(3.215.180.226) 您好!臺灣時間:2021/03/06 12:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇萾欽
研究生(外文):Ing-Ching Su
論文名稱:雙折射偶核雷射光纖中之波傳導現象
論文名稱(外文):Wave Propagation in Birefringent Dual-Core Opticaal Fiber
指導教授:許訓評
指導教授(外文):Shin-Pyng Sheu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:應用數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:38
中文關鍵詞:薛丁格方程式孤立子(或孤立波)規範轉換同相奇異波雙折射光纖可積系統
外文關鍵詞:Schrodinger equationsolitionsolitary waveshomoclinic wavesBacklund transformationgauge transformationbirefringent optical fiberintegrable system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:422
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
孤立子理論是一門美麗地、跨學科間的主題,它已經對數學和物理科學產生巨大衝擊。在本篇論文中,我們將考慮偶核耦合非線性薛丁格系統,其中擾動係數屬於實數,而且系統可分別對應於聚光雷射或散光雷射在非線性雙折射偶核光纖中之量子波傳導方程式。在適當條件下,此系統會簡化成為(可積的)擾動的非線性薛丁格方程式。值得注意的一件事實是,在擾動的非線性薛丁格方程式中,干擾項不是造成光纖中非線性波傳播衰退的理由。
在此論文,我們將給出上述偶核耦合非線性薛丁格系統的 Lax 表現,證明其為一無窮維希耳伯特空間中之可積系統。利用其無窮維對稱性的幾何特性,我們也將給出系統的 Bäcklund-gauge 轉換。藉由 Bäcklund-gauge 轉換,我們造出系統的2-孤立子解,此處數字“2”表示離散的光譜值個數,而且也會觀察到“黑暗孤立子”解的存在性證據。最後,我們會造出由不穩定單平面波所引起之同相奇異波 (homoclinic wave),同時證明當時間趨近正負無窮大時,同相奇異波會趨近到平面波解。

Soliton theory is a beautifully interdisciplinary subject which has had enormous impact, both on mathematics and the physical sciences. In this thesis, we consider the dual-core CNLS system with the perturbed constants are real numbers and the system can corresponding to the quasi-monochromatic electromagnetic waves in the dual-core focusing or the dual-core defocusing birefringent optical fiber, respectively. This coupled system can reduces to the (integrable) perturbed nonlinear Schrödinger equation. The perturbed term in perturbed NLS equation is not the reason that why the nonlinear wave propagation decay in optical fiber.
We give a Lax representation of the above dual-core CNLS system to verify it is an infinite dimensional integrable system on Hilbert space. Using the geometric property of symmetry, we will construct a Bäcklund-gauge transformation for the system. By means of Bäcklund-gauge transformation, we construct 2-soliton solutions of system, where 2 is the number of discrete spectral values, and observe the existence of dark soliton solutions. Finally, we construct the homoclinic waves arising from the unstable simple plane waves and show that the homoclinic solutions are truly homoclinic to the plane waves in the sense that they approach the plane wave solutions in different orientations as time t increasing infinitely.

I. Introduction …………………………………………………………1
II. Lax Representation of the Dual-Core Coupled Nonlinear Schrödinger system………………………………………………………3
III. Bäcklund-Gauge Transformation of the Dual-Core CNLS System………………………………………………………………………7
IV. N-Solitons and Dark Solitons of the Dual-Core CNLS System………………………………………………………………………14
V. N-Whiskered Homoclinic Waves of the Dual-Core Focusing CNLS System or the Dual-Core Defocusing CNLS System………………………………………………………………………19
VI. Discussions …………………………………………………………34
VII. Figure Captions……………………………………………………………………36
References…………………………………………………………………38
Figures ……………………………………………………………………39

[1] S.-P. Sheu, Ph.D. Bäcklund transformation and homoclinic solutions to the coupled non-linear Schrödinger system, Ohio State University (1992).
[2] S.-P. Sheu and M. G. Forest, Bäcklund-Gauge transformation, N-solitions, and N-whiskered homoclinic waves of the CNLS system.
[3] M. Boiti and G. Tu, Bäcklund transformations via gauge transformations, Nuovo Cimento 71B (1982), pp. 253-264.
[4] D. H. Sattinger and V. D. Zurkowski, Gauge theory of Bäcklund transformations I, II, Dynamics of Infinite Dimensional System. NATO ASI series F, Physica 26 D (1987), pp. 225-250.
[5] H. Chen, Relation between Bäcklund transformations and inverse scattering problems, Springer lecture Notes in Mathematics 515 (1976), pp. 241-252.
[6] E. Caglioti, S. Trillo, et.al, Finite-dimensional description of nonlinear pulse propagation in optical-fiber couplers with applications to soliton switching, J. Opt. Soc. Am. B, Vol.7, No.3 (1990), pp. 374-385.
[7] S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electro- magnetic waves, Zh. Eksp. Teor. Fiz., 65, 1973.
[8] A. S. Fokas, An initial-boundary value problem for the nonlinear Schrödinger equation. Physica 35D (1989), 167.
[9] Y. Kodama, Theory of canonical transformations for nonlinear evolution equations II, Progress of Theoretical Physics, Vol.57, No.6 (1977), pp. 1900-1916.
[10] Rogers, C. and Shadwick, W. F. Bäcklund Transformations and their Applications, Academic Press, New York (1982).
[11] R. Hermann, Geometric Theory of Nonlinear Differential Equations, Bäcklund Transfor- mation, and Soliton, Interdisciplinary Mathematics Vol. 12, 14, 1976.
[12] B. Grebert and J. C. Guillot, Gaps of One Dimensional AKNS systems, Preprint, 1990.
[13] Y. Li, Bäcklund Transformations and Homoclinic Structures for the NLS Equation, Phys. Letters A, 163:181-187, 1992.
[14] Y. Li and D. W. McLaughlin, Morse and Melnikov Functions for NLS Pdes, Comm. Math. Phys., 162:175-214, 1994.
[15] Allan P. Fordy, Soliton theory: a survey of results, Manchester University Press, New York (1990).
[16] M. Remoissenet, Waves called solitons, Springer-Verlag, New York, 1994.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔