跳到主要內容

臺灣博碩士論文加值系統

(54.173.214.227) 您好!臺灣時間:2022/01/29 16:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:古惟銘 
研究生(外文):Wei Ming Gu
論文名稱:鈦酸鈷高介電材料在非揮發性記憶體半球面型複晶矽浮動閘極上之應
論文名稱(外文):CoTiO3 High-k Dielectric on HSG Floating Cell for Nonvolatile Memory
指導教授:林泓均
指導教授(外文):Hong Chin Lin
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:97
中文關鍵詞:半球面型複晶矽高介電材料鈦酸鈷
外文關鍵詞:CoTiO3HSGHigh-k Dielectric
相關次數:
  • 被引用被引用:0
  • 點閱點閱:877
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用低壓化學氣相氧化爐管合成的新高介電材料鈦酸鈷,其可被運用在非揮發性記憶體元件、隨機存取記憶體及金氧半場效電晶體閳極氧化層上,本論文首次以低壓化學氣相沈積爐管直接氧化濺鍍的鈦與鈷薄膜來合成鈦酸鈷薄膜並以不同製程方式的多晶矽為下電極同時選用物理氣相沈積的氮化鈦為上電極,而複晶矽下電極總共有三種不用的製程情況,第一種製程是大結晶顆粒高結晶密度半球面型複晶矽,第二種半球面型複晶矽的型式是小結晶顆粒高結晶密度,最後一型式為小結晶顆粒小結晶密度的半球面型複晶矽,而使用半球面型的複晶矽可以增加浮動閘極的表面積而不需要擴大整個堆疊結構的面積,因此我們可以提高耦合係數使得快閃記憶體的操作電壓可以降低,增加的耦合係數也同時減低了在寫入跟抺除時的操作電壓。
此外,我們也探討鈦酸鈷這高介電質的電容結構的漏電流行為來了解其真正的漏電流機制,此外,這具有阻絕層的鈦酸鈷薄膜電容其有效介電質常數可高達約35,且電容在大結晶顆粒高結晶密度半球面型複晶矽下電極時有最大的表面積,其可增加2.2倍的浮動閘極表面積。

A novel high-k cobalt-titanium oxide (CoTiO3) was formed by low pressure chemical vapor deposition (LPCVD). It can be used for the interpoly dielectrics for nonvolatile memory, storage capacitor dielectric for DRAM and gate oxide for MOSFET applications. In this work, for the first time, the cobalt-titanium oxide (CoTiO3) was fabricated by directly oxidizing sputtered Co/Ti film on the differential process conditions poly-Si bottom electrodes with PVD-TiN as the top plate electrode. There are three various process to form poly-Si electrodes. The first type was hemi-spherical grained (HSG) with big grain size and high density (max AEF); The second type was an HSG formation with small grain size and high density. The last type was HSG formation with small grain size and low density (min AEF) was processed. The HSG poly-Si can enlargement floating gate surface area without increasing cell area. Therefore, we achieved low voltage operating flash memory cell with high coupling ratio. The increasing in the coupling ratio can reduce programming and erasing operation voltages.
In addition, the leakage current behavior in this high-k cobalt-titanium oxide (CoTiO3) capacitor structure was studied to determine the leakage current mechanisms. The effective dielectric constant with buffered layer for CoTiO3 dielectric can reach as high as 35. The capacitor on the HSG poly-Si with big grain size and high density has the largest surface area. It can enlargement floating gate surface area 2.2 times.

目 錄
中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xiii
第一章 簡介 1
1.1 記憶體概況 1
1.2 研究動機 3
1.3 論文研究方向及架構 7
第二章 電容結構的製作及量測方式 9
2.1 鈦酸鈷薄膜電容結構的製作 9
2.1.1 半球面型複晶矽下電極的備製 10
2.1.2 氮化矽阻障層的製作 11
2.1.3 鈦酸鈷晶體結構及薄膜的形成 12
2.1.4 氮化鈦上電極與背鍍電極之製作 14
2.2 物理特性量測儀器及方式 15
2.2.1 原子力顯微鏡(AFM)表面粗糙度分析 15
2.2.2 掃描式電子顯微鏡(SEM)照相分析 16
2.2.3 穿透式電子顯微鏡(TEM)厚度分析 17
2.2.4 光學薄漠測厚儀分析 19
2.2.5 X-ray繞射儀檢測 19
2.3 鈦酸鈷薄膜電性分析儀器及方式 20
2.3.1 電容電壓特性量測 20
2.3.2 電流電壓特性量測 20
2.3.3 極化量電場特性量測 21
第三章 鈦酸鈷薄膜電容結構物理特性分析 22
3.1 複晶矽晶粒分析 22
3.2 表面粗糙度分析 22
3.3 薄膜厚度分析 23
3.4 X-ray繞射檢測分析 23
第四章 鈦酸鈷薄膜電容結構電性分析 25
4.1 電容電壓特性量測分析 25
4.2 電流電壓特性量測分析 26
4.2.1 不同HSG複晶矽下電極對漏電流的影響 27
4.2.2 漏電流的溫度效應 27
4.3 極化量電場特性量測分析 28
4.3.1 介電材料及極化理論 28
4.3.2 鐵電特徵 31
4.3.3 殘餘極化量對漏電流的影響 31
4.3.4 鈦酸鈷薄膜極化現象探討 32
4.3.4.1 P-E 極化特性 33
4.3.4.2 掃描振幅效應 33
第五章 鈦酸鈷薄膜漏電流機制探討 34
5.1漏電流傳導機制 34
5.1.1 蕭基發射或熱發射 35
5.1.2 普爾-法蘭克效應 36
5.1.3傅勒-諾德翰( F-N Tunneling)及直接穿隧 37
5.2鈦酸鈷薄膜電容器漏電流機制探討 38
第六章 結論 41

References
[1]莊達人, “VLSI製造技術”
[2] Jung-Dal Choi, Joon-Hee Lee et al., “A 0.15μm NAND Flash Technology with 0.11μm Cell Size for 1Gbit Flash Memory”, in IEDM 2000.
[3] nonvalit;e memory
[4] H. Shirai, T. Kubota, I. Honma, H. Watanabe, H. Ono and T. Okazawa, “A 0.54μm Self-Aligned, HSG Floating Gate Cell (SAHF Cell) for 256Mbit Flash Memories”, in IEDM Tech. Dig., pp.653-656, 1995.
[5] Takuya Kitamura, Masato Kawata, Ichiro Honma, Ichiro Yamamoto, Shozo Nishimoto and Ken-ici Oyama, “A Low Voltage Operating Flash Memory Cell with High Coupling Ratio Using Horned Floating Gate with Fine HSG”, in Symp. VLSI Technol. Dig. Tech. Paper, pp.104-105, 1998.
[6] H. Miki, M. Kunitomo, R. Furukawa et al., “Leakage-current mechanism of a tantalum-pentoxide capacitor on rugged Si with a CVD-TiN plate electrode for high-density DRAMs”, in Symp. VLSI Technol. Dig. Tech. Paper, pp. 99-100, 1999.
[7] P.C. Fazan, V.K. Mathews, N. Sandler, G.Q. Lo and D.L. Kwong, “A High-C Capacitor (20.4fF/μm ) with Ultrathin CVD-Ta2O5 Films Deposited on Rugged Poly-Si for High Density DRAMs” ,in IEDM Tech. Dig., pp.263-266, 1992.
[8] G.Q. Lo, Dim-Lee Kwong, Pierre C. Fazan et al., “Highly Reliable, High-C DRAM Storage Capacitors with CVD Ta2O5 Films on Rugged Polysilicon”, IEEE Electron Device Lett., pp. 216-218, 1993.
[9] K. W. Kwon, I. S. Park, D.H. Han et al., “Ta2O5 Capacitors for 1 Gbit DRAM and Beyond”, in IEDM Tech. Dig., pp.835-838, 1994.
[10] J. Lee “Ultra-Thin Gate Oxide and High-K Dielectric”, IEEE EDS SERIES-Dielectric 2001
[11] Laegu Kang, Katsunori Onishi, Yongjoo Jeon et al., “MOSFET Devices with Polysilicon on Single-Layer HfO2 High-K Dielectrics”, in IEDM Tech. Dig., pp.35-38, 2000.
[12] W.H. Lee, J.T. Clements, R.C. Keller and L. Manchanda, “A Novel High k Interpoly Dielecric(IPD), Al2O3 for Low Voltage/High Speed Flash Memories” in Symp. VLSI Technol. Dig. Tech. Paper, p.118, 1997.
[13] W.J. Qi et al., in Symp. VLSI Technol. Dig. Tech. Paper, p.41, 2000.
[14] Rajesh Khamankar, Bo Jiang, Robert Tsu et al., “A Novel Low-Temperature Process for High Dielectric Constant BST Thin Films for ULSI DRAM Applications” in Symp. VLSI Technol. Dig. Tech. Paper, pp.127-128, 1995.
[15] Baohong Cheng, Min Cao, Paul Vande Voorde et al., “Design Considerations of High-k Gate Dielectrics for Sub-0.1μm MOSFET’s” in IEEE Trans. Electron Devices, vol. 46, pp.261-262, Jan. 1999
[16] H. Watanabe, N. Aoto, S. Adachi, T. Lshijima, E. Ikawa and K. Terada, “A new stacked capacitor structure using hemispherical-grain poly-silicon electrodes”, in Extended Abstracts of the 22nd Conf. Solid State Devices and Materials, p.873, 1990
[17] M. Sakao, N. Kasai, T. Ishijima et al., “A capacitor-over-bit-line (COB) cell with a hemispherical-grain storage node for 64 Mb DRAMs”, in Int. Electron Device Meeting Tech. Dig., p.655, 1990
[18] H. Watanabe, N. Aoto, S. Adachi and T. Kikkawa, “Device application and structure observation for hemispherical-grained Si”, in J. Appl. Phys., p.3538, 1992
[19] A. Sakai, T Tatsumi and T. Niino, “Crystallization of amorphous silicon with clean surfaces”, in Jap. J. Appl. Phys. Lett., p.941, 1991
[20] H. Watanabe, T Tatsumi, T. Niino et al., “An advanced fabrication technology of hemispherical grained(HSG) poly-Si for high capacitance storage electrodes”, in Extended Abstracts of the 23rd Conf. Solid State Devices and Materials, p.478, 1991
[21] A. Sakai, T. Tatsumi and K. Ishida, “Growth kinetics of Si hemispherical grains on clean amorphous-Si using the seeding method”, in J. Vacuum Science & Technol.A, p.2950, 1993
[22] Tung Ming Pan, Tan Fu Lei, Tien Sheng Chao et al., “High Quality Ultrathin CoTiO3 High-k Gate Dielectrics” in Electrochemical ane Solid-State Letters, pp.433-434, 2000
[23]劉梅冬,許毓春,華中理工大學出版社”壓電鐵電材料與器件”
[24]Lan Zhou, Shu-yi Zhang, Jian-chun Cheng et al., “Optical absorptions of nanoscaled CoTiO3 and NiTiO3” Materials Science and engineering,B49 , pp.117-122, 1997
[25] Tung Ming Pan, Tan Fu Lei, “High-k cobalt-titanium oxide dielectrics formed by oxidation of sputtered Co/Ti or Ti/Co films” in Appl. Phys. Lett., pp.1439-1441, 2001
[26] Tung Ming Pan, Tan Fu Lei, Tien Sheng Chao, “Comparison of ultrathin CoTiO3 and NiTiO3 high-k gate dielectrics”, in J. Appl. Phys.,pp.1-5, 2001
[27] K.W. Kwon, I.S. Park, D.H. Han, E.S. Kim, S.T. Ahn and M.Y. Lee, “Ta2O5 Capacitor for 1 Gbit DRAM and Beyond”, IEDM, p.835, 1994
[28] Cheol seong hwang “(Ba,Sr)TiO3 thin films for ultra large scale dynamic radom access memory. Areview on the process integration”, Materials science and Engineering, b56, p.178, 1998
[29] Kingery Bowen Uhlmann, 陶瓷材料概論, 曉園出版社
[30] W.Y. Hsu amd J.D. Luttmer, “Direct current conduction properties of sputtered Pt/(Ba0.7Sr0.3)TiO3/Pt thin films capacitors” Appl. Phys. Lett., pp.2975-2976, 1995
[31] R.H. Walden, J. Appl. Phys., p.1178, 1972
[32] 李雅明, “固態電子學”
[33] Sze, “Physics of Semiconductor devices”
[34] S.M. Sze, “Current Transport and Maximum Dielectric Strength of Silicon Nitride Films”, J. Appl. Phys., Vol 38, No. 7, p.2954
[35] C. A. Mead, “Electron transport mechanism in thin insulating films”, Phys. Rev., Vol.128, p.2088, 1962

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top