跳到主要內容

臺灣博碩士論文加值系統

(107.21.85.250) 您好!臺灣時間:2022/01/22 04:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許勝凱 
研究生(外文):sheng kai shi
論文名稱:各種吉伯架構混頻器設計和實現
論文名稱(外文):Design and Implementation of Mixer with Gilbert Cell Variant Topology
指導教授:孟慶宗
指導教授(外文):C. C. Meng
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:76
中文關鍵詞:射頻微波混頻器
外文關鍵詞:RFmicrowavemixer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:426
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文描述各種吉伯架構混頻器設計和實現,更重要的是,它也證明了我們的理論。一個使用吉伯變換架構,有高隔離、高增益的共模迴授之混頻器已經被實現,而令人興奮地,在DNW和No-DNW的本地振盪埠和中頻埠之隔離度大約有24dB的差距,它證明了提出的觀點,除此之外,操作在1.8伏的共模迴授之混頻器也提供較高的增益,有17.5dB,更好的是有較低功率消耗。它只消耗18mW在低電壓,整個電路也占較小的面積。另一個是使用電流接結合的新奇昇頻器,它可操作在5.2GHz系統,射頻埠和中頻埠之隔離度有31dB以上,它應該是LC匹配濾掉一些雜訊,而射頻訊號不能到中頻埠,除此之外,這射頻頻寬有130MHz~400MHz。
這測量的結果驗證了我們的設計各種吉伯架構混頻器設計和實現,它也提供了理論和實現。
This thesis describes the design and implementation of mixer with Gilbert cell variant topology. It is important to prove our theory, too. A CMFB mixer based on Gilbert cell variant topology was implemented, high isolation and high gain has been demonstrated. Excitingly the difference in the LO-IF isolation between DNW and No-DNW is about 24 dB. It proves the proposed viewpoint. Besides, the CMFB mixer in the 1.8V operation also provides higher gain that is 17.5dB,and what is better, lower power dissipation. It is just 18mW for low voltage and the full circuit also occupies smaller size. Another novel up-converter can be operated in 5.2GHz system with current-combiner. The RF-IF isolation is very good and upon 31dB. It should be due to LC-match would filter some noise and RF signal cannot arrive in IF port. Besides, the RF bandwidth is about 130MHz~400MHz.
The measured results verify our design and implementation of all mixers with Gilbert cell variant topology. They also provide theory and implementation.
Contents
Abstract (in Chinese)………………………………………………………………………...i
Abstract (in English)..………………….………………………………………………..ii
Acknowledgements…………………………………………………………………………iii
Contents……………………………………………………………………………………iv
List of Figures……………………………………………………………………………vii
List of Tables………………………………………………………………………………xii
Chapter 1…………………………………………………………………………..….1
Introduction………………………………………………………………………………...1
1.1 Motivation…………………………………………………………………..1
1.2 Limitation of CMOS RF Design…………………………………………2
1.3 Thesis organization……………………………………………………….…3
Chapter 2………………………………………………………………………..…….5
Receiver Architectures…………………………………………………………………......5
2.1 General Considerations…………………………………………………..…5
2.2 Heterodyne Architectures…………………………………………………...6
2.2.1 Super-Heterodyne Receiver…………………………………………..7
2.2.2 The Image Frequency Problem………………………………..……...7
2.3 Direct-Conversion Architecture…………………….………………………9
2.3.1 DC Offsets….…………………………...…...………………………10
2.3.2 Flicker Noise.…...…………………………………………………...12
2.4 Low-IF Architecture…………………………………….………………..13
Chapter 3…………………………………………………………………………….15
MIXER ...………………………………....…………….…………………………………15
3.1 Mixer Fundamental………………………………………………………15
3.1.1 Conversion Gain…………………………………………………...15
3.1.2 Noise Figure..………………………………………………...……...16
3.1.3 Gain Compression…………………………………………………...18
3.1.4 Linearity……………………..…………………..……………...…...18
3.1.5 Input Return Loss……………………………………………………19
3.1.6 Isolation……………………....………………………….…………..20
3.2 CMFB Mixer…………………….……….…….………..………………...20
3.2.1 Introduction…………………………………...……………………..20
3.2.2 Analysis of CMFB Mixer ………………...…………………………21
3.2.3 Simulation…………………………………………………………29
3.2.4 Measurement Consideration and Results……………………………31
3.2.4.1 Measurement in 1.8V operation………………………………….34
3.2.4.2 Measurement in 2.4V operation………………………………….38
3.2.5 Discussion…………………………………………………………43
Chapter 4…………………………………………………………………………….44
5.2 GHz UP-CONVERTER and OSCILLATOR…………….…………………………44
4.1 Introduction……………………………………………….………….……44
4.2 Circuit Construction ………………………………………………………44
4.3 Simulation…...…………………………………………………………….49
4.4 Results and Discussion……………………………………………………..51
Chapter 5…………………………………………………………………………….54
LMDS 30-GHz Up-converter…………………………………………………………..54
5.1 Introduction………………………..……………………………………….54
5.2 Theory and Circuit Design………………………….…………………….55
5.3 Simulation and Result……………………………………………………..57
Chapter 6…………………………………………………………………………….61
N-type and P-type CMOS Mixer……….………………………………………………..61
6.1 Introduction………………………..……………………………………….61
6.2 Simulation………………………………………………………………….62
6.3 Measurement Consideration and Result…………………………………..64
Chapter 7…………………………………………………………………………….75
CONCLUSION…………………………………………………………………………..75
7.1 Research Summary……………………………………………………….75
7.2 Future Work………………………….…………………………………….76
Bibliography………………………………………………………………………………..
List of Figures
Chapter 2 ………………………………………………………………………………….5
Fig. 2.1 RF front-end for an ideal RF input signal………………………………………..7
Fig. 2.2 Simplified model of a single mixer……………………………………...……….7
Fig. 2.3 Direct-conversion architecture block diagram………………………………..….9
Fig. 2.4 LO-self-mixing…….…...……………………………………………………….10
Fig. 2.5 Input offset voltage for a differential CMOS amplifier…………..…………….12
Fig. 2.6 Low-IF architecture block diagram………………………..…………………...13
Chapter 3 ………………………………………………………………………………….15
Fig. 3.1 Simplified CMOS Gilbert Cell mixer……………………………………....…..16
Fig. 3.2 Relationships between Pin and Pout……………...…………………………….19
Fig. 3.3 The proposed CMFB CMOS Mixer………………..………………………...…21
Fig. 3.4 The schematic of single to differential stage…………...………………….……24
Fig. 3.5 Conceptual topology for common-mode feedback…….………..…………...27
Fig. 3.6 The schematic of common-mode feedback……………………………..……..28
Fig. 3.7 The schematic of the output…………………….………….……………..……..28
Fig. 3.8(a) The return loss in RF-port………...…………………….……………..……..29 Fig. 3.8(b) The return loss in IF-port……………………………….……………..……..30
Fig. 3.9 The waveform of the output port……………….…….…….……………..……..30
Fig. 3.10 The frequency response of the output port……….…….……………..……..30
Fig. 3.11 The max conversion gain……….…………………….….……………..……..30
Fig. 3.12 The simulation of P1dB……………………….…….…………………..……..31
Fig. 3.13 The photograph of the CMFB mixer…………...…..…….……………..……..31
Fig. 3.14 A 2.25-GHz Rat-race…………………...…………..…….……………..……..32
Fig. 3.15 Insertion loss………………..……..………………..…….……………..……..33
Fig. 3.16 Phase………………………………………………..…….……………..……..33
Fig. 3.17 Return loss and isolation………………..…………..…….……………..……..33
Fig. 3.18 The max conversion gain…………….……………..…….……………..……..34
Fig. 3.19 LO-IF isolation……………………..…….……………………………..……..35
Fig. 3.20 LO-RF isolation……………………...……………..…….……………..……..35
Fig. 3.21 RF-IF isolation………………………………….…..…….……………..……..35
Fig. 3.22 The measurement of P1dB………………...………..…….……………..……..36
Fig. 3.23 The measurement result of IIp3 with DNW…………………...….……..……..36
Fig. 3.24 The measurement result of IIp3 with No-DNW……………..…………..……..36
Fig. 3.25 Return loss in RF port……...…………..……………...….……………..……..37
Fig. 3.26 Return loss in IF port………………..………………..…….…….……..……..37 Fig. 3.27 IF bandwidth……….………………..………………..…….…….……..……..37 Fig. 3.28 The max conversion gain…………….……………..…….……………..……..38
Fig. 3.29 LO-IF isolation……………………..…….……………………………..……..39
Fig. 3.30 LO-RF isolation……………………...……………..…….……………..……..39
Fig. 3.31 RF-IF isolation………………………………….…..…….……………..……..39
Fig. 3.32 The measurement of P1dB………………...………..…….……………..……..40
Fig. 3.33 The measurement result of IIp3 with DNW…………………...….……..……..40
Fig. 3.34 The measurement result of IIp3 with No-DNW……………..…………..……..40
Fig. 3.35 Return loss in RF port……...…………..……………...….……………..……..41
Fig. 3.36 Return loss in IF port………………..………………..…….…….……..……..41 Fig. 3.37 IF bandwidth……….………………..………………..…….…….……..……..41
Chapter 4 …………………………………………………………………………………44
Fig. 4.1 The full schematic of up-converter with oscillator…………………………….45
Fig. 4.2 The current-combiner Circuit………………….…………………….………….46
Fig. 4.3 The idea AC equivalent model………………………………………………..47
Fig. 4.4 The series capacitor and inductor at resonance…………………………….47
Fig. 4.5 A short circuit………………………………………………………...………..47
Fig. 4.6 Converted back into a current source and parallel capacitor…………………47
Fig. 4.7 The parallel capacitor The parallel capacitor………………………….…..……47
Fig. 4.8 Final scheme…………………………………………………………...….……47
Fig. 4.9 LC-tank Oscillator……………………………………………………..………48
Fig. 4.10 LO Suffer……………………………………………...……………..…………48
Fig. 4.11 The input return loss and output return loss…………………………………..48
Fig. 4.12 The frequency spectrum of the output port……………….….….…………50
Fig. 4.13 The scheme of P1dB…………………………...………………….……..…..…50
Fig. 4.14 The bandwidth of IF port………………………...….…………….……..…..…50
Fig. 4.15 The layout of the up-converter…………………...……………….……..…...…51
Fig. 4.16 The measurement of P1dB……...……………...………………….……..…..…52
Fig. 4.17 Return loss in IF port…………………………...……………….……..…….…52
Fig. 4.18 Return loss in RF port………………..………...………………….……..…..…52
Fig. 4.19 RF-IF isolation……………….………………...………………….……..…..…53
Fig. 4.20 The IF bandwidth…………………………...………………….……..…..……..53
Chapter 5 …………………………………………………………………………………54
Fig. 5.1 The proposed LMDS 30-GHz Up-converter……………………………………56
Fig. 5.2 LO and RF 1800 balun for the up-converter……………………………………56
Fig. 5.3 The frequency spectrum of the output port………………....……………………57
Fig. 5.4 The input return loss and output return loss……………..………………………58
Fig. 5.5 Max conversion Gain………………………………….…………………………58
Fig. 5.6 The scheme of P1dB………………………..……………………………………59
Fig. 5.7 Phase Difference Between port and port…………..……………………………59
Fig. 5.8 Isolation Between port and port…………………….……………………………59
Fig. 5.9(a) The Layout of total circuit in CAD………….………………………………60
Fig. 5.9(b) The Layout of total circuit in practice………………………………………60
Chapter 6 …………………………………………………………………………………61
Fig. 6.1(a) The schematic of N-type mixer……….………………………………………61
Fig. 6.1(b) The schematic of P-type mixer……...……………………………...…………61
Fig. 6.2 Conversion gain with N-type and P-type……………………………...…………63
Fig. 6.3 The simulation of P1dB in N-type….………………………………...…………63
Fig. 6.4 The simulation of P1dB in P-type…………..………………………...…………63
Fig. 6.5 The frequency response of the output port in N-type and P-type………….……64
Fig. 6.6 The layouts of the N-type and P-type mixer in CAD………….……...…………64
Fig. 6.7 The layouts of the N-type and P-type mixer in practice……………....…………64
Fig. 6.8 Conversion gain in IF+ port…………………………………………...…………65
Fig. 6.9 Conversion gain in IF- port………….………………………………...…………65
Fig. 6.10 P1dB in IF+ port……...……………………………………………...…………65
Fig. 6.11 P1dB in IF- port……………………………………………………...…………65
Fig. 6.12 IIp3 in N-type in IF+ port….………..……………………………...…………66
Fig. 6.13 IIp3 in N-type in IF- port…………………………………………...…………66
Fig. 6.14 IIp3 in P-type in IF+ port…………………………………………...…………66
Fig. 6.15 IIp3 in P-type in IF- port……………...……………………………...…………66
Fig. 6.16 LO-IF isolation in IF+ port…………...……………………………...…………66
Fig. 6.17 LO-IF isolation in IF- port…………………………………………...…………66
Fig. 6.18 LO-RF isolation in IF+ port…………..…………………………...…………67
Fig. 6.19 LO-RF isolation in IF- port………………………………………...…………67
Fig. 6.20 RF-IF isolation in IF+ port………………………………………...…………67
Fig. 6.21 RF-IF isolation in IF- port………………………………………...…………67
Fig. 6.22 IF bandwidth in IF+ port………………………………………...…………67
Fig. 6.23 IF bandwidth in IF- port…………………………………………...…………67
Fig. 6.24 RF bandwidth in IF+ port……………………………...…………...………68
Fig. 6.25 RF bandwidth in IF- port……….………………………………...…………68
Fig. 6.26 Return loss in IF+ port…..………………………………………...…………68
Fig. 6.27 Return loss in IF- port……….…………..………………………...…………68
Fig. 6.28 Conversion gain in IF+ port……………………………………...…………69
Fig. 6.29 Conversion gain in IF- port………………………………………...…………69
Fig. 6.30 P1dB in IF+ port………………………………………………...…………69
Fig. 6.31 P1dB in IF- port……………….………………………………...…………69
Fig. 6.32 IIp3 in N-type in IF+ port…….…………………………………...…………69
Fig. 6.33 IIp3 in N-type in IF- port……...………………………………...…………69
Fig. 6.34 IIp3 in P-type in IF+ port………………………………………...…………70
Fig. 6.35 IIp3 in P-type in IF- port………………………………………...…………70
Fig. 6.36 LO-IF isolation in IF+ port……..…..……………………………...…………70
Fig. 6.37 LO-IF isolation in IF- port………………………………………...…………70
Fig. 6.38 LO-RF isolation in IF+ port………………………………………...…………70
Fig. 6.39 LO-RF isolation in IF- port……….………………………………...…………70
Fig. 6.40 RF-IF isolation in IF+ port……….………………………………...…………71
Fig. 6.41 RF-IF isolation in IF- port………………………………………...…………71
Fig. 6.42 IF bandwidth in IF+ port…………………………………………...…………71
Fig. 6.43 IF bandwidth in IF- port…….….………………………………...…………71
Fig. 6.44 RF bandwidth in IF+ port……………...…………………………...…………71
Fig. 6.45 RF bandwidth in IF- port…………………………………………...…………71
Fig. 6.46 Return loss in IF+ port……………………………………………...…………72
Fig. 6.47 Return loss in IF- port…………….………………………………...…………72
Fig. 6.48 PCB in P-type……………………...………………………………...…………72
Fig. 6.49 Conversion gain in IF+ port………………………………………...…………73
Fig. 6.50 Conversion gain in IF- port………………………………………...…………73
Fig. 6.51 P1dB in IF+ port………………….………………………………...…………73
Fig. 6.52 P1dB in IF- port…….……………………………………………...…………73
Fig. 6.53 LO-IF isolation in IF+ port….……………………………………...…………74
Fig. 6.54 LO-IF isolation in IF- port……….………………………………...…………74
Fig. 6.55 LO-RF isolation in IF+ port………………………………………...…………74
Fig. 6.56 LO-RF isolation in IF- port……….………………………………...…………74
Fig. 6.57 RF-IF isolation in IF+ port……….………………………………...…………74
Fig. 6.58 RF-IF isolation in IF- port………..………………………………...…………74
Reference
[1] P. Gray and R. Meyer, “Future Directions of Silicon ICs for RF Personal Communications,” Custom Integrated Circuits Conf., pp. 83-90, May 1995.
[2] Bluetooth, http://www.bluetooth.com.
[3] S. V. Saliga, “An introduction to IEEE 802.11 wireless LANs,” 2000 IEEE Radio Frequency Integrated Circuits Symposium, pp. 11—14, June 2000.
[4] European Telecommunications Standards Institute, http://www.etsi.org.
[5] H. D. Graves, “A detailed analysis of MMDS and LMDS,” 1997 IEEE MTT-S Symposium on Technologies for Wireless Applications, pp. 7—10, February 1997.
[6] Paul R. Gray, and Robert R. Meyer, “Future Directions in Silicon ICs for RF Personal Communications,” Proceedings, 1995 Custom Integrated Circuits Conference, pp. 83-90, May 1995.
[7] A. A. Abidi, A. Rofougaran, G. Chang, J. Rael, J. Chang, M. Rofougaran, and P.Chang, “The Future of CMOS Wireless Transceivers,” Digest of Technical Papers, International Solid-State Circuit Conference, pp. 118-119, San Francisco, 1997.
[8]T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge, 1998.
[9] B. Razavi, “RF Microelectronics,” Upper Saddle River, NJ: Prentice Hall PTR, 1998, Chapter 5.
[10] A. Abidi, “Direct-conversion radio transceivers for digital communications,” IEEE Journal of Solid-State Circuits, vol. 30, pp. 1399—1410, December 1995.
[11] C. Hull, J. Tham, and R. Chu, “A direct-conversion receiver for 900 MHz (ISM band) spread-spectrum digital cordless telephone,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 1955—1963, December 1996.
[12] T. Cho, E. Dukatz, M. Mack, D. Macnally, M. Marringa, S. Mehta, C. Nilson, L. Plouvier, and S. Rabii, “A single-chip CMOS direct-conversion transceiver for 900 MHz spread-spectrum digital cordless phones,” IEEE International Solid-State Circuits Conference, pp. 228—229, February 1999.
[13] D. K. Weaver, “A Third Method of Generation and Detection of Single-Sideband Signals,” Proc. IRE, vol. 44, pp. 1703-1705, Dec. 1956.
[14] M. Banu, H. Wang, M. Seidel, M. Tarsia, W. Fischer, J. Glas, A. Dec, V. Boccuzzi, “A BiCMOS Double-Low-IF Receiver for GSM,” Digest of Technical Papers, IEEE Custom Integrated Circuits Conference, pp. 521-524, May 1997.
[15] K. L. Fong and R. G. Meyer, ‘Monolithic RF active mixer design,’ IEEE trans. Circuit Syst., Part II, vol.46, pp. 231-239, Mar.1999.
[16] L.A. MacEachern and T. Manku, “A charge-injection method for gilbert cell biasing,” IEEE Canadian Conference on Electrical and Computer Engineering, vol. 1,1998,pp.365-368.
[17] D. A. Johns and K. Martin, Analog Integrated Circuit Design. NY: John Wiley, 1997.
[18] Thomas H. Lee, The Design of CMOS Radio-Frequency Integrated Circuit, Cambridge University Publishing, 1998.
[19] Behzad Razavi, RF Microelectronic, Prentice Hall PTR, 1998.
[20] B. Gilbert, ‘ A precise four quadrant multiplier with subnanosecond response,” IEEE Journal of Solid-state Circuits, pp.365-373, December, 1968.
[21] Barrie Gilbert, “The MICROMIXER: A highly linear variant of the Gilbert mixer using a bisymmetric Class-AB input stage,” IEEE Journal of Solid-state Circuit, Vol.32, pp.1412~1423,Sept.1997.
[22] Jeff Durec and Eric Main, “ A linear class AB single-ended to differential transconverter suitable for RF circuits,” IEEE MTT-S Digest, pp.1071~1074,1996.
[23] Kivekas, K.and Parssinen, A.and Jussila, J.and Ryynanen, J. and Halonen, K. “ Design of low-voltage active mixer for direct conversion receivers “IEEE Journal of Solid-state Circuit, Vol.4, pp.382~385,Sept.2001.
[24] T. Jenkens et al., “Low-Noise High-power Heterojunction Bipolar Transistor for Mixed-Mode Application,” 1995 IEEE MTT-s International Microwave Symposium, pp.1129-1132.
[25] S.Fujita,Y .Imai, Y. Yaniane,and H. Fushimi, coherent optical heterodyne receiver ,” IEEE ISSCC DIG.,1991,pp.122-123.
[26] K.Osafune and Y. Yamau,”20-GHz 5-dB-Gain Analog Multiplier with AIGaAs/GaAs HBT’s,”No.3,March 1994,pp.518-519.
[27] J. Putnam and R. Puente, “Monolithic Image-Reject Mixer on GaAs Using Lumped Element “, Microwave Journal,Nov.1987, pp.107-116.
[28] S.J. Parisi,”A lumped-Element Rat-Race Coupler,” Applied Microwaves, Aug./Sept. 1989, p. 84.
[29] Samavati. H. and Rategh. H.R. and Lee. T.H. ,” A 5-GHz CMOS wireless LAN receiver front end “IEEE Journal of Solid state Circuit,Vol.35,pp.765~772,May.2000
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top