|
[1] S.-P. Sheu, Ph.D. Bäcklund transformation and homoclinic solutions to the coupled non-linear Schrödinger system, Ohio State University (1992). [2] S.-P. Sheu and M. G. Forest, Bäcklund-Gauge transformation, N-solitions, and N-whiskered homoclinic waves of the CNLS system. [3] M. Boiti and G. Tu, Bäcklund transformations via gauge transformations, Nuovo Cimento 71B (1982), pp. 253-264. [4] D. H. Sattinger and V. D. Zurkowski, Gauge theory of Bäcklund transformations I, II, Dynamics of Infinite Dimensional System. NATO ASI series F, Physica 26 D (1987), pp. 225-250. [5] H. Chen, Relation between Bäcklund transformations and inverse scattering problems, Springer lecture Notes in Mathematics 515 (1976), pp. 241-252. [6] E. Caglioti, S. Trillo, et.al, Finite-dimensional description of nonlinear pulse propagation in optical-fiber couplers with applications to soliton switching, J. Opt. Soc. Am. B, Vol.7, No.3 (1990), pp. 374-385. [7] S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electro- magnetic waves, Zh. Eksp. Teor. Fiz., 65, 1973. [8] A. S. Fokas, An initial-boundary value problem for the nonlinear Schrödinger equation. Physica 35D (1989), 167. [9] Y. Kodama, Theory of canonical transformations for nonlinear evolution equations II, Progress of Theoretical Physics, Vol.57, No.6 (1977), pp. 1900-1916. [10] Rogers, C. and Shadwick, W. F. Bäcklund Transformations and their Applications, Academic Press, New York (1982). [11] R. Hermann, Geometric Theory of Nonlinear Differential Equations, Bäcklund Transfor- mation, and Soliton, Interdisciplinary Mathematics Vol. 12, 14, 1976. [12] B. Grebert and J. C. Guillot, Gaps of One Dimensional AKNS systems, Preprint, 1990. [13] Y. Li, Bäcklund Transformations and Homoclinic Structures for the NLS Equation, Phys. Letters A, 163:181-187, 1992. [14] Y. Li and D. W. McLaughlin, Morse and Melnikov Functions for NLS Pdes, Comm. Math. Phys., 162:175-214, 1994. [15] Allan P. Fordy, Soliton theory: a survey of results, Manchester University Press, New York (1990). [16] M. Remoissenet, Waves called solitons, Springer-Verlag, New York, 1994.
|