跳到主要內容

臺灣博碩士論文加值系統

(54.91.62.236) 您好!臺灣時間:2022/01/18 01:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳延宜
研究生(外文):Yen-Yi Chen
論文名稱:六軸Stewart平台之適應PID控制設計
論文名稱(外文):Adaptive PID Controller Design for Six-Axis Stewart Platforms
指導教授:林麗章
指導教授(外文):Lih-Chang Lin
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:97
中文關鍵詞:Stewart平台適應控制PID控制器
外文關鍵詞:Stewart PlatformsAdaptive ControlPID Controller
相關次數:
  • 被引用被引用:9
  • 點閱點閱:1383
  • 評分評分:
  • 下載下載:367
  • 收藏至我的研究室書目清單書目收藏:2
Stewart平台為一並聯式機器人,其結構是由活動平台、基座平台,以及六根可以藉由致動器改變長度之支柱連結而成。由於Stewart平台具閉迴路運動鏈結構,因此具有高精度、高剛性和構形簡單等優點。使其具有極高的應用潛力,並已被廣泛地研究與應用於各種領域。
本論文運用幾何方法先建立六軸Stewart平台的逆向運動學方程式及Jacobian矩陣,並考慮平台支柱及其致動器之實際動態效應,使用牛頓-尤拉方程式,建立Stewart平台的完整數學模式。將活動平台和支柱致動系統的動力學模式,化為以馬達轉軸運動量表示的關節空間模式,再依模式追隨(model following)原理,選擇適當的Lyapunov候選函數,推導六自由度Stewart平台之簡易穩定適應PID控制策略,其中包括六軸PID控制器參數的調適律以及不確定性的強健補償律,可以有效地線上自調控制器參數,避免過多的嘗試錯誤過程。為了瞭解所提控制策略之有效性,最後並以電腦模擬加以驗證。
Stewart platforms are a type of parallel mechanism which are constructed with six struts between the base platform and the mobile platform. The lengths of the six struts are changed by their respective servo actuators. Using this kind of closed loop mechanism for designing a six-DOF motion system has several advantages, such as possible higher precision, stiffness, and more simpler structure. Stewart platforms have thus found wide application and growing research interest in recent years.
In this thesis, complete reverse kinematics and dynamics equations of a six-DOF Stewart platform are derived. The Newton-Euler approach is adopted in the derivation. Considering the effects of inertia of the six struts and the servo transmission systems, dynamics equations of the six struts and their actuating servos are completely derived. Choosing a proper Lyapunov function base on the concept of model following , a simple stable adaptive PID control law including the six-axis PID parameters adaptation law and a simple robust compensating law for model uncertainty, is derived. Finally, computer simulation results are presented to illustrate the effectiveness of the suggested control strategy.
中文摘要 Ⅰ
英文摘要 Ⅱ
誌謝 Ⅲ
目錄 Ⅳ
圖表目錄 Ⅵ
符號說明 Ⅷ
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.3 論文大綱 6
第二章Stewart平台數學模式推導 7
2.1逆向運動方程式之推導 8
2.2 Stewart平台支柱之運動學方程式 13
2.3 Stewart平台支柱之動力學方程式 24
2.4活動平台之動力學模式 30
2.5 支柱致動系統之動力學模式推導 47
第三章 Stewart平台適應控制器設計 55
3.1 PID控制器 55
3.2六軸Stewart平台之適應式PID控制器 56
第四章 電腦模擬結果 68
4.1 系統模擬參數之選定 68
4.2 欲追蹤軌跡之選定 71
4.3 模擬結果 73
第五章 結論與建議 90
參考文獻 93
簡歷 97
[1] D. Stewart, “A platform with six degrees of freedom,” Proc. Institute of Mechanical Engineering, Vol.180, Part 1, No. 5, pp. 371-386, 1965.
[2] H. MacCallion and P.T. Pham “The analysis of a six degree of freedom workstation for mechanized
assembly,” 5th World Congress on Theory of Machines
and Mechanisms , Montreal, 1979.
[3] Z.J. Geng and L.S. Haynes,“Six degree-of-freedom active vibration control using the Stewart platforms,” IEEE Trans. on Control Systems Technology, Vol. 2, pp. 45-53, 1994.
[4] J.M. Wendlandt and S.S. Sastry,“Design and control of a simplified Stewart platform for endoscopy,” Proc. of the 33rd IEEE Conf. on Decision and Control, Vol. 1, pp. 357-362, 1994.
[5] L.D. Reid, “Motion algorithm for large-displacement driving simulator” Transportation Research Record, No. 1403, pp. 98-106, 1993.
[6] Y. X. Su and B.Y. Duan,“The application of the Stewart platform in large spherical radio telescopes,” J. of Robotic Systems, Vol. 17, pp. 375-384, 2000.
[7] Y. X. Su and B. Y. Duan,“The mechanical design and kinematics accuracy analysis of a fine tuning,” J. of Mechatronics, Vol.10, pp.819-834, 2000.
[8] Giddings and Lewis, Giddings and Lewis machine tools, Fond du Lac, WI, 1995.
[9] K.C. Cheok,J.L. Overholt,and R.R. Beck, “Exact Methods for Determining the Kinematics of a Stewart platform Using Additional Sensors,” J. of Robotic Systems, Vol. 10, No. 5,pp. 689-707, 1993.
[10] J.M. Fitzgerald, “Evaluating the Stewart Plantform for Manufacturing,” Robotic Today,Vol. 6,No. 1,pp. 1-3
, 1993.
[11] B.E. David,“Process Control Performance: Not as Good as You Think,” Control Engineering,pp. 12-35, Sept., 1993.
[12] K.J. Astrom and T. Hagglund, “Automatic Tuning of Simple Regulators with Specifications on Phase and Amplitude Margins,” Automatica,Vol.20,pp.645-651, 1984.
[13] C.C. Hang ,K.J. Astrom and W.K. Ho, “Refinements of the Ziegler-Nichols tuning formula,” IEE Proceedings Pt. D,Vol. 138,pp. 111-118, 1991.
[14] W.K. Ho,C.C. Hang and L.S.Cao, “Tuning of PID controller based on gain and phase margin specifications,” Automatica,Vol. 31,pp. 497-502, 1995.
[15] K.J. Astrom,C.C. Hang,P. Persson and W.K. Ho, “Toward Intelligent PID Control,” Automatica,Vol.28,pp. 1-9, 1991.
[16] K.E. Arzen,“An architecture for expert control systems based feedback control,” Automatica,Vol. 25,pp. 813-827, 1989.
[17] M. Raghavan, “The Stewart platform of general geo- metry has 40 configurations,” AMSE J. of Mechanisms, Vol. 115, pp. 277-282, 1993.
[18] Nanua, K.J. Waldron, and V. Murthy,“Direct kine- matics solution of a Stewart platform,” IEEE Trans. on Robotics and Automation, Vol. 6, pp. 438-444, August 1990.
[19] Z. Geng and L. Haynes, “Neural network solution for forward kinematics problem of a Stewart platform,” Int. Conf. on Robotics and Automation, pp. 2650-2655, April 1991.
[20] J.P. Merlet, “Direct kinematics and assembly models of parallel manipulators,” Int. J. of Robotics Research, Vol. 11, No. 2, pp. 150-162, April 1992.
[21] D.C.H. Yang and T.W. Lee, “Feasibility study of a platform type of robotic manipulators from a kinematics viewpoint,” J. of Mechanisms, Transmissions, and Auto- mation in Design, Vol. 106, No. 1, pp. 191-198, 1984.
[22] E.F. Fichter, “A Stewart platform-based manipulator: general theory and practical constructions,” Int. J. of Robotics Research, Vol. 5, No. 2, pp. 157-182, 1986.
[23] W.Q.D. Do and D.C.H. Yang, “Inverse dynamics analysis and simulation of a platform type of robot,” J. of Robotics Systems, Vol.5, No.3, pp.209-227, 1988.
[24] G. Lebert, “Dynamics analysis and control of Stewart manipulator,” J. of Robotics Systems, Vol.10, pp.629- 655, 1983.
[25] Z. Ji, “Study of the effect of leg inertia in Stewart platforms,” Proc. 1993 IEEE Int. Conf. on Robotics and Automation, Vol. 1, pp. 121-126.
[26] C.C. Nguyen, S.S. Antrazi, Z-L. Zhou, and C.E. Campbell, “Experimental Study of Motion Control and
Trajectory Planning for a Stewart Platform Robot
Manipulator,” Pro. 1991 IEEE Int. Conf. on Robotics
and Automation, Sacramento, California, pp. 1873-1878.
[27] Z. Geng, J.D. Lee, R.L. Carroll, and L.H. Haynes, “Learning Control System Design Based on 2-D Theory — an Application to Parallel Link Manipulator,” Proc. 1990 IEEE Int. Conf. on Robotics and Automation, vol. 3, pp. 1510-1151.
[28] M. Honegger, A. Codourey, and E. Burdet,“Adaptive Control of the Hexaglide, and DOF Parallel Manipulator, ”Proc. 1997 IEEE Int. Conf. on Robotics and Automation, Albuquerque, New Mexico, pp. 543-548.
[29] K.J. Åström, and B. Wittenmark, Adaptive Controll, 2nd Ed., Addison Wesly, 1995.
[30] 趙聖龍,使用遺傳演算法之Stewart平台最佳可控制性設計製作與建模控制,國立中興大學機械工程學系碩士論文, 2001.
[31] L.W. Tsai, Robot Analysis, Wiley-Interscience, 1999.
[32] L. Sciavicco and B.Siciliano, Modeling and Control of Manipulator, McGraw-Hill, 1996.
[33] J. Craig, Introduction to Robotics Mechanics and Control, Addison-Wesley, 1989.
[34] C.C. Nguyen, S.S. Antrazi, and Z.-L. Zhou, “Adaptive Control of a Stewart Platform-Based Manipulator,” J. of Robotic System, Vol. 10, No. 5, pp. 657-687, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top