic wheeled mobile robots,” Proceedings of the American Control Conference Anchorage, AK May 8-10, pp. 3991-3996, 2002.
[20] 王進德 蕭大全, 類神經網路與模糊控制理論入門, 全華科技圖書股份有限公司, 1999.
[21] 孫宗瀛 楊英魁, Fuzzy 控制: 理論、實作與應用, 全華科技圖書股份有限公司, 1999.
[22] W. L. Xu and S. K. Tso, “Sensor-based fuzzy reactive navigation of a mobile robot through local target switching,” IEEE Transactions on Systems, Man, and Cybernetics-part C: Applications and Reviews, vol. 29, no. 3, pp. 451-459, August 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊