跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/01 02:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐瑞成 
研究生(外文):Jui-Cheng Hsu
論文名稱:使用模糊適應增廣訊息濾波技術之自動導航車自我定位
論文名稱(外文):Self-Localization of an Autonomous Mobile Robot Using Fuzzy Adaptive Extended Information Filtering Schemes
指導教授:蔡清池
指導教授(外文):Ching-Chih Tsai
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:105
中文關鍵詞:訊息濾波技術模糊調諧器定位導航車雷射掃描器超音波感測器融合
外文關鍵詞:information filteringfuzzy tunerlocalizationmobile robotlaser scannerultrasonicssensor fusion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:2244
  • 評分評分:
  • 下載下載:602
  • 收藏至我的研究室書目清單書目收藏:3
本論文旨在探討應用模糊適應增廣訊息濾波策略(Fuzzy adaptive extended information filtering)於自動導航車自我定位之方法與技術。為偵測及避免非線性濾波技術的發散問題,本文提出由模糊調諧器(Fuzzy tuner)及指數加權增廣訊息濾波技術(Extended information filtering)所組成的模糊適應增廣訊息濾波技術,並對其主要特性作詳盡之研究。本文另提出兩種新式自動導航車定位系統結合模糊適應增廣訊息濾波技術之信號處理方法來增進定位估測的精確度與強健度,其一是使用雷射掃描器及反光板之三角測量法(Three-point triangulation),其二是使用兩個超音波發射器及三個接收器之超音波飛行時間(Time of flight)測量法。這兩種定位方法不但可決定自動導航車相對於慣性參考座標的絕對位置及車頭方向,而且能應用模糊適應增廣訊息濾波技術取得導航車之動態位置及車頭方向估測值。透過電腦模擬及實驗數據足以證明本論文所提之定位系統與模糊適應增廣訊息濾波信號處理方法的有效性與可行性。

This thesis develops methodologies and techniques for self-localization of an autonomous mobile robot (AMR) using the fuzzy adaptive extended information filtering (FAEIF) scheme. The FAEIF, composed of a fuzzy tuner and the exponential weighted extended information filter (EIF), is presented in order to detect and avoid the nonlinear filter divergence problems. The main features of the FAEIF scheme are studied in some details. Two novel localization systems together with the FAEIF signal processing methods are proposed to improve the accuracy and robustness of pose estimation for the AMR. The first one based on the three-point triangulation uses a laser scanner and at least three retro-reflectors. The second one fuses ultrasonic time-of-flight (TOF) readings measured from two ultrasonic transmitters and three receivers. In these two methods, not only the static position and orientation of the AMR can be determined uniquely with respect to an inertial frame of reference, but also the dynamic pose estimates can be obtained by the FAEIF-based sensor fusion approach. Numerous simulation and experimental results are provided to show the effectiveness and feasibility of the proposed localization systems and the FAEIF signal processing methods.

Contents
Chinese Abstract i
English Abstract ii
Acknowledgments iii
Contents iv
List of Figures vii
List of Tables x
Nomenclature xi
Chapter 1:Introduction 1
1.1 Introduction 1
1.2 Literature Review 3
1.3 Contributions of the Thesis 7
1.4 Organization of the Thesis 8
Chapter 2:Fuzzy Adaptive Extended Information Filtering 10
2.1 Introduction 10
2.2 The Information Filter and Extended Information Filter (EIF) 12
2.3 Exponential Weighted EIF 16
2.4 Fuzzy Adaptive EIF 19
2.4.1 Fuzzy Tuner 20
2.4.2 Fuzzy Adaptive EIF (FAEIF) Algorithm 25
2.5 Simulation Results and Discussion 25
2.6 Concluding Remarks 33
Chapter 3:Self-Localization of an Autonomous Mobile Robot
Using a Laser Scanner 35
3.1 Introduction 35
3.2 Laser Scanner and Triangulation 36
3.3 Sensitivity to Measurement Errors 42
3.4 Static Localization Estimation Algorithm 46
3.5 Dynamic Localization Estimation Algorithm 50
3.6 Simulation, Experimental Results and Discussion 53
3.6.1 Computer Simulation 53
3.6.2 Static Experiment 60
3.7 Concluding Remarks 62
Chapter 4:Self-Localization of an Autonomous Mobile Robot
Using Ultrasonic Measurements 64
4.1 Introduction 64
4.2 Physical Configuration and Mathematical Description of the
Ultrasonic Location System 65
4.3 Static Localization Estimation Algorithm 71
4.4 Dynamic Localization Estimation Algorithm 73
4.5 Simulation, Experimental Results and Discussion 76
4.5.1 Computer Simulation 77
4.5.2 Static Experiment 83
4.6 Concluding Remarks 86
Chapter 5:Summaries and Recommendations 88
5.1 Summaries 88
5.2 Recommendations 90
Bibliography 91
Appendix A 95
Appendix B 98

[1] A. G. O. Mutambara, Decentralized Estimation and Control for Multisensor Systems, CRC Press LLC, 1998.
[2] P. S. Maybeck, Stochastic Models, Estimation, and Control, Vol. 1, New York, Academic Press, 1979.
[3] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall International, Inc., pp. 456-467, 1993.
[4] A. Gelb, Applied Optimal Estimation, The MIT Press, 1974.
[5] F. L. Lewis, Optimal Estimation with an Introduction to Stochastic Control Theory, John Wiley & Sons, Inc., 1986.
[6] G. Abdelnour, S. Chand, S. Chiu, and T. Kido, “On-line detection & correction of Kalman filter divergence by fuzzy logic,” Proceeding of the 1993 American Control Conference, pp. 1835-1839, 1993.
[7] J. Z. Sasiadek and Q. Wang, “Sensor fusion based on fuzzy Kalman filtering for autonomous robot vehicle,” Proceeding of the 1999 IEEE Conference on Robotics and Automation, Detroit, Michigan, pp. 2970-2975, May 1999.
[8] J. Z. Sasiadek, Q. Wang and M. B. Zeremba, “Fuzzy adaptive Kalman filtering for INS/GPS data fusion,” Proceedings of the 15th IEEE International Symposium on Intelligent Control, pp. 181-186, Rio, Patras, GREECE, July 2000.
[9] K. Kobayashi, K. C. Cheok, K. Watanabe and F. Munekata, “Accurate differential globle positioning system via fuzzy logic Kalman filter sensor fusion technique,” IEEE Transactions on Industrial Electronics, vol. 45, no. 3, pp. 510-518, June 1998.
[10] C. D. McGillem and T. S. Rappaport, “Infra-red location system for navigation of autonomous vehicles,” IEEE CH2555-1/88/0000/1236, pp. 1236-1238, 1988.
[11] Y. H. Kim, “Localization of a mobile robot using a laser range finder in a hierarchical navigation system,” IEEE Proceedings of Southeastcon ‘93, 1993.
[12] J. Forsberg, U. Larsson and Åke Wernersson, “Mobile robot navigation using the range-weighted Hough transform,” IEEE Robotics and Automation Magazine, pp. 18-26, March 1995.
[13] A. Dubrawski and B. Siemiatkowska, “A method for tracking pose of a mobile robot equipped with a scanning laser range finder,” Proceeding of the 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium, pp. 2518-2523, May 1998.
[14] P. Jensfelt and H. I. Christensen, “Laser based pose tracking,” Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Detroit, Michigan, pp. 2994-3000, May 1999.
[15] J. J. Craig, Introduction to Robotics: Mechanics and Control, Addison-Wesley, Reading, MA, 1989.
[16] T. Fukao, H. Nakagawa, and N. Adachi “Adaptive tracking control of a nonholonomic mobile robot,” IEEE Transactions on Robotics and Automation, vol. 16, no. 5, pp. 609-615, October 2000.
[17] M. Drumheller, “Mobile robot location using sonar,” IEEE Transactions on Pattern Anal. Machine Intell., vol. PAMI-9, pp. 325-332, Mar. 1987.
[18] J. J. Leonard and H. F. Durrant-Whyte, Directed Sonar Sensing for Mobile Robot Navigation. Boston/London/Dordrecht: Kluwer, 1992.
[19] B. Triggs, “Model-based sonar localization for mobile robots,” Robotics, Autonomous Syst., vol. 12, pp. 173-186, 1994.
[20] M. Piasecki, “Mobile robot localization by fuzzy logic fusion of multisensor data,” Robotics, Autonomous Syst., vol. 12, pp. 155-162, 1994.
[21] F. Figueroa and A. Mahajan, “A robust navigation system for autonomous vehicles using ultrasonics,” Contr. Eng. Practice, vol. 2, no. 1, pp. 49-59, 1994.
[22] D. Maksarov and H. Durrant-Whyte, “Mobile vehicle navigation in unknown environments: A mutiple hypothesis approach,” IEEE Proc. Contr. Appl. Theory, vol. 142, no. 4, pp. 385-400, 1995.
[23] A. M. Sabatini, “A digital signal processing technique for compensating ultrasonic sensors,” IEEE Trans. Instrum. Meas., vol. 44, no. 4, pp. 869-874, 1995.
[24] J. H. Kim and P. H. Seong, “Experiments on orientation recovery and steering of autonomous mobile robot using encoded magnetic compass disc,” IEEE Trans. Instrum. Meas., vol. 45, pp. 271-273, Feb. 1996.
[25] K. -T. Song and Y. -H. Suen, “Design and implementation of a path tracking controller with the capacity of obstacle avoidance,” in Proc. 1996 Automatic Control Conf., Taipei, Taiwan, pp. 134-139, 1996.
[26] J. A. Janet, R. Gutierrez, T. A. Chase, M. W. White, and J. C. Sutton, “Autonomous mobile robot global self-localization using Kohonen and region-feature neural networks,” J. Robotic Systems 14, pp. 263-282, 1997.
[27] C. C. Tsai, “A localization system of a mobile robot by fusing dead-reckoning and ultrasonic measurements,” IEEE Transactions on Instrumentation and Measurement, vol. 47, no. 5, pp. 1399-1404, October 1998.
[28] C. J. Wu and C. C. Tsai, “Localization of an autonomous mobile robot based on ultrasonic sensory information,” Journal of Intelligent and Robotic Systems 30, pp. 267-277, 2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top