(44.192.10.166) 您好!臺灣時間:2021/03/06 03:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李逸駿 
研究生(外文):Y.C.Li
論文名稱:以晶片融合技術研發下發射型850nm面射型雷射
論文名稱(外文):Bottom-Emitting 850 nm VCSELs Fabricated by Wafer Fusion Technology
指導教授:貢中元貢中元引用關係洪瑞華
指導教授(外文):C.Y.KungR.H.Horng
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:89
中文關鍵詞:半導體垂直共振腔面射型發光雷射上發射型垂直共振腔面射型發光雷射下發射型垂直共振腔面射型發光雷射晶片融合技術
外文關鍵詞:Vertical-cavity surface emitting lasers(VCSELs)top-emitting VCSELsbottom-emitting VCSELswafer-fusion technique
相關次數:
  • 被引用被引用:0
  • 點閱點閱:807
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
在VCSEL元件發展中,850 nm VCSEL廣泛應用於短距離的高速資料傳輸,但目前的850 nm雷射因晶格匹配的原因需成長在不透光的GaAs基板上,若能將其製作成上下皆可發光的元件,則對於封裝、與Si積體電路的整合或混合積體化將更為容易。本論文係以熱壓式晶片直接融合技術(wafer direct bonding)將850 nm VCSELs黏貼於透光的GaP基板上,以解決850 nm雷射長晶於GaAs基板上,其會吸光造成只有單向光發射之限制;本實驗已成功地將850 nm雷射黏貼於GaP基板上,經研究發現清洗過程、熱處理過程中的時間、溫度與壓力和GaP基板表面圖案的尺寸等,皆會嚴重影響晶片黏貼特性與結果,並經過多次實驗證明,找出其最佳的黏貼條件,黏貼後的表面並不會因基板移除的過程中造成DBR對數的減少或損害,仍保持原有的光特性,除此之外,利用氧化侷限法(oxidation confined)製作元件,並對其元件的光電特性進行探討,目前已成功地將850 nm VCSEL黏貼至GaP基板並製作出元件,起始電流於光窗口為20 μm時可至6 mA,光功率輸出於光窗口為50 μm時可至1.2 mW,最大牆插拴效應可至2.38 %。

Abstract
Vertical-cavity surface emitting lasers (VCSELs) are of great interest in the application of high-speed short distance optical data link and free space optical system. The standard operating wavelength for these systems is 850 nm owing to its compatibility with the GaAs or Si based detectors. Since GaAs substrates on which the devices are fabricated are not transparent at this wavelength, the VCSELs are usually designed to emit through top contact windows. Top-emitting VCSELs, however, are not ideal for hybrid integration with Si circuitry because of the complexity of wiring and limited packing density of VCSELs array. On the other hand, bottom- emitting VCSELs, which emit light through a transparent substrate, have several advantages over conventional top-emitting lasers such as accessibility of the laser output at both facets, the ability to fashion optical elements such as lenses into the substrate, and the suitability of this structure to flip-chip bonding for hybrid microelectronic integration. This paper deals with the fabrication and characterization of bottom-emitting 850nm vertical-cavity surface-emitting lasers (VCSELs). The devices were realized by using wafer-bonding technology to exchange the VCSELs structures from absorbing GaAs structure for a transparent GaP substrate.

目錄
封面內頁
簽名頁
授權書……..………………………………………...………………….iii
中文摘要…..…….…..…………………………….…………….……...iv
Abstract ..………………………………………………….…………….v
誌謝………………………………………………………………..……vi
目錄…………………………………………………………………….vii
表目錄……………………………………………….….……………….x
圖目錄……………………………………………….….…………..…..xi
第一章 研究動機與目的.……………………………………………..1
第二章 VCSEL與晶片黏貼之介紹
2.1 VCSEL簡介………………….……………………………..….5
2.1.1 VCSEL的發展史…………………………….……..…..5
2.1.2 VCSEL的主要結構………………………………..…...6
2.1.3 VCSEL的工作原理………………………………..…...7
2.1.4 VCSEL的優點……………………………………..…...8
2.1.5 VCSEL的製作………………………………………...10
2.2 晶片黏貼簡介……………………………………………......14
2.2.1 前言………………………………………………..….14
2.2.2 影響晶片黏貼實驗之因素…………………………...15
2.2.3 晶片直接黏貼技術應用於1.3/1.55μm之VCSEL….16
2.2.4 以晶片直接黏貼技術製作下發射850 nm之VCSEL 17
第三章 實驗
3.1晶片直接黏貼實驗..………….………………………………19
3.2元件製程………………..…….………………………………22
3.2.1 大面積(board area, BA)製程…………………………22
3.2.2 氧化限制(oxidation confined)製程……………..……23
第四章 結果與討論
4.1 晶片直接黏貼之結果與討論…….….………………………27
4.1.1 直接黏貼參數結果與分析…………...………………27
4.1.2 晶片黏貼後之光特性探討…………………………...29
4.2 元件EL量測之結果與討論…………………….….………..32
4.2.1 BA製程之EL量測與探討……………………………32
4.2.2 氧化侷限製程之EL量測與探討…………………….33
4.3 元件L-I-V量測之結果與討論…….………………………..36
第五章 結論 …………………….…………………………………. 41
參考文獻……………………………………………………………….43

參考文獻
[1]P.Aigrain(1958),as reported in proc. conf., Quantum Electron. Pairs, pp.1762-1763, 1963.
[2]Javan, A.W.R.Bennett.Jr., and D.R.Herriot, Phys.Rev.Lett., No.6, pp-106, 1961.
[3]H.Soda, K.Iga, C.Kitahara, and Y.Suematsu, “GaInAs/InP surface emitting injection lasers”, J.J.Appl.phys., Vol.18 No.12 pp.2329-2330, 1979.
[4]G.Keiser, Optical Fiber Communication, McGraw-Hill, Inc., New York, 1983.
[5]G.Keiser, Optical Fiber Communication, McGraw-Hill, Inc., New York, 1983.
[6]L.H.Laih, L.W.Laih, W.J.Ho, H.Y.Chen, M.C.Wu, Y.L.Huang, and G.C.Chi, “Dimensional characteristics of 850 nm VCSEL”, pp.34-36, IEDMS 2000.
[7]R.Jäger, M.Grabherr, C.Jung, R.Michalzik, G.Reiner, B.Weigl and K.J.Ebeling, “57% wallplug efficiency oxide-confined 850nm wavelength GaAs VCSELs”, Electron. Lett., Vol.33 No.4 pp.330-331, Feb 1997.
[8]A.H. van vechten, “Examination of the model for Zn diffusion InGaAs”, J.Appl.Phys. Vol.54 pp.5055-5058., 1982.
[9]Hanison.H.P.Ho, B.Tuck, M.Henini, and O.H.Hughes, “Zn diffusion induced disorder in AlAs/GaAs superlattices”, Semi. Technolo., Vol.14 pp.841-843, 1989.
[10]C.A.C.M.Spierings, J.Haisma, and T.M.Michielsen, ”Surface-related phenomena in the direct bonding of silicon and fused-silica wafer pairs”, Phillips Journal of Research, Vol.49 No.1/2 pp.48-49.
[11]Y.Okuno, K.Uomi, M.Aoki, and T.Tsuchiya, “Direct bonding of III-V compound semiconductors for free material and free-orientation integration”, Quantum electron., Vol.33 No.6 ,June 1997.
[12]H.Wada, H.Sasaki, and T.Kamijoh, “Wafer bonding technology for optoelectronic integrated devices”, Solid-State Electron., No.43 pp.1655-1663, 1999.
[13]Z.H.Zhu, Felix E. Ejeckam, Y.Qian, Jizhi Zhang, Zhenjun Zhang, Gina L.Christenson, and Y.H.Lo, “Wafer Bonding Technology and its applications in optoelectronic devices and materials”, IEEE Quantum Electron., Vol.3 No.3 pp.927-936, June 1997.
[14]A.Black, A.R.Hawkings, N.M.Margalit, D.I.Babić, A.L.Holmes, Jr., Y.L.Chang, P.Abraham, J.E. Bowers, and E.L.Hu, “Wafer fusion:materials issues and device results”, IEEE Quantum Electron., Vol.3 No.3 pp-943-951, June 1997.
[15]J.Haisma, G.A.C.M.Spierings, M.Michielsen, and Cor L.Adema, “Surface preparation and phenomenological aspects of direct bonding”, Phillips Journal of Research, Vol.49 No.1/2 pp.24-28, 1995.
[16]J.Haisma, G.A.C.M.Spierings, M.Michielsen, and Cor L.Adema, “Frameworks for direct bonding”, Phillips Journal of Research, Vol.49 No.1/2 pp.12-13, 1995.
[17]Y.Ohiso, C.Amano, Y.Itoh, K.Tateno, T.Tadokoro, H.Takenouchi, and T.KuroKawa, “1.55μm vertical-cavity surface-emitting laser with wafer-fused InGaAsP/InGaAs/AlAs DBR’s”, Electron. Lett., Vol.32 No.16 pp.1483-1484, 1996.
[18]Y.Qian, Z.H.Zhu, Y.H.Lo, H.Q.Hou, M.C.Wang, and W.Lin, “1.3μm VCSEL’s with double-bonded GaAs/AlAs Bragg mirrors”, IEEE Photon. Technol. Lett., Vol.9 pp.8-10 Jan 1997.
[19]Y.Qian, Z.H.Zhu, Y.H.Lo, D.L.Huffaker, D.G.Depper, H.Q.Hou, B.E.Hammons, W.Lin, and Y.K.Tu, “Low threshold proton-implanted 1.3μm vertical-cavity top-emitting lasers with dielectric and wafer fused GaAs/AlAs Bragg mirrors”, IEEE Photon. Technol. Lett., Vol.15 pp.145-148, 1998.
[20]R.J.Ram, L.Yang, K.Nauka, Y.M.Houng, M.Ludowise, D.E.Mars, J.J.Dudely, and S.Y.Wang, “Analysis of wafer fusion for 1.3μmvertical cavity surface emitting laser”, Appl. Phys. Lett., Vol.62 No.7 pp.738-740, 1995.
[21]K.Mori, K.Tokutome, and S.Sugou, “Direct bonding of high quality InP on Si and its application to optoelectronic devices, “in Proc. IEEE LEOS’96 Conf., pp-296-297.
[22]F.A.Kish, F.M.Steranka, D.C.DeFevere, D.A.Vanderwater, K.G.Park, C.P.Kuo, T.D.Osentowski, M.J.Peanasky, J.G.Yu, R.M.Fletcher, D.A.Steigerwald, M.G.Craford, and V.M.Robbins, Appl. Phys. Lett. Vol.64, pp.2839-2841, May 1994.
[23]G.E.Hőfer, D.A.Vanderwater, D.C.DeFevere, F.A.Kish, M.D.Camras, F.M.Steranka, and I.H.Tan, “Wafer bonding of 50-nm diameter GaP to AlGaInP-GaP light-emitting diode wafers”, Appl. Phys. Lett., Vol.69, pp.803-805, Aug 1996.
[24]F.A.Kish, “Wafer-scale production of LEDs via wafer bonding: achievement and challenges”, LEOS’96, Boston, pp.292-293, 1996.
[25]R.Pu, E.M.Hayes, and C.W.Wilmsen, the Leos Summer Topical Meeting, pp.25-26. 1997.
[26]Y.Ohiso, K.Tateno, Y.Kohama, A.Wakaqtsuki, H.Tsunetsgu, and T.Kurokawa, “Flip-chip bonded 0.85 μm bottom-emitting vertical-cavity laser array on an AlGaAs substrate”, IEEE Photon. Technol. Lett., Vol.8 No.9 pp.1115-1117, Sep 1996.
[27]Y.Kohama, Y.Ohiso, and T.Kurokawa, “0.85 μm bottom-emitting vertical-cavuty surface-emitting laser diode array grown on AlGaAs substrates”, Electron. Lett., Vol.30, No.17 pp.1406-1407, Aug 1994.
[28]Kent D. Choquette, B.Roberds, K.M.Gebib, H.Q.Hou, R.D.Twesten, and K.L.Lear and B.E.Hammons, “Bottom-emitting 850nm selectively oxidized VCSELs fabricated using wafer bonding”, IEEE conf. in Sandia National Laboratories Albuquerque, pp.34-35 1997.
[29]C.Lin, and P.Daniel Dapkus, “High performance wafer-bonded bottom-emitting 850nm VCSELs on transparent substrates”, IEEE conf. in University of Southern California Los Angeles, pp.63-64 1999.
[30]C.Kun.Lin, S.Wan.Ryu, and P.Dapkus, “High performance wafer-bonded bottom-emitting 850 nm VCSEL’s on undoped GaP and sapphire substrates”, IEEE Photon. Technol. Lett., Vol.11 No.12 pp.1542-1544, Dec 1999.
[31]C.K.Lin, and P.Dapkus, “Uniform wafer-bonded oxide-confined bottom-emitting 850nm VCSEL array on sapphire substrates”, IEEE Photon. Technol. Lett., Vol.13 No.4 pp.263-265, Apl 2001.
[32]K.D.Choquette, K.M.Geib, B.Roberds, H.Q.Hou, R.D.Twesten and B.E.Hammons, “Short wavelength bottom-emitting vertical cavity lasers fabricated using wafer bonding”, Electron. Lett., Vol.34 No.14 pp.1404-1405, July 1998.
[33]C.K.Lin, S.W.Ryu, W.J.Choi and P.Dapkus, “Wafer-bonded bottom-emitting 850 nm VCSEL’s on GaP substrates”, IEEE Photon. Technol. Lett., Vol.11 No.8 pp.937-938, Aug 1999.
[34]Dubravko I.Babić, John E.Bowers, and E.L.Hu., “Wafer fusion for surface-normal optoelectronic devices applications”, International Journal of High Speed Electronics and System, Vol.8 No.2 pp.125-124, 1997.
[35]F.A.Kish, D.A.Vanderwater, M.J.Peanasky, M.J.Ludowise, S.G.Hummel, and S.J.Rosner, “Low-resistance ohmic conduction across compound semiconductor wafer-bonded interfaces”, Appl. Phys. Lett., Vol.67 No.14 pp.2060-2062, Oct 1995.
[36]G.M.Yang, M.H.MacDougal, and P.D.Dapkus, “ Ultra-low threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation”, Electron. Lett., Vol.31 No.11 pp.886-888, May 1995.
[37]K.D.Choquette, R.P.Schneider, Jr., K.L.Lear and K.M.Geib, “Low threshold voltage vertical-cavity lasers fabricated by selective oxidation”, Electron. Lett., Vol.30 No.24 pp.2043-2044, Nov 1994.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔