(54.236.62.49) 您好!臺灣時間:2021/03/08 01:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:巫文豪
研究生(外文):Wu Wen Hou
論文名稱:氫化非晶氮化矽及非晶矽薄膜電晶體之研究
論文名稱(外文):The Study of Hydrogenated Amorphous Silicon Nitride and Amorphous Thin Film Transistors
指導教授:江雨龍江雨龍引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:75
中文關鍵詞:非晶矽薄膜電晶體氫化非晶氮化矽
外文關鍵詞:amorphousThin Film Transistoeramorphous silicon nitride
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1008
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本計劃探討以脈波調變電漿在氫氣稀釋下改變SiH4/NH3比例、總流量、及RF峰值功率等不同的製程條件對沈積a-SiNx:H薄膜特性的影響,藉以找出最佳條件的a-SiNx:H薄膜以製作氫化非晶矽薄膜電晶體。
SiH4/NH3比例、總流量、脈波開關比、RF峰值功率、氫氣稀釋比、反應壓力及基底溫度的設定範圍分別為1/3.75至1/15、220 sccm至266 sccm、25ms/500ms、400 W、50%、0.25 torr、以及275℃。
A-SiNx:H薄膜的特性分別以傅立葉轉換紅外線光譜儀(FTIR) 、N&K analyzer測量薄膜鍵結結構、厚度、折射率及光學能隙並製作Al/a-SiNx:H/N-type Si wafer/Al的MIS結構進行I-V及C-V的量測。
不同的SiH4/NH3比例,對a-SiNx:H薄膜中N/Si的比例有很大的影響,富氮態a-SiNx:H薄膜的電性如電阻值、崩潰電場(breakdown field)和接面狀態密度(interface state density Dit)都比富矽態a-SiNx:H來的優異。NH3/SiH4的比例增加時,使得薄膜成為富氮態(N-rich),折射率會下降,缺陷密度減少[1],在接面處會減少電荷被捕捉(charge trapping)。
影響a-SiNx:H薄膜特性比的主要製程參數有三個,第一是SiH4/NH3流量比例,其次是射頻峰值功率,第三是氫稀釋比。不同的SiH4/NH3流量比會使a-SiNx:H薄膜產生不同的折射率,折射率影響薄膜的N-H鍵跟Si-H鍵的比例,當折射率越小,N-H鍵比Si-H鍵的比例會越大,代表薄膜的含N量較多,a-SiNx:H薄膜內的N/Si比大於1.33時,薄膜是屬於富氮態(Nitrogen Rich),此時薄膜在電性方面會最好,漏電流最小。經過多次的實驗,得到下列對沉積a-SiNx:H薄膜最佳的製程參數,高的SiH4/NH3比例(1/15),較長的Pulse-off time (23.33ms),較低的功率(100W),及50%氫稀釋下,所沈積的H2稀釋a-SiNx:H薄膜,折射率為1.46,具有最小的漏電流1.97×10-9 A/cm2(電場強度 1MV/cm條件下)、最大的介電值7.93、崩潰電場為6.96 MV/cm(電流密度J = 1μA/cm2條件下)、以及光學能隙為5.46eV。
以條件為NH3 105sccm,SiH4 7sccm,H2 112sccm,pulse-on time 10ms,pulse-off time 23.33ms,射頻峰值功率100W以及基板溫度275℃的氫化非晶氮化矽閘極介電層,利用CHP結構製作出TFT的元件特性為Ion/Ioff的比值達3.48×106,VT=3.01V,遷移率為0.86cm2/V-s。

The major application of hydrogenated amorphous silicon nitride (a-SiNx:H) film is gate dielectric material and passivation layer for thin film transistors (TFTs). A good quality a-SiNx:H film has those characteristics including low leakage current, low hydrogen content, high breakdown voltage, high dielectric constant and lower interface trapping density. Because the properties of a-SiNx:H film effects the performances of TFT.
Pulse-wave modulation RF plasma with changing frequency and duty cycle can alternate the radicals generated in the plasma. It is excepted that the N/Si ratio in a-SiNx:H can be adjusted precisely and the bonding quality of the a-SiNx:H can be modified by this unique technology.
The range of SiH4/NH3 ratio, total flow, pulse-on time/pulse-off time, RF peak power, and hydrogen dilution was set as 1/3.75 to 1/15, 220cssm to 266sccm, 25ms/500ms, 100W to 400W, 50%.
A-SiNx:H can be characterized with FTIR and N&K analyzer to analysis its characteristics, such as bonding structure, hydrogen content, thickness, refractive index, and optical energy gap. The C-V and I-V measurements were made with MIS Al/a-SiNx:H /N-type Si wafer/Al structure. The electrical, optical, and material properties of the a-SiNx:H films was discussed to find out influence of the different deposition conditions and the relation of those properties. The modification of the quality of the a-SiNx:H films using pulse-wave modulation RF plasma will be improved.
The major deposition conditions to influence the characteristics of a-SiNx:H films are NH3/SiH4 ratio, RF power, and hydrogen dilution ratio. The a-SiNx:H films deposited using higher NH3/SiH4 ratio (1/15), higher pulse-on time (23.33ms), lower RF peak power (100 W), and 50% hydrogen dilution has the smallest leakage current density of 1.97×10-9 A/cm2(at 1 MV/cm)、the largest dielectric constant of 7.93, refractive index of 1.460, breakdown filed of 6.96 MV/cm (at J = 1μA/cm2), and energy bandgap of 5.46 eV。
A-Si:H TFT devices are fabricated using Channel-Passivated(CHP) structures. In CHP structure, the increasing of leakage current in the a-Si:H activation layer can be reduced due to the a-Si:H film passivated by the upper a-SiNx:H layer. The best a-Si:H TFT device in this study has the characteristics of Ion/Ioff = 2.48×106, threshold voltage VT = 3.01V, and field-effect mobility μ = 0.86 cm2/V-s.

第一章 簡介 1
1.1 應用於氫化非晶矽薄膜電晶體的氫化非晶氮化矽 1
1.2 脈波式調變電漿對薄膜特性的影響 2
1.3 氫氣稀釋對氫化非晶氮化矽薄膜特性的影響 3
1.4 折射率對a-SiNx:H薄膜特性的影響 4
1.5 氫化非晶矽薄膜電晶體的製程 4
1.6 研究方法 5
1.7 論文架構 6
第二章 脈波調變電漿製作氫化非晶氮化矽薄膜及其分析 7
2-1 氫化非晶氮化矽薄膜的成長 7
2-1-1 基材的選擇與清洗 8
2-1-1-1基材的選擇 8
2-1-1-2 試片清洗 8
2-1-2 實驗設計 9
2-1-3 氫化非晶氮化矽電容製作 11
2-2儀器測量原理與分析方法 11
2-2-1 N&K analyzer 11
2-2-2 FTIR 12
2-2-3 C-V量測 14
2-2-4 I-V量測 14
2-3 氫化非晶氮化矽薄膜特性分析 14
第三章 氫化非晶矽薄膜電晶體元件製作 20
3-1 氫化非晶矽薄膜電晶體的電流電壓特性 20
3-2 氫化非晶矽薄膜電晶體的電性量測 20
3-3 氫化非晶矽薄膜電晶體的製作 22
3-3-1微影 22
3-3-2蝕刻 25
3-3-3元件製程 26
第四章 結論 29
參考資料 32

[1] M.J. Powell, “Amorphous silicon-nitride thin-film transistors”, Appl. Phys. Letter, Vol 38, p794, 1981
[2] W.M. Armoldbik, “Dynamic behavior of hydrogen in silicon nitride and oxynitride films made by low-pressure chemical vapor deposition”, Phys. Rev. B Vol.48, p5444, 1993
[3] Yue Kuo, “Plasma enhanced chemical vapor deposited silicon nitride as a gate dielectric film for amorphous silicon thin film transistors — a critical review,” Vacuum vol.51 No.4 pp.741-745, 1998
[4] Stanley Wolf Ph.D., Silicon Processing for VLSI, 1986.
[5] M.C. Hugon, “Electrical properties of metal- insulator-semiconductor structures with silicon nitride dielectric deposited by low temperature plasma enhanced chemical vapor deposition distributed electron cyclotron deposition distributed electron resonance” J. Vac. Sci. Technol. A15(6), p3143, 1997
[6] Yue Kuo, “Etch mechanism in the low refractive index silicon nitride plasma-enhanced chemical vapor deposition process”, Appl. Phys. Lett. Vol. 63, no. 2, p144, 1993
[7] Takahiro Makino and Masahiko Maeda, “Bonds and Defects in Plasma-Deposited Silicon Nitride Using SiH4-NH3-Ar Mixture,” Japanese Journal of Applied Physics, Vol. 25, No. 9, September, 1986, pp. 1300-1306.
[8] Yue Kuo ,”PECVD Silicon Nitride as a Gate dielectric for Amorphous Silicon Thin Film Transistor Process and Device Performance,” J. Electrochemical Society, Vol.142, No. 1,p186-190, 1995
[9] Naftali Lustig and Jerzy Kanicki, “Gate dielectric and contact effects in hydrogenated amorphous silicon-nitride thin film transistors”, J. Appl. Phys. Vol.65, no.10, p.3951, 1989.
[10] W.L. Warren, “Energy level of the nitrigen dangling bond in amorphous silicon nitride”, Appl. Phys. Lett. Vol59, p1699, 1991
[11] G. N. Parsons, J. H. Souk, and J. Batey, “Low hydrogen content stoichiometric silicon nitride films deposited by plasma-enhanced chemical vapor deposition”, J. Appl. Phys. 70(3), p1553-1560, 1991
[12] H. Dun, “Mechanisms of Plasma-Enhanced Silicon Nitride Deposited Using SiH4/N2 Mixture”, J. Electrochem. Soc. Vol 128, p1555, 1981
[13] C. H. Ling, C. Y. Kwok and K. Prasad, “Silicon Nitride Films Prepared by Plasma-Enhanced Chemical Vapor Deposition (PECVD) of SiH4/NH3/N2 Mixture: Some Physical Properties,” Japanese Journal of Applied Physics, Vol. 25, No. 10, October, 1986, pp. 1490-1494.
[14] Yutaka Misawa and Hideyuki Yagi, “Electrical Conduction of Silicon Nitride Films Deposited by SiH4-NH3 Reaction,” Japanese Journal of Applied Physics, Vol. 15, No. 6, June, 1976.
[15] Shin Yokoyama, Masataka Hirose and Yukio Osaka, “Optical Emission Spectroscopy of the SiH4-NH3-H2 Plasma During the Growth of Silicon Nitride,” Japanese Journal of Applied Physics, Vol.20, N0. 2, February, 1981 pp. L117-L120.
[16] C.I. Ukah, R. Meh, and S. Zukotynski, “ Deposition of silicon nitride by glow-discharge decomposition of silane-nitrogen mixtures in a saddle-filed plasma”, Can. J. Phys. Vol. 69, p185-191, 1991
[17] 鄭本誠,”PECVD系統建立及測試研究”,中興大學物理系碩士論文,1995
[18] Darren Murley et al., ”The effect of hydrogen dilution on the aminosilane plasma regime used to deposit nitrogen-rich amorphous silicon nitride”, J. non-cryst. Solids., Vol.198-200, p.1058, 1996.
[19] R.E. Rocheleau and Z. Zhang, “Densification of plasma deposited silicon nitride films by hydrogen dilution”, Thin Solid Films, Vol.220, p73, 1992
[20] F. Giorgis, “Optical, structure and electrical properties of device-quality hydrogenated amorphous silicon-nitrogen films deposited by plasma-enhanced chemical vapor deposition”, Philosopical Magazine B, Vol.77, No.4, p925-944, 1998
[21] S. Haseagawa, “Effect of active hydrogen on the stress relaxation of amorphous SiNx:H films ”, J. Appl. Phys. Vol 75(3), p1493, 1994
[22] A. Matsuda and K. Tanaka “Investigation of the growth kinetics of glow-discharge hydrogenated amorphous silicon using a radical separation technique” J. Appl. Phys. Vol. 60, pp. 2351, 1986.
[23] Y. Watanabe, M. Shiratani, Y. Kubo, I. Ogawa, and S. Ogi “Effects of low-frequency modulation on rf discharge chemical vapor deposition” Appl. Phys. Lett. Vol. 53, No.14, pp. 1263-1265, 1988
[24] Y. L. Jiang, “The property of PECVD SiNx:H films influenced by helium dilution and pulse RF power”, IEDMS, 1998.
[25] P. G. LeComber, W.E. Spear, and A. Ghaith, “Amorphous Silicon Field-Effect Device and Possible Application,” Electronics. Lett., Vol.15, P.179-181,1979
[26] Martin J. Powell, “The Physics of Amorphous-Silicon Thin Film Transistors,” IEEE Transactions on Electron Devices, Vol. 36, No. 12, pp. 2753-2763, December 1989.
[27] R. A. Street and M.J. Thompson, ”Electronic States at the Hydrogenated Amorphous Silicon / Silicon Nitride Interface,“ Appl. Phys. Lett., Vol. 45, 1984, p.769.
[28] K. Hiranaka, T. Yoshimura and T. Yamaguchi, “Effects of Deposition Sequence on Amorphous Silicon Thin Film Transistors,” Jpn. J. appl. Phys. 28, 2197(1989).
[29] H. Uchida, K. Takechi, S. Nishida and S. Kaneko, “High-Mobility and High-Stability a-Si:H Thin Film Transistors with Smooth SiNx/a-Si Interface”, Jpn. J. Appl. Phys. 30, 3691(1991)
[30] Tina J. Cotler and Jonathan Chapple-Sokol, “High Quality Plasma-Enhanced Vapor Deposition Silicon Nitride,” J. Electrochemcial Society, Vol.140, No.7, p207 1-2075, 1993
[31] 陳慧穎,”氫化非晶氮化矽及氫化非晶矽薄膜電晶體之研究”,中興大學碩士論文,2000
[32] W. A. Lanford and M. J. Rand, “The hydrogen content of plasma-deposited silicon nitride”, J. Appl. Phys. 49(4), p2473-2477, 1978

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔