跳到主要內容

臺灣博碩士論文加值系統

(54.172.135.8) 您好!臺灣時間:2022/01/18 15:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉家宏
研究生(外文):Chia-Hung Liu
論文名稱:縱列雙方柱流場特性之實驗研究與數值分析
論文名稱(外文):Experimental and Numerical Studies of Flow Fields in Tandem Arranged Square Cylinders
指導教授:簡瑞與陳志敏陳志敏引用關係
指導教授(外文):Rei-Yu CheinJerry M. Chen
學位類別:博士
校院名稱:國立中興大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:198
中文關鍵詞:縱列雙方柱再回附流場遲滯穴蝕流場臨界間距跳躍流場
外文關鍵詞:tandem square cylindersreattachment flowhysteresiscavtiy flowcritical spacingjump flow
相關次數:
  • 被引用被引用:2
  • 點閱點閱:734
  • 評分評分:
  • 下載下載:164
  • 收藏至我的研究室書目清單書目收藏:0
本文以方柱體為實驗模型,針對不同攻角的單一方柱及縱列雙方柱體流場進行實驗研究與數值模擬的流場分析。實驗研究主要是量測尾流場頻率響應、柱體表面壓力、阻力計算、流場可視化觀測、縱列雙方柱遲滯(hysteresis)流場的探討。數值模擬使用大尺度渦度模擬(Large-Eddy Simulation)的紊流模型來求解奈維爾-史托克方程式(Navier-Stokes equations),研究的焦點在於探討縱列雙方柱流場模態轉變時的動態特性。
實驗在開放式風洞中進行,在單一方柱的流場實驗中,著重在低雷諾數的範圍(Re = 2000-21000)。對於Re > 5300,史卓赫數(Strouhal number)隨攻角的增加呈現相似的趨勢,並且在攻角約13o,史卓赫數出現突增的情形,代表完全分離的流場轉變為再回附流場。當再回附流場發生時,方柱下表面將產生強大的壓力回復現象。對於Re = 2000-3300,史卓赫數的最大值約在17o。在這個攻角附近,由壓力的量測得知其存在著較弱的壓力回復現象。另外,再回附流場的特性更進一步經由對方柱下表面的壓力頻譜分析,得知其為低頻低能階的特性。
在縱列雙方柱流場實驗方面,雷諾數範圍為2000-16000,間距範圍為L/D = 1.5-9.0,其中L為上下游方柱形心的距離,D為方柱邊長。當以增加間距及減少間距兩種方式改變L/D時,發現存在路徑相依的現象伴隨著兩個不連續的跳躍點,分別出現在增加及減少間距的路徑,不連續跳躍點的出現則代表流場型態的改變。在流場發生轉變之後,並不會如同雙穩定流場般再回復到前一流場的型態產生流場模態的交替現象。遲滯的特性,在本研究中以阻力、史卓赫數、表面壓力及流場可視化來進行,並利用尾流場的速度訊號的時序結果及頻譜來說明。
數值模擬中,針對縱列雙方柱的流場以二維不可壓縮流場的假設進行,雷諾數為Re = 100、500及2700。另外,單一方柱在研究中用來測試使用方法的試用性,經由與實驗結果及過去文獻的比較,具有相當高的流場準確性。在Re = 500間距L/D = 3.0,由渦度等值的時序圖發現了類穴蝕流場的存在,而在間距L/D = 3.5時則為臨界間距。研究中進一步使用速度相位圖來探討流場的動態特性,結果發現流場的轉變與“糾結”現象有關。本研究中並未發現雙穩定流場的存在,並且由研究結果得知,在三維的流場中可能將會有更複雜相位圖產生而需更進一步的研究。
The flow characteristics around a single and two square cylinders in a tandem arrangement were examined experimentally and numerically. The vortex shedding frequency, unsteady surface pressures, drag coefficients, flow visualizations and the hysteresis phenomenon were carefully investigated in the experiments. In the numerical simulations, a general numerical package, Fluent, was employed with LES (Large-Eddy Simulation) to solve the continuity and Navier-Stokes equations. The numerical simulation is focused on the dynamic characteristics of flow, in particular, the change of the flow pattern with the variation of spacing between the two square cylinders in a tandem arrangement.
The experiments were performed in an open type wind tunnel with a square test section of 305㎜×305㎜ and 1100㎜in length. In the study of flow around a single square cylinder, the Reynolds number ranges between 2000-21000. For Reynolds numbers greater than 5300, the Strouhal number shows a similar trend with changing angle of incidence; that is a rapid rise in Strouhal number occurs at an angle of around 13o. The jump in Strouhal number was found to be associated with onset of the flow reattachment, bringing in a strong pressure recovery on the lower side face of the cylinder. For lower Reynolds number 2000 to 3300, the maximum Strouhal number occurs at a relatively higher angle of 17o. Around this angle, the pressure measurements exhibit a rather weak pressure recovery, suggesting a less firm shear-layer reattachment to the side face of the cylinder. The nature of the reattachment flow was further examined by spectral analysis of the fluctuating pressure coefficients measured on the lower side face of the cylinder.
The flow around two square cylinders in a tandem arrangement was examined experimentally for the Reynolds number ranging from 2.0×103 to 1.6×104 and the spacing L/D = 1.5-9.0, where L is the distance between the centre of the cylinders and D is the dimension of the cylinder. Hysteresis with two discontinuous jumps occurred for all of the Reynolds numbers when the spacing was varied in two different ways, one is being a progressive increased and the other a progressive decreased. The hysteresis is associated with two different flow patterns, and the discontinuity is attributed to a sudden change of the flow pattern. In the hysteresis regime, only one flow pattern is stable, differing from the bistable phenomenon that involves intermittent switching between two stable flow patterns as reported for higher Reynolds numbers by previous studies. The time history and spectra of velocity as well as the flow visualization corresponding to the change of flow pattern in the hysteresis regime are presented and discussed in detail. The effects caused by hysteresis and Reynolds number on drag forces, mean and fluctuating pressures, and Strouhal numbers of the cylinders are examined.
The numerical simulation was carried out for two-dimensional, incompressible flow for Re = 100, 500 and 2700. Prior to the simulation of two cylinders in a tandem arrangement, the flow over a single cylinder was examined and checked with the present experimental results as well as previous numerical simulations. In the study of tandem cylinders, the flow field of cavity mode was observed at Re = 500 as the spacing was set at L/D = 3.0 slightly below the critical value. At the critical spacing L/D = 3.5 for the same Reynolds number, the flow changes from reattachment to jump flow. Moreover, the velocity phase diagrams are presented to describe the dynamic response of the wake with variation of spacing. It is found that the change of the flow pattern is related to the “knot” phenomenon. The dynamic behavior reported in the present study suggests that a three-dimensional flow may lead to much richer variations in phase diagram. Furthermore, bistable phenomenon was not found in the present simulation.
目錄
摘要 I
目錄 ⅤI
圖目錄 IX
表目錄 XV
符號說明 XVI
第一章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 2
1-2.1  單一方柱 2
1-2.2  縱列雙柱體 3
1-2.3 數值研究 7
1-3 研究目的與本文組織 9
第二章 實驗設備 11
2-1 風洞 11
2-2 模型 11
2-3 量測儀器及數據擷取系統 14
2-4 流場可視化設備 15
第三章 實驗方法 17
3-1 儀器校驗 17
3-1.1 流場速度量測儀器校驗 17
3-1.2 壓力量測儀器校驗 17
3-2 量測方法 18
3-2.1 頻譜解析度的計算方式 18
3-2.2 尾流頻譜量測 18
3-2.3 表面壓力量測 19
3-2.4 渦漩形成長度的量測 20
3-3 準確度的探討 21
第四章 實驗結果 — 單一方柱 23
4-1 流場二維性 23
4-2 攻角α = 0° 25
4-3 攻角α = 0°-45° 30
4-4 再回附流場 34
第五章 實驗結果 — 縱列雙方柱 40
5-1 遲滯特性 40
5-2 速度時序與頻譜分析 49
5-3 史卓赫分佈 52
5-4 遲滯間距界限 56
5-5 雷諾數在平均壓力及形狀阻力的影響 58
5-6 不同雷諾數在擾動壓力的影響 66
第六章 數值模擬方法 73
6-1 數學模型 73
6-1.1 統御方程 73
6-1.2 邊界條件 74
6-2 計算方法及參數的建立 75
6-3網格點的建立 79
第七章 數值結果-單一方柱 81
7-1史卓赫數變化 81
7-2升阻力變化 85
7-2.1升力及阻力分析 85
7-2.2升力及阻力總變化分析 95
7-3流場特性 93
7-3.1紊流效應及雷諾相似性 93
7-3.2尾流渦漩形成長度 100
7-4綜合分析比較 104
第八章 數值結果-縱列雙方柱 111
8-1阻力特性分析 111
8-2史卓赫數分佈 114
8-3臨界間距變化 117
8-4流場特性 118
8-4.1類矩形柱體流場 118
8-4.2跳躍流場 140
8-4.3擾動阻力及擾動升力 142
8-5流場速度動態特性 145
8-5.1速度訊號分析 145
8-5.2 Lissajous速度面 160
第九章 結論與建議 176
附錄A 179
A.1 Second-Order Upwind Scheme 179
A.2 QUICK Scheme 180
A.3 SIMPLE Scheme 181
A.4 Under-relaxation factor 183
參考文獻 184
作者自述 197
1. Anagnostopoulos, P., “Computer-Aided Flow Visualization and Vorticity Balance the Laminar Wake of a Circular Cylinder,” Journal of Fluids and Structures, Vol. 11, 1997, pp. 33-72.
2. Armstrong, B. J., Barnes, F. H., “The Effects of a Perturbation on the Flow over a Bluff Body,” Physics of Fluids, Vol. 29, 1986, pp. 2095-2102.
3. Batill, S. M., Nebres, J. V., “Application of Digital Filtering Techniques to Unsteady Pressure Measurements,” AIAA Paper 91-0061, Jan. 1991.
4. Bearman, P. W., “Investigation of the Flow behind a Two-Dimensional Model with a Blunt Trailing Edge and Fitted with Splitter Plates,” Journal of Fluid Mechanics, Vol. 21, 1965, pp. 241-255.
5. Bearman, P. W., Trueman, D. M., “An Investigation of the Flow Around Rectangular Cylinders,” Aeronautical Quarterly, Vol. 23, 1972, pp. 229-237.
6. Bearman, P. W., Wadcock, A. J., “The Interaction between a Pair of Circular Cylinders Normal to a Stream,” Journal of Fluid Mechanics, Vol. 61, part 3, 1973, pp. 499-511.
7. Bearman, P. W.,“On Vortex Shedding from a Circular Cylinder in the Critical Reynolds Numbers Regime,” Journal of Fluid Mechanics, Vol. 37, part 3, 1969, pp. 577-585.
8. Bergstorm, D. J., Wang, J., “Discrete Vortex Model of Flow Over a Square Cylinder,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 67༜, 1997, pp. 37-49.
9. Bloor, M. S., “The Transition to Turbulence in the Wake of a Circular Cylinder,” Journal of Fluid Mechanics, Vol. 19, 1964, pp. 290-304.
10. Bloor, S., Gerrard, J. H., “Measurements on the Turbulent Vortices in a Cylinder Wake,” Proceedings of Royal Society (London) Series A, Vol. 294, 1966, pp. 319-342.
11. Bosch, G., Rodi, W., “Simulation of Vortex Shedding Past a Square Cylinder with Different Turbulence Models,” International Journal for Numerical Methods in Fluid, Vol. 28, 1998, pp. 601-616.
12. Bosch, G., Rodi, W., “Simulation of Vortex Shedding Past a Square Cylinder with Different Turbulence Models,” International Journal for Numerical Methods in Fluids, Vol. 28, 1998, pp. 601-616.
13. Bouris, D., Bergeles, G., “2D LES of Vortex Shedding from a Square Cylinder,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 80, 1999, pp. 31-46.
14. Breuer, G., Pourquie, M., “First Experience with LES of Flows Past Bluff Bodies,” Proceedings of 3rd International Symposium on Engineering Turbulence Modeling and Measurements, Heraklion-Crete, Greece, 27-29, Elsevier, Amsterdam, 1996, pp. 177-186.
15. Breuer, M., “Large Eddy Simulation of The Subcritical Flow Past a Circular Cylinder : Numerical and Modeling Aspects,” International Journal for Numerical Methods in Fluid, Vol. 28, 1998, pp. 1281-1302.
16. Breuer, M., “Numerical and Modeling Influences on Large Eddy Simulation for the Flow Pass a Circular Cylinder,” International Journal of Heat and Fluid Flow, Vol. 19, 1998, pp. 512-521.
17. Chandrsuda, C., Mehta, R. D., Weir, A. D., Bradshaw, P., “Effect of Free-Stream Turbulence on Large Structure in Turbulent Mixing Layers,” Journal of Fluid Mechanics, Vol. 85, 1978, pp. 693-704.
18. Chen, J. M. Chiou, C.-C., “Flow Past a Blunt Flat Plate Subjected to the Disturbance of Incident Vortex Street,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 66, 1997, pp. 179-196.
19. Chen, J. M., Chueh, H. C., “Visualization of Flow Around a Rectangular Plate Disturbed by Oncoming Periodic Vortices,” Proceedings of 8th International Conference on Flow Visualization, Sorrento, Italy, 1998, 8ISFV-186.
20. Chen, J. M., Fang, Y.-C., “Strouhal Numbers of Inclined Flat Plates,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 61, 1996, pp. 99-112.
21. Chen, J. M., Liu, C.-H., “Vortex Shedding and Surface Pressures on a Square Cylinder at Incidence to a Uniform Air Stream,” International Journal of Heat and Fluid Flow, Vol. 20, 1999, pp. 592-597.
22. Cherry, N. J., Hillier, R., Latour, M. E. M. P., “Unsteady Measurements in a Separated and Reattaching Flow,” Journal of Fluid Mechanics, Vol. 144, 1984, pp. 13-46.
23. Devarakonda, R., Humphrey, J. A. C., “Experimental Study of Turbulent Flow in the Near Wakes of Single and Tandem Prisms,” International Journal of Heat and Fluid Flow, Vol. 17, 1996, pp. 219-227.
24. Edamota, K., Kawahara, M., “Finite Element Analysis of Two- and Three-Dimensional Flows Around Square Columns in Tandem Arrangement,” International Journal for Numerical Methods in Fluids, Vol. 28, 1998, pp. 95-112.
25. Filler, J. R., Marston, P. L., Mih, W. C., “Response of the Shear Layers Separating from a Circular Cylinder to Small-Amplitude Rotational Oscillations,” Journal of Fluid Mechanics, Vol. 231, 1991, pp. 481-499.
26. Frank, R., Rodi, W., Schonung, B., “Numerical Calculation of Laminar Vortex Shedding Flow Past Cylinders,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 35, 1990, pp. 237-257.
27. Gerrard, J. H., “The Mechanics of the Formation Region of Vortices behind Bluff Bodies,” Journal of Fluid Mechanics, Vol. 25, 1966, pp. 401-413.
28. Gharib, M., Roshko, A., “The Effect of Flow Oscillation on Cavity Drag,” Journal of Fluid Mechanics, Vol. 177, 1987, pp. 501-530.
29. Ghrist, R. W., Holmes, P. J., Sullivan, M. C., Knots and Links in Three-Dimensional Flows, Springer-Verlag Berlin Heidelberg, 1997, Chapters 1ƀ.
30. Griffin, O. M., and Ramberg, S. E., “Vortex Shedding from a Cylinder Vibrating in Line with an Incident Uniform Flow,” Journal of Fluid Mechanics, Vol. 75, part 2, 1976, pp. 257-271.
31. Griffin, O. M., Ramberg, S. E., “The Vortex-Street Wakes of Vibrating Cylinder,” Journal of Fluid Mechanics, Vol. 66, 1974, pp. 553-576.
32. Holdeman, J. D., Foss, J. F., “The Initiation, Development, and Decay of Secondary Flow in a Bounded Jet,” Transactions of A.S.M.E. International Journal of Fluid Engineering, Vol. 97, 1975, pp. 342-352.
33. Hori, E., “Experiments on Flow Around a Pair of Parallel Circular Cylinders,” Proceeding of 9th Japan National Congress for Applied Mechanics, Tokyo, 1959, pp. 231-234.
34. Igarashi, T., “Characteristics of the Flow Around Two Circular Cylinders Arranged in Tandem,” 1st Report. Bulletion of the JSME, B24, 1981, pp. 323-331.
35. Igarashi, T., “Characteristics of the Flow Around Two Circular Cylinders Arranged in Tandem,” 2nd Report. Unique phenomenon at small spacing. Bulletion of the JSME, B27, 1984, pp. 2380-2387.
36. Igarashi, T., “Heat Transfer from a Square Prism to an Air Stream,” International Journal of Heat Mass Transfer, Vol. 28, 1985, pp. 175-181.
37. Igarashi, T., “Local Heat Transfer from a Square Prism to an Air Stream,” International Journal of Heat Mass Transfer, Vol. 29, 1986, pp. 777-784.
38. Kiya, M., Sasaki, K., “Structure of a Turbulent Separation Bubble,” Journal of Fluid Mechanics, Vol. 137, 1983, pp. 83-113.
39. Knisely, C. W., “Strouhal Numbers of Rectangular Cylinders at Incidence: A Review and New Data,” Journal of Fluids and Structures, Vol. 4, 1990, pp. 371-393.
40. Knisely, C., Rockwell, D., “Self-Sustained Low-Frequency Components in An Impinging Shear Layer,” Journal of Fluid Mechanics, Vol. 116, 1982, pp. 157-186.
41. Kogaki, T., Kobayashi, T., Taniguchi, “Large Eddy Simulation of Flow Around a Rectangular Cylinder,” Fluid Dynamics Research, Vol. 20, 1997, pp. 11-24.
42. Konrad, J. H., “An Experimental Investigation of Mixing in Two-Dimensional Turbulent Shear Flows with Applications to Diffusion-Limited Chemical Reaction,” Project SQUID Tech. Report CIT-8-PU, 1976.
43. Kuo, C.-H., Lin, Y. T., “Modification on Cavity Shear Layer in Presence of a Circular Cylinder,” Proceedings of 7th International Symposium on Flow Modeling and Turbulence Measurements, Tainan, Taiwan, Oct. 1998.
44. Lee, B. E., “ The Effect of Turbulence on the Surface Pressure Field of a Square Prism,” Journal of Fluid Mechanics, Vol. 69, part 2, 1975, pp. 263-282.
45. Lee, S., Bienkiewicz, B., “Finite Element Implementation of Large Eddy Simulation for Separated Flows,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 77༦, 1998, pp. 603-617.
46. Lin, J.-C., Rockwell, D., “Instantaneous Structure of the Near-Wake of a Circular Cylinder: On the Effect Reynolds Number,” Journal of Fluids and Structures, Vol. 9, 1995, pp. 409-418.
47. Ljungkrona, L., Norberg, C., Sunden, B., “Free-Stream Turbulence and Tube Spacing Effects on Surface Pressure Fluctuations for Two Tubes in an In-Line Arrangement,” Journal of Fluids and Structures, Vol. 5, 1991, pp. 701-727.
48. Lu, S. S., Willmarth, W. W., “Measurements of the Structure of the Reynolds Stress in a Turbulent Boundary Layer,” Journal of Fluid Mechanics, Vol. 60, part 3, 1973, pp. 481-511.
49. Mahir, N., Rockwell, D., “Vortex Formation from a Forced System of Two Cylinders. Part I: Tandem Arrangement,” Journal of Fluids and Structures, Vol. 10, 1996, pp. 473-489.
50. Meneghini, J. R., Bearman, P. W., “Numerical Simulation of Amplitude Oscillatory Flow about a Circular Cylinder,” Journal of Fluids and Structures, Vol. 7, 1993, pp. 435-455.
51. Miau, J. J., Wang, J. T., Lee, K. R., “Characteristics of Low-Frequency Variations Embedded in Vortex-Shedding Process,” Journal of Fluids and Structures, Vol. 13, 1999, pp. 339-359.
52. Miau, J. J., Yang, C. C., Chou, J. H., Lee, K. R., “Suppression of Low-Frequency Variations in Vortex Shedding by a Splitter Plate Behind a Bluff Body,” Journal of Fluids and Structures, Vol. 7, 1993, pp. 897-912.
53. Miksad, R. W., “Experiments on the Nonlinear Stages of Free-Shear Layer Transition,” Journal of Fluid Mechanics, Vol. 23, 1965, pp. 695-719.
54. Moriya, M., Sakamoto, H., “Effect of a Vibrating Upstream Cylinder on a Stationary Downstream Cylinder,” ASME Journal of Fluids Engineering, Vol. 108, 1986, pp. 180-184.
55. Moriya, M., Sakamoto, H., Kiya, M., Arie, M., “Fluctuating Pressures and Forces on Two Circular Cylinders in Tandem Arrangement,” Transaction of the JSME, Vol. 49, 1983, pp. 1364-1374.
56. Murakami, S., Mochida, A., “On Turbulent Vortex Shedding Flow Past 2D Square Cylinder Predicted by CFD,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 54༏, 1995, pp. 191-211.
57. Murakami, S., Mochida, A., Hibi, K., “Three-Dimensional Numerical Simulation of Air Flow Around a Cubic Model by Means of Large Eddy Simulation,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 25, 1987, pp. 291-305.
58. Nishioka, M., Sato, H., “Mechanism of Determine of the Shedding Frequency of Vortices behind a Cylinder at Low Reynolds Numbers,” Journal of Fluid Mechanics, Vol. 88, 1978, pp. 49-60.
59. Norberg, C., “Flow Around Rectangular Cylinders: Pressure Forces and Wake Frequencies,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 49, 1993, pp. 187-196
60. Obasaju, E. D., “An Investigation of the Effects of Incidence on the Flow Around a Square Section Cylinder. Aeronautical Quarterly, Vol. 34, 1983, pp. 243-259
61. Oka, S., Kositc, Z. G., Sikmanovic, S., “Investigation of the Heat Transfer Processes in Tube Banks in Cross Flow,” International Seminar on Recent Developments in Heat Exchangers, Trogir, 1972, Yugoslavia.
62. Okajima, A., “Strouhal Numbers of Rectangular Cylinders,” Journal of Fluid Mechanics, Vol. 123, 1982, pp. 379-398.
63. Ota, T., Okamoto, Y., Yoshikawa, H., “A Correction Formula for Wall Effects on Unsteady Forces of Two-Dimensional Bluff Bodies,” Journal of Fluids Engineering, Vol. 116, 1994, pp. 414-418.
64. Ouwa, Y., Sakao, F., Matsuoka, Y., “Numerical Analysis of Unsteady Flows Around Two Square Cylinders Set Tandem between Two Parallel Walls,” Transaction of JSME, June 1989, pp. 1513-1517.
65. Rennie, R. M., Jumper, E. J., “Experimental Measurements of Dynamic Control Surface Effectiveness,” Journal of Aircraft, Vol.33, No. 5, 1996, pp. 880-887.
66. Rockwell, D. O., “Organized Fluctuations due to Flow Past a Square Cross Section Cylinder,” Journal of Fluids Engineering, Vol. 99, 1977, pp. 511-516.
67. Rockwell, D., “Vortex Stretching Due to Shear Layer Instability,” Transactions of A.S.M.E. I. Journal of Fluid Engineering, Vol. 100, 1976, pp. 152-165.
68. Rockwell, D., Knisely, C., “Observations of the Three-Dimensional Nature of Unstable Flow Pass a Cavity,” Physics of Fluids, Vol. 23, 1980a, pp. 425-431.
69. Rockwell, D., Knisely, C., “The Organized Nature of Flow Impingement Upon a Corner,” Journal of Fluid Mechanics, Vol. 93, 1979, pp. 413-432.
70. Rodi, W., “Comparison of LES and RANS Calculations of Flow Around Bluff Bodies,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 69-71, 1997, pp. 55-75.
71. Rodi, W., “On the Simulation of Turbulent Flow Past Bluff Bodies,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 46ƀ7;, 1993, pp. 3-19.
72. Roshko, A., “On the Development of Turbulent Wakes from Vortex Streets,” NACA Report, 1911, pp. 801-825.
73. Roshko, A., “On the Wake and Drag of Bluff Bodies,” Journal of Aeronautical Sciences, Vol. 22, 1955, pp. 124-132.
74. Roshko, A., “Perspectives on Bluff Body Aerodynamics,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 49, 1993, pp. 79-100.
75. Saha, A. K., Biswas, G., Muralidhar K., “Numerical Study of the Turbulent Unsteady Wake behind a Partially Enclosed Square Cylinder using RANS,” Computer Methods in Applied Mechanics and Engineering, Vol. 178, 1999, pp. 323-341.
76. Sakamoto, H., Haniu, H., “Effect of Free-Stream Turbulence on Characteristics of Fluctuating Forces Acting on Two Square Prisms in Tandem Arrangement,” Journal of Fluids Engineering, Vol. 110, 1988, pp. 140-146
77. Sakamoto, H., Haniu, H., Obata, Y., “Fluctuating Forces Acting on Two Square Prisms in a Tandem Arrangement,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 26, 1987, pp.85-103
78. Sarohia, V., Experimental and Analytical Investigation of Oscillations in Flows over Cavities, Ph.D. Thesis, California Institute of Technology, Pasadena, CA , 1975.
79. Sayers, A. T., Saban, A., “Flow over Two Cylinders of Different Diameters: The Lock-in Effect,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 51, 1994, pp. 43-54.
80. Schaefer, J. W., Eskinazi, S., “An Analysis of the Vortex Street Generated in a Viscous Fluid,” Journal of Fluid Mechanics, Vol. 6, 1959, pp. 241-260.
81. Scolan, Y.-M., Faltinsen, O. M., “Numerical Studies of Separated Flow from Bodies with Sharp Corners by the Vortex in Cell Method, Journal of Fluids and Structures, Vol. 8, 1994, pp. 201-230.
82. Shah, K. B., Ferziger, J. H., “A Fluid Mechanicians View of Wind Engineering: Large Eddy Simulation of Flow Past a Cubic Obstacle,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 67༜, 1997, pp. 211-224.
83. Sohankar, A., Norberg, C., Davidson, L., “Low-Reynolds-Number Flow Around a Square Cylinder at Incidence: Study of Blockage, Onset of Vortex Shedding and Outlet Boundary Condition,” International Journal for Numerical Methods in Fluids, Vol. 26, 1998, pp. 39-56.
84. Strogatz, S. H., Nonlinear Dynamics and Chaos, Addison-Wesley Publishing Company, 1994, Chapter 8.
85. Suzuki, H., Suzuki, K., Sato, T., “Dissimilarity between Heat and Momentum Transfer in a Turbulent Boundary Layer Disturbed by a Cylinder,” International Journal of Heat and Mass Transfer, Vol. 31, part 2, 1988, pp. 259-265.
86. Suzuki, K., Suzuki, H., “Instantaneous Structure and Statistical Feature of Unsteady Flow in a Channel Obstructed by a Square Rod,” International Journal of Heat and Fluid Flow, Vol. 15, 1994, pp. 426-437.
87. Takeuch, T., Matsumoto, M., “Aerodynamic Response Characteristics of Rectangular Cylinders in Tandem Arrangement,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 41-44, 1992, pp. 565-575.
88. Taylor, I., Vezza, M., “Calculation of the Flow Field Around a Square Section Cylinder undergoing Forced Transverse Oscillations using a Discrete Vortex Method,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 82, 1999, pp. 271-291.
89. Vickery, B. J., “Fluctuating Lift and Drag on a Long Cylinder of Square Cross-Section in a Smooth and in a Turbulent Stream,” Journal of Fluid Mechanics, Vol. 25, 1996, pp. 481-494
90. Williamson, C. H. K., “The Existence of Two Stages in the Transition to Three-Dimensionality of a Cylinder Wake,” Physics in Fluids, Vol. 31, 1988, pp. 3165-3168.
91. Yu, D.-H., Kareem, A., “Numerical Simulation of Flow Around Rectangular Prism,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 67༜, 1997, pp. 195-208.
92. Zdravkovich, M. M., “Review-Review of Flow Interference between Two Circular Cylinders in Various Arrangements,” Journal of Fluids Engineering, Vol. 99, 1977, pp. 618-633
93. Zdravkovich, M. M., “The Effects of Interference between Circular Cylinders in Cross Flow,” Journal of Fluids and Structures, Vol. 1, 1987, pp. 239-261.
94. 李競翌,簡瑞與 二維方柱流場之數值分析, 中國機械工程學會第十一屆學術研討會, 台中市, 1994, pp. 19-28.
95. 林聖仁 壓力量測系統之頻率響應實驗研究, 國立中興大學機械工程研究所碩士論文, 1999.
96. 陳文良 雙矩形建築鄰近風場之數值模擬研究, 國立中興大學土木工程研究所碩士論文, 1997.
97. 盧博堅,鄭啟明,鄭傑文 順風向及橫風向排列相鄰兩振動方柱之氣動力現象研究, 中華民國第二十一屆全國力學會議, 台中市, 1997, Vol. 1, pp. 163-170.
98. 蕭健雄 水平排列雙方柱其流場型態與升阻力係數的探討, 國立中興大學機械工程研究所碩士論文, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top