跳到主要內容

臺灣博碩士論文加值系統

(54.92.164.9) 您好!臺灣時間:2022/01/23 04:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林明良
研究生(外文):Ming-Liang Lin
論文名稱:球銑切削力模型之研究
論文名稱(外文):An Investigation on The Cutting Force Model for Ball End Mill
指導教授:蔡志成蔡志成引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:84
中文關鍵詞:球刀球銑切削力球銑切削力模擬
相關次數:
  • 被引用被引用:7
  • 點閱點閱:887
  • 評分評分:
  • 下載下載:278
  • 收藏至我的研究室書目清單書目收藏:3
在金屬切削過程中,切削力的變化反映出加工表面的品質和刀具壽命等重要特性,因此扮演著相當重要的角色,隨著球銑在模具加工的應用,尤其是高轉速球銑在模具鋼之切削應用日趨普及,其切削特性更是值得深入探討。雖然一般端銑切削力的估算和預測的研究很多,但球銑刀因其外型與一般端銑刀有很大的差異,導致其切削特性與一般端銑有所差異,本文即針對球銑切削力特性進行研究。文中主要分成三部份探討球銑之切削力,第一部分探討球銑之切削力理論模式,針對球銑刀之刀刃運動路徑構成之瞬時切屑剖面積定義瞬時切削負載,並依此推導球銑之切削力。第二部份為規劃球銑之切削實驗,分別針對模具合金NAK80及6061鋁合金規劃高轉速球銑實驗,探討球銑參數對切削力之影響。第三部份則分析第二部分量測之切削力數據,據以計算切削力理論模式中之因子Kt之經驗公式和比例係數Kr及Ku,然後進行切削力模擬,結果顯示切削力Fx模擬之百分誤差介於10.3﹪至37.9﹪之間,最大值模擬誤差介於0.1~3.6N,最小值模擬誤差介於0.1~13.3N;而Fy模擬之百分誤差介於4.8﹪至15.8﹪之間,最大值與最小值模擬誤差分別介於0~12.9N與0.1~16.6N;至於Fz模擬之百分誤差則介於1.2﹪至16.7﹪之間,最大值與最小值模擬誤差分別介於2.8~7.0N與1.3~12.5N,此誤差大部分在實驗量測之標準差區間,顯示該球銑切削力理論模式尚稱合理。
The variation of cutting force in metal cutting reflects characteristics, such as the surface quality and tool life, of the cutting process; and therefore plays an important role in the cutting process. As the application of ball end mill on the machining of mold and die, in particular at high spindle rotation, becomes common, cutting forces of ball end mills deserve to be investigated. The force model of a ball end mill, however, differs from that of a regular end mill due to the difference on geometry. This thesis investigates the cutting forces of ball end mills, including the development of theoretical model, experiment design and excusion, and verification of theoretical model.
The theoretical cutting force model is based on the assumption that tangential cutting force is a function of instant cross-section of the chip, but not chip thickness used in most previous work. The instant cross-section, however, is computed via the path of tool. The second part is planning experiments of ball cutting .planning experiments of high rotational speed ball cutting of NAK80 and Al6061 individually .According to this planning ,we can confer the influence of ball cutting parameters and cutting force .The third part is analyzing the measuring data of the cutting force in the second part .According to the data to calculate Kt、Kr and Ku .And then to simulate cutting force .The result is that the percentage error of cutting force Fx is between 10.3% to37.9%.The maximum of simulation error is between 0.1 to 3.6 N ,and the minimum of simulation error is between 0.1 to 13.3 N; the percentage error of cutting force Fy is between 4.8% to15.8%.The maximum of simulation error is between 0 to 12.9 N ,and the minimum of simulation error is between 0.1 to 16.6 N; the percentage error of cutting force Fz is between 1.2% to16.7%.The maximum of simulation error is between 2.8 to 7.0 N ,and the minimum of simulation error is between 1.3 to 12.5 N .The most part of the error is in the standard error zone .of the experiment measuring .It means that the model of ball cutting force theory is reasonable.
中文摘要 Ⅰ
英文摘要 Ⅱ
致謝 Ⅲ
目錄 Ⅳ
圖目錄 Ⅶ
表目錄 Ⅹ
符號說明 ⅩⅡ
第一章 緒論 1
1.1 緣起 .....1
1.2 文獻回顧 1
1.3 研究方法 5
1.4 本文大綱 7
第二章球銑切削力模型 8
2.1刀刃運動路徑分析 9
2.2切削力分析 17
第三章球銑削之實驗規劃 24
3.1球銑實驗規劃 24
3.1.1田口實驗設計法簡介 25
3.1.2 球銑削之實驗規劃 26
3.2切削力和表面粗糙度量測實驗系統架設與設備 32
第四章前段實驗結果與分析 37
4.1ψ10多層鈦化物球銑刀之田口實驗分析 .....37
4.1.1表面粗糙度分析 37
4.1.2切削力分析 39
4.2ψ16多層鈦化物球銑刀之田口實驗分析 40
4.2.1表面粗糙度分析 40
4.2.2切削力分析 43
第五章 切削力理論模型與實驗結果比較分析 45
5.1 球銑參數對切削力影響之分析 45
5.1.1 瞬時切屑剖面積模擬分析 45
5.1.2 切削傾斜角對切削力影響分析 46
5.1.3 切削轉速對切削力影響分析 54
5.1.4 不同切削材對切削力影響分析 59
5.2 切削力模擬分析 60
5.2.1 球銑削之X方向切削力模擬分析 61
5.2.2 球銑削之Y方向切削力模擬分析 64
5.2.3 球銑削之Z方向切削力模擬分析 68
第六章 結論與未來展望 72
6.1 結論 72
6.1.1 切削參數對切削力之影響 72
6.1.2 切削力係數Kt、Kr和Ku之決定 72
6.1.3 模擬結果分析 73
6.1.4 綜合結論 73
6.2 未來展望 74
參考文獻 75
附錄A 工具機設備規格 77
附錄B 切削工件之化學組成和機械特性 78
附錄C 刀具規格 79
附錄D 實驗量測設備規格 80
D.1 銑削動力計規格 80
D.2 三次元表面粗度測定儀規格 80
附錄E 表面粗糙度量測準則 82
作者簡介 84
[Feng & Su, 2001] H.-Y. Feng and N. Su, “A Mechanistic Cutting Force Model for 3D Ball-End Milling,”Journal of Manufacturing Science and Engineering, Feb., 2001, Vol.123, pp.23-29.
[Greif, 1990] M. Greif,“High Speed Milling of Aluminum and Copper Alloys,”Proceedings of the 1990 NSC-DFG Joint Symposium on Precision and High Speed Manufacturing Technology, March, 1990, pp.13-24.
[Hunter, 1985] D. Hunter,“60,000-rpm Milling Readied for Use,”American Machinist, June, 1985, pp.88-90.
[Kline & DeVor, 1983] W. A. Kline and R. E. DeVor, “The Effect of Runout on Cutting Geometry and Force in End Milling,” International Journal of Machine Tools Research, Vol.23, No.2/3, 1983, pp.123-140.
[Lazoglu & Liang, 2000] I. Lazoglu and S. Y. Liang, “Modeling of Ball-End Milling Forces with Cutter Axis Inclination,” Journal of Manufacturing Science and Engineering, Feb., 2000, Vol.122, pp.3-11.
[McGee, 1984] F. J. McGee,“High-Speed Machining of Aluminum Alloys,”Proceedings of ASME Symposium on High Speed Machining, Dec., 1984, New York, pp.205-216.
[Schulz, 1990] H. Schulz,“Advantages and Efficiency of High Speed Milling,”Proceedings of the 1990 NSC-DFG Joint Symposium on Precision and High Speed Manufacturing Technology, March, 1990, pp.1-11.
[Schulz, 1992] H. Schulz,“High-Speed Machining,”Annals of The CIRP, Feb., 1992, Vol.41, pp.637-643.
[Schulz, 1995] H. Schulz, “High-Speed Milling of Dies and Moulds Cutting Conditions and Technology,” Annals of the CIRP, Jan., 1995, Vol.44, pp.35-38.
[Schulz, 1999] H. Schulz,“The History of High-Speed Machining,”Proceedings of the 1999 Sino-German Joint Symposium on High-Speed and High Precision Machining, March, 1999, pp.1-8.
[Shaw, 1991] M. C. Shaw, Metal Cutting Principles, Oxford University Press, New York, 1991.
[Tarng, 1990] Y.-S. Tarng,“A Study of Dynamics of High Speed Milling,”Proceedings of 1990 NSC-DFG Joint Symposium on Precision and High Speed Manufacturing Technology, March, 1990, pp.203-214.
[Tlusty, 1993] J. Tlusty,“High-Speed Machining,”Annals of The CIRP, Feb., 1993, Vol.42, pp.733-738.
[Tlusty & MacNeil, 1975] J. Tlusty and P. MacNeil,“Dynamics of Cutting Forces in End Milling,”Annals of CIRP, 1975, Vol.24, pp.21-25.
[Yucesan & Altintas, 1996] G. Yucesan and Y. Altintas, “Prediction of Ball End Milling Forces,” Journal of Engineering for Industry, Feb., 1996, Vol.118, pp.95-103.
[Zheng et al., 1995] L. Zheng, Y. Shun and S. Y. Liang, “Three Dimensional Cutting Force Analysis in End Milling,” International Journal of Mechanical Science, Vol.38, No.3, 1996, pp.259-269.
[傅, 1998] 傅英俊,“最新高速銑削技術簡介,”機械月刊,第24卷第7期,1998年7月號,297-304頁。
[陳, 1999] 陳永正,6061鋁合金之高速銑削行為與實驗探討,國立中興大學機械工程研究所碩士論文,1999年6月。
[湯, 2000] 湯富俊,“高速切削技術探討,”機械工業雜誌,2000年5月,177-188頁。
[陳, 等人2001] 陳茂森,黃永國和陳政雄,“球形端銑刀刀刃運動軌跡之分析,”機械月刊,第24卷第8期,2001年8月號,272-284頁。
[柳, 2001] 柳義耿,高速銑削之切削力研究,國立中興大學機械工程研究所碩士論文,2001年6月。
[黎, 1993] 黎正中譯,穩健設計之品質工程,台北圖書有限公司,1993年1月31日。
[鍾, 1993] 鍾清章校訂,田口式品質工程導論,中華民國品質管制學會發行,1993年2月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top