(44.192.10.166) 您好!臺灣時間:2021/03/06 04:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂文玉 
論文名稱:應用於IEEE802.11b傳送器濾波電路之實現
論文名稱(外文):Implementation of Shaping Filter for IEEE 802.11b Transmitter
指導教授:張振豪
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:73
中文關鍵詞:濾波器
外文關鍵詞:FIR filterIEEE 802.11bNyquistSub-expression sharingCSD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:959
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:154
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,我們將介紹應用於無線區域網路中IEEE 802.11符合Nyquist條件的的根上升餘弦濾波器。這個濾波器是一個典型依係數塑型的有限脈衝響應(FIR)濾波器。我們採用這個濾波器,係由於降低符號間干擾與將送入類比數位轉換器平滑化的因素。IEEE 802.11是使用直接序列展頻及差動二相/正交相移鍵調變技術,並使用互補碼鍵來有效的提供不同的資料速率,文中也會討論到其發射接收器的架構。
為了完成這個濾波器,我們將使用二補數與典型的符號數字取代傳統數字系統,加上提出子式表達及鄰近係數分享的方法使濾波器能較為完美,在架構上並利用係數對稱的原理,將硬體縮減為原來的一半。在邏輯閘層模擬結果,輸出資料速率可達71.43MHz(系統要求為44MHz),使用Avant! 0.35um cell library合成的晶片面積為11259的單位邏輯閘。

A Nyquist digital Filter- Root Raised Cosine filter for IEEE 802.11b of WLAN BBP will be presented in this thesis. The shaping filter is a typical FIR Filter whose passband shape is set by taps coefficients. We adopt the filter because it can reduce the ISI phenomenon and smoothen these data bits before sending to the DAC. The IEEE 802.11b Wireless LAN adopts Direct Sequence Spread Spectrum (DSSS) technology. The differential phase shift keying modulation schemes (DBPSK/DQPSK) along with Complementary Code Keying (CCK) are used to provide a variety of data rates. The transceiver structure will be introduced briefly.
In this thesis, various number systems such as 2’s complement and CSD will be discussed. Besides, sub-expression sharing and adjacent coefficient sharing will be addressed to optimize the filter. Since the impulse response of the FIR filter has symmetric coefficients about the center coefficient, the FIR filter with linear phase can reduce hardware cost by half. In gate-level simulation, the input data rate could reach 71.43 MHz (14ns), which can meet the system specification of 44MHz. The total area is 11259 gate counts using Avant! 0.35um cell library.

摘要 i
Abstract ii
誌謝 iii
Contents iv
List of Figures vi
List of Tables viii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Outline of the Thesis 1
Chapter 2 Overview of IEEE 802.11b Wireless LAN 2
2.1 Wireless LAN Communication System 2
2.2 Introduction to IEEE 802.11b 4
2.3 DSSS and Modulation Technology 4
2.3.1 Direct Sequences Spread Spectrum 4
2.3.2 Differential Binary Phase Shift Keying (DBPSK) 5
2.3.3 Differential Quartered Phase Shift Keying (DQPSK) 6
2.4 IEEE 802.11b Baseband Transceiver 7
Chapter 3 IEEE 802.11b BBP Transmitter 10
3.1 TX Framer 11
3.2 Barker and CCK Modulator 15
3.3 Digital Shaping Filter 22
3.3.1 Types of Digital Filter 23
3.3.2 Realization of FIR Filter 28
3.3.3 ISI and Raised-Cosine Filter 30
Chapter 4 Hardware Implementation and Simulation Results 38
4.1 Digital IC Design Flow 39
4.2 Modulator 40
4.2.1 Block Diagram 40
4.2.2 Simulation Results 42
4.3 FIR Shaping Filter 45
4.3.1 Design a FIR Filter from Spectrum Requirement 46
4.3.2 Number System 48
4.3.3 Sub-Structure Sharing 53
4.3.4 Architecture and Block Diagram 58
4.3.5 Simulation Results 60
Chapter 5 Conclusions 63
Reference 64

[1] Richard L. Abrahams, Comparison of Wireless LAN Radio Performance, Intersil Corporation, Palm Bay, Florida
[2] John Fakatselis, Proposed IEEE802.11 Direct Sequence Spread Spectrum
Physical Layer Characteristics,
http://www.intersil.com/design/prism/papers/index.asp.
[3] Simon Haykin, Communication System, John Wiley & Sons, New York, 2000.
[4] “IEEE P802.11b Standard part 11: Wireless LAN MAC and PHY specifications: High-speed PHY extension in the 2.4 GHz band. ”, Sep. 1999.
[5] Carl Andren and Mark Webster, "Achieving Ethernet Rates in Wireless LANs," In Wireless Technology Conference Proceedings, pp. 51-60, Jul. 1999.
[6] Intersil Corporation, Complementary Code Keying Made Simple: Application Note, May 2000.
[7] Marvin E. Frerking, Digital Signal Processing in Communication System, Chapman & Hall, New York, 1994.
[8] Lonnie C. Ludeman, Fundamentals of Digital Signal Processing, John Wiley & Sons, New York, 1986.
[9] Keshab K Parhi, VLSI Digital Signal Processing System, John Wiley & Sons, Canada, 1999.
[10] Sang-Hun Yoon; Jong-Wha Chong, “FIR digital filter implementation using flattened coefficient”, Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium, vol. 3, pp. 363 —366 May 2000.
[11] Andy Bateman, Digital Communication, Addison Wesley Longman, 1999.
[12] Intersil Crop., Direct Sequence Spread Spectrum Baseband Processor, Data Sheet, File Number 4856, April 2000,HFA3863.
[13] Charlie Evans & Jeff Fox, “New IP Evaluation Model Reduces Risk, Speeds FIR Filter Design Time for Communications Test Equipment”,
http://chip123.eecs.stut.edu.tw/
[14] Peter Pirsch., Architectures for Digital Signal Processing, John Wiley & Sons, New York, 1998.
[15] S. W. Reitwiesner, Binary arithmetic, Advances in Computers,1966.
[16] Henry Samueli, “An improved search algorithm for the design of multiplierless FIR filters with powers-of-two coefficients”, IEEE Transactions on Circuits and Systems, vol. 36,no. 7, pp. 1044 -1047, July 1989.
[17] “IEEE P802.11b/D2.0 Standard”, Nov 1998.
[18] Intersil, “11 MBps Modulation Techniques for the Indoor Wireless Environment”
May, 5,1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔