(3.239.33.139) 您好!臺灣時間:2021/03/07 23:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:簡宏宇
研究生(外文):Hung Yu Chien
論文名稱:各種網路環境下的認證機制之研究
論文名稱(外文):A Study of Authentication Schemes for Various Communication Environments
指導教授:詹進科詹進科引用關係
指導教授(外文):Jinn-Ke Jan
學位類別:博士
校院名稱:國立中興大學
系所名稱:應用數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:俄文
論文頁數:136
中文關鍵詞:密碼學認證wireless communicationmobile network
外文關鍵詞:cryptographyauthentication無線通訊移動式網路
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1610
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:446
  • 收藏至我的研究室書目清單書目收藏:4
在我們日常生活當中,有越來越多的機會利用公共網路來傳送及存取個人機密資訊,因此,如何確認使用者身份及保護傳輸資料不被篡改或取得,是件重要的安全議題。通常傳輸資訊之保密,可經由對資訊加密來達成,而加密作業必需通訊之參與者事先溝通好共同的加密金鑰。加密金鑰之產生方式有下列數種:金鑰分配協定、金鑰共議協定、及群體導向式金鑰分配與金鑰共議協定。然而,在產生共同金鑰之同時,必需確認通訊對方之身份。因此,如何設計安全且有效率的認證分配金鑰與金鑰共議協定是件重要的研究課題。
隨著技術不斷的演進,今日我們所使用的公共網路也越來越多樣化,計有線式網路 (如:區域網路及網際網路)、無線式網路 (如:GSM 或 3G)、移動式網路 (如: Mobile-IP)、自動櫃員機網路及公用資訊站 (如:Internet Kiosks)等。這些不同的網路環境對設計認證分配金鑰與金鑰共議協定會有一些不同的需求。在本論文中,我們將探討不同環境下的個別需求,並提出我們的解決方案。
在本論文中,我們首先討論有線環境下的金鑰認證協定。如果被認證的一方是一般使用者,我們稱呼該機制為遠端登入機制。我們討論兩個已知機制的弱點並提出改良。接著,我們提出一新的機制;該機制的效率及功能性都比先前提出的機制表現佳。此外,我們也將討論群體導向式認證機制。
無線通訊的無線頻道比有線頻道更易招受攻擊,且目前行動設備的計算能力及電力遠不如一般的電腦。因此,在設計金鑰認證協定時須特別考量這些因素。此外,使用者的匿名及使用服務的不可否認性,也是設計無線金鑰認證協定的重要考量。在這一部份,我們首先討論現有協定的弱點及其改良;接著,提出一種新的無線金鑰認證協定。此協定除了提供較完整的匿名性功能及不可否認性外,也比先前所提出的機制效率佳。
由於無線區域網路及移動式 IP 的發展,移動式的使用者可以在跨領域經過認證後取得網路服務。設計跨領域的金鑰認證協定須考量擴充性、通訊及計算效率、以及對各種可能攻擊之防禦強度。在這部份,我們將討論現有機制的弱點,且提出一有效率的新機制。
目前廣佈的提款機系統及公用資訊站便利了我們的生活,但偽裝的提款機及公用資訊站也造成一些安全上的問題且會造成財產上的損失。為此,我們提出一新機制來解決公用資訊站及提款機的認證問題。較之先前所提出之機制,我們的機制可降低伺服器管理私密資料庫的負擔,而且需求較少的通訊步驟及資訊儲存量。

The increasing usage of public networks for transmission or access of sensitive data raises security issues, which especially include how to ensure the privacy of the transmitted data and how to authenticate the legal users for later authorization. The privacy of the transmitted data can be protected through encryption with a negotiated key. There are several cryptographic protocols to set up this key: the key distribution protocols, the key agreement protocols, and the group-oriented key distribution or agreement protocols. And, to set up a negotiated key, one should first authenticate the communicating party. Therefore, the study of the authenticated key exchange protocols is very important.
As the technology progresses, there are many varieties of public networks we can access: the wired networks (LAN or Internet), the wireless networks (GSM or 3G), the mobile networks, the ATM network and the public Internet Kiosks. The different network environments pose different challenges in designing the authenticated key exchange protocols. In this dissertation, we investigate the authenticated key exchange protocols for different networks (the wired networks, the wireless networks, the mobile networks, the ATM network and the public Internet kiosks).
In this dissertation, we shall first discuss the authenticated key exchange protocol for the wired network. If the party to be authenticated is a user, then we call such a scheme the remote login scheme. We shall present attacks on three efficient schemes, and propose our improvements. Two of them are two-party authentication schemes, and one is group-oriented scheme. We further propose a more efficient scheme that owns more practical merits.
The vulnerability of the wireless link and the low computing power of the mobile device raise new challenges in designing the authentication scheme for wireless network. The wireless network service also causes more security issues: the anonymity of users and the non-repudiation of service. We shall present attack and improvement on one known protocol. We further propose a new authenticated key exchange scheme for the wireless network service. This new scheme is more efficient than the previous works, in addition to the provision of anonymity and non-repudiation.
As the rapid development of wireless LAN and mobile network layer protocol Mobile-IP, a mobile user is allowed to access the service at the visiting domain after he has been authenticated. The design criteria of the inter-domain authentication protocols include: the scalability, the communication efficiency, the computational efficiency, and the robustness of security. We first show the weakness of some existing protocols against the session key compromise, and then propose a new and efficient inter-domain authentication protocol.
The wide deployment of ATM machines and the public Internet kiosks make our life more convenient. However, it also causes new security issues when we use them to access sensitive data; these public terminals are susceptible to the fake terminal attack. We shall propose an efficient scheme to authenticate these terminals. The scheme is more attractive than the previous works with respect to the number of secret databases, the number of interaction steps and the storage.

Abstract (in Chinese)………………………………………………………………..I
Abstract (in English) ………………………………………………………………III
Chapter 1 Introduction……………………………………………………………...1
1.1. Research Motivations………………………………………………………….1
1.2. Backgrounds…………………………………………………………………...2
1.3. Research Results and Dissertation Organization………………………………4
Chapter 2 The Design of Remote Login Schemes………………………………….6
2.1. Related Works………………………………………………………………….7
2.2. An Improved Scheme Based on Geometric Approach…………………………9
2.2.1. Review of Wu’s Scheme…………………………………………………...9
2.2.2. Two Different Approaches to Break the System…………………………11
2.2.2.1. Hwang’s Attack……………………………………………………...11
2.2.2.2. Our Approach to Break the System…………………………………12
2.2.3. Improved Scheme and Security Analysis………………………………..14
2.3. Improved Scheme Based on Cross Product…………………………………..17
2.3.1. Review of Tan-Zhu’s Scheme……………………………………………17
2.3.2. The Impersonation Attack………………………………………………..20
2.3.3. Our Improved Scheme…………………………………………………...22
2.4. An Efficient and Practical Remote Authentication Scheme…………………..23
2.4.1 The Proposed Scheme…………………………………………………….23
2.4.2. Security Analysis…………………………………………………………25
2.4.3. Efficiency and Discussion………………………………………………..25
Chapter 3. Improving the Group-Oriented Authenticated Key Exchange Protocol……………………………………………………………………….28
3.1. Review of Chang-Wu’s Scheme………………………………………………29
3.1.1. Notation…………………………………………………………………..30
3.1.2. Basic Sub-protocols………………………………………………………32
3.2. Impersonation Attack and The Improved Solution…………………………...35
3.3. Cutting Unnecessary Responses and Enhancing the Robustness of AS………37
3.4. Eliminating the Redundancies in Phase 2…………………………………….39
3.5. Conclusions…………………………………………………………………...41
Chapter 4. Anonymous Channel with Non-Repudiation Services in Wireless Communication…………………………………………………………42
4.1. Related Works………………………………………………………………...43
4.2. The Improved Dynamic Authentication Protocol…………………………….45
4.2.1. Review of Zhibin-Naitong’s Scheme…………………………………….45
4.2.2. Cryptanalysis on the Authentication Scheme…………………………….47
4.2.3. An improvement …………………………………………………………49
4.2.4. Conclusions………………………………………………………………50
4.3. An Authenticated Key Exchange Scheme Providing Anonymity and Non-repudiation……………………………………………………………..51
4.3.1. Preliminary of Some Adopted Techniques………………………………51
4.3.2. The Proposed Scheme……………………………………………………53
4.4. Analysis of the Scheme……………………………………………………….59
4.4.1. Security…………………………………………………………………...59
4.4.2. Feasibility………………………………………………………………...62
4.5. Brief comparison and Discussions……………………………………………65
Chapter 5. A Hybrid Authentication Protocol for Large Mobile Network……...68
5.1. Related Works………………………………………………………………...68
5.2. The Security Weakness in Some Session-Key Certificate Based Protocols…71
5.2.1 Review of Shieh-Ho-Huang Authentication Protocols…………………...71
5.2.2 The Known Key Attacks on Shieh-Ho-Huang’s Protocols……………….75
5.3. The Hybrid Authentication Protocol………………………………………….78
5.3.1 The Intra-Domain Authentication Protocol……………………………….78
5.3.2 The Inter-Domain Authentication Protocol……………………………….82
5.4. Security Analysis……………………………………………………………...86
5.5. Comparison and Discussions…………………………………………………88
Chapter 6. Authentication of Public Terminals…………………………………92
6.1. Introduction…………………………………………………………………...93
6.2. Asokan’s Model……………………………………………………………….95
6.2.1. The Model………………………………………………………………..95
6.2.2. Notation…………………………………………………………………..96
6.2.3. Kerberos………………………………………………………………….97
6.3. Previous Works and Discussions……………………………………………...99
6.3.1. Asokan et al.’s Solutions…………………………………………………99
6.3.1.1. Personal Smartcard without Output Display………………………...99
6.3.1.2 Memory Card……………………………………………………….102
6.3.2 Cheng et al.’s Solutions………………………………………………….104
6.4. Our Solutions………………………………………………………………...105
6.4.1. Trusted Device with Built-in Display Capacity………………………...106
6.4.2 Trusted Device without Built-in Display Capacity……………………..108
6.4.3 Memory Card……………………………………………………………110
6.5. Security Analysis and Performance Comparison……………………………111
6.5.1. Security Analysis……………………………………………………….111
6.5.2. Performance Analysis…………………………………………………..113
6.6. Conclusions………………………………………………………………….118
Chapter 7. Conclusions and Future Research Problems………………………..119
7.1. Overall Conclusions…………………………………………………………119
7.2. Further Research Problems………………………………………………….122
References………………………………………………………………………….124
Vita………………………………………………………………………………….133
Publication List…………………………………………………………………….134

[1] R. Anderson, C. Manifavas, and C. Southerland, “NetCard — A Practical Electronic-Cash System,” in: Proc. International Workshop on Security Protocols, Cambridge, UK, pp. 49-57, 1996.
[2] N. Asokan, “Anonymity in a mobile computing environment,” in: Proceedings of Workshop on mobile computing systems and applications, Santa Cruz, CA, December 1994.
[3] N. Asokan, H. Debar, M. Steiner, and M. Waidner, “Authenticating public terminals,” Computer Networks 31, pp. 861-970, 1999.
[4] A. Aziz, and W. Diffe, “Privacy and authentication for wireless local area networks,” IEEE Personal Communications 1, pp. 25-31, 1994.
[5] M. J. Beller, L.-F. Chang, and Y. Yacobi, “Privacy and authentication on a portable communications system,” in: Proceedings of GLOBECOM’91, IEEE Press, New York, pp. 1992-1997, 1991.
[6] M. J. Beller, L. F. Chang, and Y. Yacobi, “Security for personal communication services: public-key vs. private key approaches,” in: Proceedings of Third IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’92), IEEE Press, New York, pp. 26-31, 1992.
[7] M. J. Beller, L. F. Chang, and Y. Yacobi, “Privacy and authentication on a portable communications system,” IEEE Journal on Selected Areas in Communications 11, pp. 821-829, 1993.
[8] M. J. Beller, and Y. Yacobi, “Fully-fledged two-way public key authentication and key agreement for low-cost terminals,” Electronics Letters 29, pp. 999-1001, 1993.
[9] R. Bird, I. Gopal, A. Herzberg, P.A. Janson, S. Kutten, R. Molva, M. Yung, “Systematic design of a family of attack-resistant authentication protocols,” IEEE Journal on Selected Areas in Communications 11(5), pp. 679-693, 1993.
[10] C. Boyd, and A. Mathuria, “Key establishment protocols for secure mobile communications: a critical survey,” Computer Communications 23, pp. 575-587, 2000.
[11] D. Brown, “Techniques for privacy and authentication in personal communications systems,” IEEE Personal Communications, pp. 6-10, August 1995.
[12] J. L. Camenisch, J. M. Pivereau, and M. A. Stadler, “Blind signature based on the discrete logarithm problem,” Advances in Cryptography: in: Proc. EuroCrypt’94, Lecture Notes in Computer Science, 950, Springer, Berlin, pp. 428-432, 1995.
[13] U. Carlsen, “Optimal privacy and authentication on a portable communications system,” ACM Operating Systems Review 28 (3), pp. 16-23, 1994.
[14] C. K. Chan, and L. M. Cheng, “Cryptanalysis of a timestamp-based password authentication scheme,” Computer & Security 21(1), pp.74-76, 2002.
[15] C. C. Chang, and T. C. Wu, “Remote password authentication with smart cards,” IEE Proceedings-E 138 (3), pp. 165-168, 1991.
[16] C. C. Chang, and C. S. Liah, “Comment on remote password authentication with smart cards, IEE Proccedings-E 139 (4), pp. 372-372, 1992.
[17] C. C. Chang, T. C. Wu, and C. S. Laih, “Cryptanalysis of a password authentication scheme using quadratic residues,” Computer Communications 18(1), pp. 45-47, 1995.
[18] Y. S. Chang, and T. C. Wu, “Group-oriented authentication mechanism with key exchange,” Computer Communications 21, pp. 485-497, 1998.
[19] D. Chaum, “Blind signatures systems,” Advances in Cryptology: in: Proc. Crypt’83, Plenum Press, New York, pp. 153, 1993
[20] D. Chaum, “Privacy protected payments: unconditional payer and/or payee untraceability,” Smartcard 2000, North Holland, Amsterdam, 1988.
[21] C. Y. Cheng, K. Seman, and J. Yunus, “Authentication public terminals with smart cards,” in: Proc. TENCON 2000, pp. 527-529, 2000.
[22] H. Y. Chien, J. K. Jan, and Y. M. Tseng, “Impersonation attack on Tan-Zhu’s remote login scheme,” Electronics Letters 36(14), pp. 1202-1203, 2000.
[23] H. Y. Chien, J. K. Jan, and Y. M. Tseng, “A modified remote login authentication scheme based on geometric approach,” The Journal of Systems and Software 55, pp. 287-290, 2001.
[24] H. Y. Chien, J. K. Jan, and Y.-M. Tseng, “On the Generalized Threshold-Based Secret Sharing Schemes,” in: Proceeding of 10th National Security Conference, HwaLan, Taiwan, pp. 285-290, 2000.
[25] D. Coppersmith, M. Franklin, J. Patarin, and M. Reiter, “Low-exponent RSA with related messages,” Advances in Cryptology: in Proc. EuroCrypt’96, Lecture Notes in Computer Science, 1070, Springer, Berlin, pp. 1-9, 1996.
[26] CyberSafe Corporation, “Deploying Kerberos for large organizations,” Technical Report, Communication Department, CyberSafe Corporation, pp. 94-47, 1994.
[27] R. Dettmer, “Getting smarter,” IEE Review, pp. 123-126, May 1998.
[28] W. Diffie, P. C. Van Oorschot, and M.J. Wiener, “Authentication and authenticated key exchanges, Designs,” Codes and Cryptography 2(2), pp. 107-125, 1992.
[29] Y. Ding, and P. Horster, “Undetectable on-line password guessing attacks,” ACM Operating Systems Review 29, pp. 77-86,1995.
[29] A. Jr Evans, W. Kantrowitz, and E. Weiss, “A user authentication system not requiring secrecy in the computer,” Communications of the ACM 17, pp. 437-442, 1974.
[30] C. Fan, and C. Lei, “A multi-recastable ticket scheme for electronic elections,” Advances in Cryptology: in: Proc. AsiaCrypt’96, Lecture Notes in Computer Science, 1163, Springer, Berlin, pp. 116-124, 1996.
[31] A. Fox, and S. D. Gribble, “Security on the move: Indirect authentication using Kerbero,” in: Proceedings of the second annual international conference on Mobile computing and networking, MOBICOM, pp. 155 — 164, 1996.
[32] A. O. Frier, P. Kariton, and P. C. Kocher, “The SSL Protocol: Version 3.0,” Technical Report, Internet Draft, 1996.
[33] R. Ganesan, “Yaksha: Augmenting Kerberos with public key cryptography,” in: Proceedings of IEEE Symposium on Network and Distributed System Security, pp. 132 —143, 1995.
[34] M. L. Gemplus, “Smart-cards: a cost-effective solution against electronic fraude,” European Conference on Security and Detection, 28-30 April 1997, Conference Publication No. 437, pp. 81-85, IEE, 1997.
[35] R. Gennaro, and P. Rohatgi, “How to Sign Digital Streams,” Advances in Cryptology, Crypto’97, pp. 180-197, 1997.
[36] L. Gong, M. A. Lomas, R. M. Needham, and J. H. Saltzer, “Protecting poorly chosen secrets from guessing attacks,” IEEE Journal on Selected Areas in Communications 11(5), pp. 648-655, 1993.
[37] S. Halevi, and H. Krawczyk, “Public-key cryptography and password protocols,” ACM trans. On Information and System Security 2(3), pp. 230-268, 1999.
[38] J. Hastad, “On using RSA with low exponent in a public key network,” Advances in Cryptology: in Proc. Crypt’85, Lecture Notes in Computer Science, 218, Springer, Berlin, pp. 403-408, 1995.
[39] M. S. Hwang, “Cryptanalysis of a Remote Login Authentication Scheme,” Computer Communications 22, pp. 742-744, 1999.
[40] M. S. Hwang, and L. H. Li, “A new remote user authentication scheme using smart cards,” IEEE Trans. on Consumer Electronics 46(1), pp. 28-29, 2000.
[41] IEEE Standard 802.11, “Wireless LAN medium access control (MAC) and physical layer (PHY) specifications,” IEEE Draft Standard, 1996.
[42] D. P. Jablon, “Extended password key exchange protocols immune to dictionary attacks,” IEEE conference, pp.248-255, 1997.
[43] S. Jacobs, and G. Cirincione, “Security of current mobile-IP solutions,” IEEE , pp. 1122-1128, 1997.
[44] J. K. Jan, and Y. Y. Chen, “Paramita wisdom: password authentication scheme without verification tables,” The Journal of Systems and Software 42, pp. 45-47, 1998.
[45] L. Jiawei, and W. Yumin, “A user authentication protocol for digital mobile communication network,” in: IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 608-612, 1995.
[46] W. S. Juang, C. L. Lei, and C. Y. Chang, “Anonymous channel and authentication in wireless communications,” Computer Communications 22, pp. 1502-1511, 1999.
[47] I. L. Kao, and R. Chow, “An efficient and secure authentication protocol using uncertified keys,” ACM Operating Systems Review 29(3), pp.14-21, 1995.
[48] J. Kohl, and C. Neuman, “The Kerberos network authentication service (V5)”, Internet Request for Comments 1510, 1993.
[49] T. Kwon, and J. Song, “A study on the generalized key agreement and password authentication protocol,” IEICE trans. Commun. E83-B(9), pp. 2044-2050, 2000.
[50] T. Kwon, and J. Song, “Efficient key exchange and authentication protocols protecting weak secrets,” IEICE trans. Fund. E81-A(1), pp. 156-163, 1998.
[51] T. Kwon, and J. Song, “Authenticated key exchange protocols resistant to password guessing attacks,” IEE-Proceedings-Commun. 145(5), pp. 304-308, 1998.
[52] T. Kwon, and J. Song, “Efficient and secure password-based authentication protocols against guessing attacks,” Computer Communications 21, pp. 853-861, 1998.
[53] L. Lamport, “Password authentication with insecure communication,” Communications of ACM 24, pp. 77-772, 1981.
[54] R. E. Lennon, S. M. Matyas, and C. H. Mayer, “Cryptographic authentication of time-invariant quantities,” IEEE Trans. on Communications 29(6), pp. 773-777, 1981.
[55] C. L. Lin, H. M. Sun, and T. Hwang, “Attacks and solutions on strong password authentication,” IEICE trans. Commun. E84-B(9), pp. 2622-2627, 2001.
[56] H. Y. Lin, and L. Harn, “Authentication protocols for personal communication systems,” in: Proceedings of SIGCOMM’95 , pp. 256-261, 1995.
[57] H. Y. Lin, and L. Harn, “Authentication in wireless communications,” in: IEEE Global Comm., pp. 550-554, 1993.
[58] H. Y. Lin, and L. Harn, “Authentication protocols with non-repudiation services in personal communication system,” IEEE Communications Letters 3 (8), 1999.
[59] T. T. May, J. W. James, P. H. Bosma, and J. D. Veatch, “Requirements Driven Methodology for accessing the security and business use of smart cards,” IEEE, pp. 72-88, 1996.
[60] D. Mcelroy, and E. Turban, “Using smart cards in electronic commerce,” International Journal of information management 18(1), pp. 61-72, 1998.
[61] C. J. Mitchell, “Security in future mobile networks,” in: Proceedings of the Second International Workshop on Mobile Multi-Media Communications (MoMuC-2), 1995.
[62] J. H. Moore, “Protocol failures in cryptosystems,” in Proc. IEEE 76 (5), pp. 594-601, 1998.
[63] D. Naccache, D. M’Raihi, and Gemplus, “Cryptographic smart cards,” IEEE Micro, pp. 14-24, June 1996.
[64] R. M. Needham, R. M., and M. D. Schroeder, “Using encryption for authentication in large networks of computers,” Communications of the ACM, 21(12), pp. 993-999, 1978.
[65] NIST FIP PUB 180, Secure hash standard, National Institute of Standards and Technology, US department of Commerce, DRAFT 1993.
[66] C. Perkins, “Mobile IP and security issue: an overview,” in: Proceedings of First IEEE/Popov Workshop on Internet Technologies and Services, pp. 131—148, 1999.
[67] M. O. Rabin, “Digitalized Signatures and Public-Key Functions as Intractable as Factorization,” MIT/LCS/TR-212, MIT Laboratory.
[68] R. L. Rivest, The MD5 message-digest algorithm, RFC 1231, Internet Activities Board, Internet Privacy Task Force,1992.
[69] M. I. Samarakoon, and B. Honary, “Novel authentication and key agreement protocol for low processing power and systems resource requirements in portable communications systems,” in: IEE Colloquium on Novel DSP Algorithms and Architectures for Radio Systems, pp. 9/1-9/5, 1999
[70] D. Samfat, R. Mova, and N. Asonkan, “Untraceability in mobile networks,” in: Proc. First ACM Int. Conf. on Mobile Computing and Networking, pp. 26-36, 1995.
[71] B. Schneier, “Applied Cryptography: Protocols, Algorithms, and source code in C,” John Wiley & Sons, Inc, New York, NY, USA, 2nd edition, 1996.
[72] D. H. Seo, and P. Sweeney, “Simple authenticated key agreement algorithm,” Electrics Letters 35(13), pp. 1073-1074, 1999.
[73] S. P. Shieh, F. S. Ho, and Y. L. Huang, “An efficient authentication protocol for mobile networks,” Journal of Information Science and Engineering 15, pp. 505-520, 1999.
[74] M. A. Sirbu, and J. C. I. Chuang, “Distributed authentication in Kerberos using public key cryptography, in: Proceedings in IEEE Symposium on Network and Distributed System Security, pp. 134 —141, 1997.
[75] H. M. Sun, “An efficient remote user authentication scheme using smart cards,” IEEE Trans. on Consumer Electronics 46(4), pp. 958-961, 2000.
[76] K. Tan, and H. Zhu, “Remote password authentication scheme based on cross-product,” Computer Communications 18, pp. 390-393, 1999.
[77] J. Tardo, and J., K. Alagappan, “SPX: Global authentication using public-key certificates,” in: Proceedings of the 1991 IEEE Symposium on Research in Security and Privacy, 1991.
[78] S. J. Wang, and J. F. Chang, “Smart card based secure password authentication scheme,” Computers & Security 15(3), pp. 231-237, 1996.
[79] T. C. Wu, “Remote Login Authentication Scheme Based on a Geometric Approach,” Computer Communications 18 (12), pp. 959-963, 1995.
[80] T. C. Wu, and H. S. Sung, “Authentication passwords over an insecure channel,” Computer & Security15(5), pp. 431-439, 1996.
[81] T. C. Wu, and T. S. Wu, “Group commitment protocol based on zero knowledge proofs,” Computer Communications 18(9), pp.654-656, 1995.
[82] W. H. Yang, and S. P. Shieh, “Password authentication schemes with smart card,” Computer & Security 18(8), pp. 727-733, 1999.
[83] S. M. Yen, and K. H. Liao, “Shared authentication token secure against replay and weak key attack,” Information Processing Letters 62, pp.78-80, 1997.
[84] S. M. Yen, and M. T. Liu, “High performance nonce-based authentication and key distribution protocols against password guessing attacks,” ICIEC trans. Fund. E80-A(11), pp. 2209-2217, .
[85] J. Zao, S. Kent, J. Gahm, G. Troxel, M. Condell, P. Helinek, N. Yuan, and I. Castineyra, “A public-key based secure Mobile-IP,” in: Proceedings of the third annual ACM/IEEE international conference on Mobile computing and networking, pp. 173 — 184, 1997.
[86] Z. Zhibin, and Z. Naitong, “Dynamic authentication protocol for personal communication system(PCS)”, International Conference on Communication Technology (ICCT’98), Beijing, China, pp. S12-07-1~S12-07-5, 1998.
[87] J. Zhou, and K.-Y. Lam, “Undeniable billing in mobile communication,” in: ACM MOBICOM’98 Dallas Texas USA, pp. 284-290, 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔