跳到主要內容

臺灣博碩士論文加值系統

(3.87.33.97) 您好!臺灣時間:2022/01/27 17:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:倪建青
論文名稱:定壓下矽膠吸附水蒸氣之理論模式之推導與固體側質傳擴散係數之量測
論文名稱(外文):Development of a theoretical adsorption model under constant pressure condition and measurement of apparent solid-side mass diffusivity for a siica gel-water vapor adsorption system
指導教授:沈君洋
學位類別:博士
校院名稱:國立中興大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
論文頁數:165
中文關鍵詞:質傳擴散係數阻泥解析解
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1564
  • 評分評分:
  • 下載下載:339
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本文針對多孔吸附體在非等溫條件下的吸附行為求得解析解,熱效應與氣體側質傳阻力對動態吸附曲線的影響皆考慮於數學模式之中。統御方程式以拉式轉換法獲得解答,研究結果發現α、β和γ三個參數主宰了吸附速率,前兩者與熱傳阻力有關,而後者則影響氣體側之質傳阻力。各種簡化模式的適用範圍亦詳細探討之。研究中並自行設計組裝一套動態吸附曲線量測系統,分別量測出3mm直徑之矽膠顆粒於5.1℃, 22.2℃、49.5℃、和79.6℃等四種溫度下吸附空氣中水分子之動態吸附曲線與等溫吸附線的實驗資料,配合理論模式中所發展出的解析解,獲得矽膠於不同溫度與含水量狀態下的固體側質傳擴散係數(apparent solid-side mass diffusivity),同時以數值分析的方法,比較矽膠顆粒在較大含水量變化下的動態吸附曲線與實驗量測數據的差異。研究中並組裝一套吸附式固定床除濕系統,以實驗量測與電腦模擬分析共同探討濕度容器(moisture capacitor)之阻尼效果,以本篇論文量測所得之矽膠的等溫吸附線與固體側質傳擴散係數用於電腦模擬分析時,此模擬分析所得之數據與實驗量測之結果極為吻合。
關鍵字:吸附、質傳擴散係數、矽膠、等溫吸附線
ABSTRACT
An analytical solution for mass diffusion in a spherical microporous particle experienced with a small step change of gaseous phase adsorbate concentration is obtained. Thermal effect and gas-side mass transfer resistance are considered. The governing equations are solved by using the Laplace transformation method. Three factors, α, β and γ are defined to govern the heat and mass transfer in the process. α and β are relevant to the thermal effect and γ dominates the gas-side mass transfer resistance. The effect of the external mass transfer resistance on the uptake rate is investigated. The applicable ranges of three simplified models are individually discussed. A measurement of the apparent solid-side mass diffusivity of water vapor adsorbed in a regular density silica gel is performed by using a constant pressure thermal gravimetric apparatus. The diameter of the silica gel particles is 3 mm. Four adsorption isotherms, individually correspond to 5.1, 22.2, 49.5 and 79.6℃, are measured. Using the model developed in this thesis, the measured uptake curves yield the data of apparent solid-side mass diffusivity. The measured uptake curve for a large step change of water vapor is compared to the computer simulation result obtained by using the measured apparent solid-side mass diffusivity. In this work, the damping characteristics of a moisture capacitor in a fixed-bed adsorption system are determined both by experimental measurement and by computer simulation. The obtained isotherms and apparent solid-side mass diffusivity are used in the computer simulation. The simulation results match well with the experimental data.
Keywords: adsorption, mass diffusivity, silica gel, isotherms
目 錄
摘要……………………………………………………………………….
英文摘要………………………………………………………………….
符號說明…………………………………………………………………
目錄………………………………………………………………………
表目錄……………………………………………………………………
圖目錄……………………………………………………………………
第一章前 言…………………………………………………………….
1.1 文獻回顧……………………………………………………
1.2 研究目的……………………………………………………
第二章 數學模式……………………………………………………….
2.1 圓球狀微孔吸附劑於定壓下的動態吸附模式…………
2.2各種理論模式之比較…………………………………….
2.3微孔吸附劑於定容下的動態吸附模式…………………
2.4圓柱狀吸附體於定壓情形下之動態吸附模式………..
第三章 等溫吸附線之平衡量測………………………………………
3.1 實驗設備之介紹……………………………………………
3.2 等溫吸附線之實驗步驟…………………………………
3.3 等溫吸附線量測結果…………………………………….
3.4矽膠資料……………………………………………………
3.4.1平衡常數……………………………………………….
3.4.2吸附熱………………………………………………….
3.4.3密度………………………………………………………
3.4.4 微孔表面積……………………………………………
第四章 動態吸附量測與理論模式之比較…………………………
4.1動態吸附曲線之量測…………………………………….
4.2古典擴散力學之質傳擴散係數公式……………………
第五章 動態吸附曲線之數值分析………………………………….
5.1動態吸附曲線之數值分析模式…………………………
5.1.1質量平衡分析模式…………………………………….
5.1.2能量平衡分析模式…………………………………….
5.1.3無因次化…………………………………………………
5.2 數值分析……………………………………………………
5.3 實驗量測與數值分析之比較…………………………….
第六章 固態吸附式除濕測試系統與濕度容器之阻尼效應………
6.1 二次再生固態吸附除濕系統…………………………….
6.2 濕度容器之阻尼效應…………………………………….
6.2.1熱質傳數學模式………………………………………
6.2.2 實驗量測與模擬分析之結果…………………………
6.2.3 濕度容器性能之討論與建議…………………………
第七章 結論與建議……………………………………………………
參考文獻…………………………………………………………………
表 目 錄
表一 等溫吸附線之迴歸分析係數……………………………………….
表二 質傳擴散係數之迴歸分析………………………………
表三 13X分子篩之等溫吸附線……………………………………………
圖 目 錄
圖2.1.1 圓球狀微孔吸附劑...........................................
圖2.1.2 特徵方程式的根...............................................
圖2.1.3 矽膠吸附水蒸氣之動態吸附曲線與溫度變化........
圖2.1.4 矽膠顆粒內水分濃度隨時間之變化...................
圖2.2.1. 四種理論模式之動態吸附曲線比較 (α=30, β=1, γ=1).......
圖2.2.2 動態吸附曲線 (α=30, β=5, γ=1)......................
圖2.2.3 動態吸附曲線 (α=30, β=1, γ=2).......................
圖2.2.4 動態吸附曲線(α=30, β=5, γ=200)................
圖2.2.5 γ 值對無因次溫度變化的影響.............................
圖2.2.6 動態吸附曲線 (α=30, β=0.5, γ=100)..........
圖2.2.7 不同吸附模式的適用範圍.............................
圖2.2.8 特例解答之適用範圍(固體側質傳擴散係數趨近於無窮)…… ………………………………….....
圖2.4.1 圓柱型微孔吸附劑... .......................................
圖2.4.2 [1/γ+2β/(-q2+α)]和[Jo(q)/qJ1(q)]之曲線圖.......
圖2.4.3 γ值對特徵根的影響...............................................
圖2.4.4 β值對特徵根的影響...............................................
圖3.1動態擴散係數量測系統............................................
圖3.1.1 測試容器之示意圖.................................................
圖3.3.1 矽膠吸附水蒸氣之等溫吸附線................................
圖3.3.2 矽膠對水蒸氣的等溫吸附線之 值....................
圖3.3.3 矽膠對水蒸氣的等溫吸附線之 值 ................
圖3.3.4矽膠吸附水蒸氣的等溫吸附線(含水量固定下之水蒸氣分壓對飽合蒸氣壓).............................................
圖3.3.5矽膠吸附水蒸氣之吸附熱..................................
圖4.1.1 矽膠吸附水蒸氣之動態吸附曲線(T=5.1℃)..............
圖4.1.2 矽膠吸附水蒸氣之動態吸附曲線(T=22.2℃)............
圖4.1.3 矽膠吸附水蒸氣之動態吸附曲線(T=49.5℃).............
圖4.1.4 矽膠吸附水蒸氣之動態吸附曲線(T=49.5℃).............
圖4.1.5 矽膠吸附水蒸氣之動態吸附曲線(T=79.6℃).............
圖4.1.6 矽膠吸附水蒸氣之動態吸附曲線(T=79.6℃)........
圖4.1.7 氣體側質傳阻力之重要性.......................................
圖4.1.8 矽膠吸附水蒸氣之動態吸附曲線(T=22.2℃).............
圖4.1.9 矽膠吸附水蒸氣之動態吸附曲線(T=49.5℃)............
圖4.1.10 固體側之平均有效質傳擴散係數(具氣體側質傳阻力之等溫模式).........................................................
圖4.1.11 固體側之平均有效質傳擴散係數(具氣體側質傳阻力之等溫模式)...................................................
圖5.3.1 動態量測實驗與數值模擬分析之比較......................
圖5.3.2 固體側質傳擴散係數之變化範圍...............................
圖5.3.3 固體側質傳擴散係數對動態吸附曲線的影響............
圖6.1..1 固定式除濕系統與濕度容器之配置.......................
圖6.1.2 吸附側出口溫濕度(單除濕器-1500 l/min).................
圖6.1.3 吸附側出口溫濕度(雙除濕器-1500 l/min).................
圖6.1.4 吸附側出口溫濕度(雙除濕器-500 l/min)..................
圖6.1.5 吸附側出口溫濕度(單除濕器-1000 l/min).................
圖6.1.6 加裝分子篩除濕床後之除濕性能曲線......................
圖6.2.1 固定式除濕系統與濕度容器之配置.....................
圖6.2.2 濕度容器之阻尼效應..............................................
圖6.2.3 不同長度之濕氣阻尼器之出口空氣濕度量測資料......
圖6.2.4不同吸附劑之阻尼效應....................................
圖6.2.5實驗量測數據與模擬分析之比較.............................
圖6.2.6 空氣流量對阻尼效應之影響...................................
圖6.2.7濕度容器之長度對阻尼性能之影響......……...............
1.Crank J. Mathematics of Diffusion. Oxford ,1967
2.Karger J, Ruthven DM. Diffusion in Zeolites and Other Microporous Solids. New York: John Wiley & Sons, 1992.
3.Chihara K, Suzuki M, Kawazoe K. Effect of heat generation on measurement of adsorption rate by gravimetric method. Chemical Engineering Science 1976;31:505-07.
4.Lee LK, Ruthven DM. Analysis of thermal effects in adsorption rate measurement. Jourmal of the Chemical Society: Faraday Transaction I 1979; 75:2406-22.
5.Kocirik M, Struve P, Bulow M. Analytical solution of simultaneous mass and heat transfer in zeolite crystals under constant volume/variable-pressure conditions. Journal of the Chemical Society: Faraday Transaction I 1984;80: 2167-74.
6.Haul R, Stremming H. Non-isothermal sorption kinetics in porous adsorbents. Journal of Colloid and Interface Science 1984;97:348-55.
7.Sun LM, Meunier FA. Detailed model for non-isothermal sorption in porous adsorbents. Chemical Engineering Science 1987;42:1585-93.
8.Brunovska A, Ilavsky J. An analysis of a nonisothermal one-component sorption in a single adsorbent particle-a simplified model. Chemical Engineering Science 1981;36:123-28.
9.Brunovska A, Hlavacek V, Ilavsky J, Valtyni J. Nonisothermal one-component in a single adsorbent particle: effect of external heat transfer. Chemical Engineering Science 1980;35:757-59.
10.Gilliland ER, Baddour RF, Perkinson GP, Sladek KJ. Diffusion on surfaces I effect of concentration on the diffusivity of physically adsorbed gases. Industrial Engineering Chemical-Fundanmental 1974;13:95-99.
11.Gilliland ER, Baddour RF, Perkinson GP, Sladek KJ. Diffusion on surfaces II correlation of diffusivity of physically and chemically adsorbed species. Industrial Engineering Chemical-Fundanmental 1974;13:100-05.
12.Kruckels WW. On gradient dependent diffusiuity. Chemical Engineerig Science 1973 ; 28: 1565-1576
13.Ruckenstein E, Vaidyanathan AS, Youngquist GR. Sorption by solids with bidisperse pore. Chemical Engineering Science 1971;26:1305-18.
14.Ma YH, Lee TY. Transient diffusion in solids with a bipore distribution. AIChE Journal 1976;22:147-52.
15.Lee LK. The kinetics of sorption in a biporous adsorbent particle. AIChE Journal 1978;24:531-4.
16.Ahlberg JE. Rates of water vapor adsorption from air by silica gel. Industrial and Engineering Chemistry 1939;31:988-92.
17.Hubard SS. Equilibrium data for silica gel and water vapor. Industrial and Engineering Chemistry 1954;46:356-58.
18.Jury SH, Edwards HR. The silica gel-water vapor sorption therm. The Canadian Journal of Chemical Engineering 1971;49:663-66.
19.Dini, S., "Analysis of Cross-Gooled Desiccant Cooling system", Ph. D Thesis, IIT, 1981.
20.Close DJ, Banks PJ. Coupled equilibrium heat and single adsorbate transfer in fluid flow through a porous medium-II predictions for a silica-gel air-drier using characteristic charts. Chemical Engineering Science 1972;27:1157-69.
21.Andersson JY, Bjurstrom H, Azoulay M, Carlsson B. Experimental and theoretical investigation of the kinetics of the sorption of water vapor by silica gel. Journal of the Chemical Society: Faraday Transaction I 1985; 81:2681-92.
22.Lu LT, Charoensupaya D, Lavan Z. Determination of sorption rate and apparent solid-side diffusivity of pure H2O in silica gel using a constant volume/variable pressure apparatus. Journal of Solar Energy Engineering 1991;113:257-63
23.Bulow M, Struve P, Finger G, Redszus C, Ehrhardt K, Schirmer W. Sorption kinetics of n-hexane on MgA zeolites of different crystal sizes. Journal of the Chemical Society: Faraday Transaction I 1980;76:597-615.
24.Loughlin KF, Derrah RI, Rhthven DM. On the measurement of zeolitic diffusion coefficients. The Canadian Journal of Chemical Engineering 1971;49:66-70.
25.Ruthven DM, Lee LK, Yucel H. Kinetics of non-isothermal sorption in molecular sieve crystals. AIChE Journal 1980;26:16-23.
26.Hajji A, Khalloufi S. Theoretical and experimental investigation of a constant-pressure adsorption process. International Journal of Heat and Mass Transfer 1995;37:3349-58.
27.Suzuki M. Limiting sherwood number in multiparticle system with stagnant fluid. Journal of Chemical Engineering of Japan 1975;8:163-65.
28.Suzuki M, Kawazoe K. Batch measurement of adsorption rate in an agitated tank-pore diffusion kinetics with irreversible isotherm. Journal of Chemical Engineering of Japan 1974;7:346-49.
29.Suzuki M, Kawazoe K. Effective surface diffusion coefficients of volatile organics on activated carbon during adsorption from aqueous solution. Journal of Chemical Engineering of Japan 1975;8:379-382.
30.Suzuki M, Kawazoe K. Particle-to-liquid mass transfer in a stirred tank with a basket impeller. Journal of Chemical Engineering of Japan 1975;8:79-81.
31.Misic DM, Sudo Y, Suzuki M, Kawazoe K. Liquid-to-particle mass transfer in a stirred batch adsorption tank with non-linear isotherm. Journal of Chemical Engineering of Japan 1982;15:67-70.
32.Miyauchi T. Film coefficients of mass transfer of dilute sphere-packed beds in low flow rate regime. Journal of Chemical Engineering of Japan 1971;4:238-45.
33.Ruthven DM, Lee LK. Kinetics of nonisothermal sorption: systems with bed diffusion control. AIChE Jouranl 1981;27:654-63
34.Hsu LKP, Haynes HW. Effective diffusivity by the gas chromatography technique: analysis and application to measurements of diffusion of various hydrocarbons in zeolite NaY. AIChE Journal 1981;27:81-91.
35.Rosen JB. Kinetics of a fixed bed system for solid diffusion into spherical particles. The Journal of Chemical Physics 1952;20:387-94.
36.Wakao N, Tanaka K, Nagai H. Measurements of particle-to-gas transfer coefficient from chromatographic adsorption experiments. Chemical Engineering Science 1976;31:1109-13.
37.Rusmuson A, Neretnieks I. Exact solution of a model for diffusion in particles and longitudinal dispersion in packed beds. AIChE Journal 1980;26:686-690.
38.Rusmuson A. Time domain solution of a model for transport processes in bidisperse structured catalysts. Chemical Engineering Science 1982;37:787-88.
39.Raghavan NS, Ruthven DM. Simulation of chromatographic response in columns packed with bidisperse structured particles. Chemical Engineering Science 1985;40:699-706.
40.Maclaine-cross, I. L. and Banks P. J., "Coupled Heat and Mass Transfer in Regenerators-Prediction Using and Analogy with Heat Transfer", Int. J. Heat and Mass Transfer. Vol. 15, pp. 1225-1242, 1972.
41.Maclaine-cross, I. L., "A Theory of combined Heat and Mass Transfer in Regenerators", Ph. Dinssertation, Dept. of Mech. Engrg., Monash University, 1974.
42.Banks, P. J., "Prediction of Heat and Mass Regenerator Performane Using Nonlinear Analogy Method: Part 1-Basis", J. Heat Transfer, Vol. 107, pp. 222-229, 1985.
43.Banks, P. J., "Prediction of Heat and Mass Regenerator Performance Using Nonlinear Analogy Method: Part 2-comparison of Methods", J. Heat Transfer, Vol. 107, pp. 230-238, 1985.
44.Jurinak, J. J., "Open Cycle Solid Desiccant Cooling component Models and System Simulation", Ph. D Thesis, Mech. Engrg. Dept., University of Wisconsin-Madison, 1982.
45.Brandemuehl, M. J., "Analysis of Heat and Mass Regenerators with Time Varying of Spatially Nonuniform Inlet Conditions", Ph. D Thesis, University of Wisconsin-Madison, 1982,
46.San, J. Y. and Hsiau, S. C., "Effect of Axial Solid Heat conduction and Mass Diffusion in a Rotary Heat and Mass Regenerator", Int. J. Heat Mass Transfer, Vol. 36, No. 8, pp. 2051-2059, 1993,
47.MAthiprakasam, B., "Perdormance Predictions of Silica Gel Desiccant Systems", Ph. D Thesis, IIT, 1979.
48.Monnier, J-B., "Cooled-Bed Solar Powered Desiccant Cooling: Field-Testing and Second Law analysis", Ph. D Thesis, IIT, 1981.
49.Majumdar, P., Worek, W. M. and Lavan, Z., "Heat and Mass Transfer in a Composite Desiccant Material", National Heat Transfer Conference, ASCE, August 1985.
50.San, J. Y., Lavan, Z., Worek, W. M. and Monnier, J-B., "Exergy Analysis of solar Powered Desicccant Cooling Systems", Amer. Solar Energy Society, 1982. Annual Meeting, Part 1, pp. 567-572.
51.San, J. Y., "Exergy Analysis of Desiccant cooling Systems", Ph. D Thesis, IIT, 1985.
52.Lavan, Z., Monnier, J-B. and Wored, W. M., "Second Law Analysis of Desiccant Cooling systems", Solar Energy Engrg., Vol. 104, No. 3, pp. 229-236, 1982.
53.沈君洋與林順河,〝交叉冷卻式除濕器之性能測試與模擬分析〞中國機械工程學會11 屆學術研討會,pp, 615-621 ,83 年11 月。
54.San, J. Y., "Heat and Mass Transfer in a Two-Dimensional Cross-Flow Regenerator with a solid conduction Effect", Int. J. Heat Mass Transfer, Vol. 36, No. 3, pp. 633-643, 1993.
55.San, J. Y. and Jiang, G, D., "Modeling and Testing of a Silica Gel Packed-Bed System" Int. J. Heat Mass Transfer, Vol. 37, No. 8; pp. 1173-1179, 1994.
56.倪建青與沈君洋,”矽膠與沸石於低露點溫度吸附除濕之應用比較”,機械工程學會第十三屆學術研討會,1996年12月,pp. 16-20
57.倪建青與沈君洋,”雙塔式吸附系統於低露點溫度除濕性能之改良”,機械工程學會第十三屆學術研討會,1996年12月,pp. 23-29
58.倪建青與沈君洋,”具氣體側質傳阻力之吸附體的非等溫吸附模式”,輸送現象與其應用專題研討會,1999年12月,pp. 133- 36
59.沈君洋與倪建青,”模壓製成之矽膠除濕器之分析與測試”,輸送現象與其應用專題研討會,1995年12月,pp. 179-184
60.沈君洋,「旋轉式除濕器空調系統之性能分析與經濟效益評估」,工研院能礦所研究計劃期末報告,1988 年8 月。
61.沈君洋,「旋轉式除濕空調系統在台灣地區使用之模擬分析」,新空調技術研討會,經濟部能委會,1988 年7 月。
62.沈君洋,「旋轉式太陽能固態吸附劑空調系統之分析」,能源季刊,17 卷,2 期,1987 。
63.沈君洋,「固態吸附劑空調系統之設計方法與分析」,能源季刊,17 卷,4 期,1987 。
64.沈君洋,「固態吸附劑在除濕與冷卻上之應用」,太陽能學會學術研討會,1988 年11 月。
65.沈君洋,「交叉冷卻式固態吸附劑空調系統之介紹」,能源季刊,18 卷,4 期,1988 。
66.Pesaran AA, Mills AF. Moisture transport in silica gel packed beds-I. International Journal of Heat and Mass Transfer 1987;30:1037-49.
67.San JY, Jiang GD. Modeling and testing of a silica gel packed-bed system. International Journal of Heat and Mass Transfer 1994;37:1173-9.
68.Ruthven DM, Lee LK. Kinetics of non-isothermal sorption: systems with bed diffusion control. AIChE Journal 1981;27:654-63.
69.洪智堯與倪建青,”固態吸附之四種理論模式之比較”, 1999年12月,機械工程學會第十八屆學術研討會
70.Dunkle, R. V., "A Method of solar Air-Conditioning", Mech. and Chem. Engrg. Trans. Inst. Engrs. Australia, MCI, Vol. 73, May 1965, pp. 73-78.
71.Chuah, Y. k., Norton, P. and Kreith, F., “Transient Mass Transfer in Parallel Passage Dehumidifiers with and without Solid Side Resistance”, Vol. 2, ASME-JSME Joint Thermal Engineering conf., 1987.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top